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Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most common patho-
logical subtype of renal cell carcinoma. Bioinformatics analyses were used to screen 
candidate genes associated with the prognosis and microenvironment of ccRCC and 
elucidate the underlying molecular mechanisms of action.
Methods: The gene expression profiles and clinical data of ccRCC patients were 
downloaded from The Cancer Genome Atlas database. The ESTIMATE algorithm 
was used to compute the immune and stromal scores of patients. Based on the me-
dian immune/stromal scores, all patients were sorted into low- and high-immune/
stromal score groups. Differentially expressed genes (DEGs) were extracted from 
high- versus low-immune/stromal score groups and were described using functional 
annotations and protein‒protein interaction (PPI) network.
Results: Patients in the high-immune/stromal score group had poorer survival out-
come. In total, 95 DEGs (48 upregulated and 47 downregulated genes) were screened 
from the gene expression profiles of patients with high immune and stromal scores. 
The genes were primarily involved in six signaling pathways. Among the 95 DEGs, 
43 were markedly related to overall survival of patients. The PPI network identified 
the top 10 hub genes—CD19, CD79A, IL10, IGLL5, POU2AF1, CCL19, AMBP, 
CCL18, CCL21, and IGJ—and four modules. Enrichment analyses revealed that the 
genes in the most important module were involved in the B-cell receptor signaling 
pathway.
Conclusion: This study mainly revealed the relationship between the ccRCC micro-
environment and prognosis of patients. These results also increase the understand-
ing of how gene expression patterns can impact the prognosis and development of 
ccRCC by modulating the tumor microenvironment. The results could contribute to 
the search for ccRCC biomarkers and therapeutic targets.
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1  |   INTRODUCTION

Renal cell carcinoma (RCC) is a common malignant tumor 
of the urinary system (Jonasch et al., 2012), and clear cell 
renal cell carcinoma (ccRCC) is its most common patho-
logical subtype. The morbidity and mortality of ccRCC 
are reportedly increasing every year (Motzer et al., 2017). 
Although the treatment of ccRCC has improved, the prog-
nosis of ccRCC remains poor, especially in cases of lo-
cally advanced and metastatic ccRCCs (Dutcher, 2013). 
Therefore, the exploration of biomarkers associated with 
ccRCC diagnosis, therapy, and patient prognosis has be-
come an important issue (Adashek, Salgia, Posadas, Figlin, 
& Gong, 2019).

The tumor microenvironment (TM) plays a vital role in 
the prognosis of patients with cancer. Components of the 
TM are very complicated. It primarily consists of nontumor 
components that include stromal cells and tumor cells, and 
tumor components that are predominantly tumor cells, stro-
mal cells, and tumor cells. Nontumor components can be re-
garded as valuable indexes for the therapeutic and prognostic 
assessment of tumors. Wu and Dai (2017) reported that the 
TM noticeably affects the therapeutic response and clini-
cal outcome, and can mediate drug resistance by inducing 
the secretion of soluble factors from tumor or stromal cells. 
Moreover, the adhesion of tumor cells to stromal fibroblasts 
or components of the extracellular matrix can also attenu-
ate therapeutic responses. Şenbabaoğlu et al found that a 
decrease in immune cell content (such as Th17 cells) cor-
related with ccRCC progression and poor patient prognosis 
(Şenbabaoğlu et al., 2016). Ghatalia et al reported that suni-
tinib therapy significantly prolonged the disease-free survival 
of the patients with high CD8+ T-cell density (George et al., 
2018). Although these studies explored the role of the TM 
in the development and prognosis of ccRCC, most have only 
highlighted the association between the TM components and 
patient prognosis. Few studies have used expression profile 
data from high-throughput sequencing to examine the rela-
tionship between gene expression patterns in the TM and 
ccRCC prognosis.

In this study, we aimed to identify genes of prognos-
tic value in the ccRCC microenvironment and examine 
the possible mechanisms underlying ccRCC development. 
We downloaded gene expression profiles and clinical in-
formation of ccRCC patients from The Cancer Genome 
Atlas (TCGA) and utilized the R programming language 
software to analyze the data for differentially expressed 
genes (DEGs). We used the DAVID database to conduct 
gene ontology (GO) functions and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) for pathway enrichment 
analyses of the DEGs. A protein‒protein interaction (PPI) 
network was constructed using the Search Tool for the 
Retrieval of Interacting Genes (STRING) online database 

and the results were downloaded through Cytoscape. 
Finally, we identified hub genes and constructed modules 
from the PPI network. The results of this study reveal re-
liable prognostic biomarkers and therapeutic targets for 
ccRCC.

2  |   MATERIALS AND METHODS

2.1  |  Database

The gene expression profiles and clinical data (e.g., gender, 
age, stage, grade, survival, and outcome) of patients with 
ccRCC were obtained from TCGA database (https​://por-
tal.gdc.cancer.gov/). Immune scores and stromal scores of 
ccRCC patients were calculated by applying the ESTIMATE 
algorithm using the estimate package in R (https​://www.r-
proje​ct.org/). All patients were divided into low- and high- 
immune/stromal score groups according to the median 
immune/stromal scores.

2.2  |  Identification of DEGs

We utilized the limma R package to identify the differen-
tially expressed genes (DEGs) according to the following 
cut-off value: False discovery rate (FDR) <0.05 and |log2 
fold change (FC)| > 1.

2.3  |  GO and KEGG pathway enrichment 
analyses of DEGs

The DAVID 6.8 database (https​://david.ncifc​rf.gov/) is a 
widely used database for gene enrichment and functional an-
notation analyses. Using DAVID, we applied the GO func-
tion and KEGG pathway enrichment analyses to the identified 
DEGs, with a cut-off criterion of p-value <.05.

2.4  |  PPI network construction and 
analysis of modules

To help us understand the interactions between different 
genes, we used the STRING (https​://string-db.org/) online 
database (Franceschini et al., 2013) to analyze the protein‒
protein interaction (PPI) network of the DEGs. To identify 
modules in the PPI network, we used the Molecular Complex 
Detection (MCODE) plug-in in the Cytoscape software 
(Shannon et al., 2003), with the following default param-
eters: “Degree Cutoff  =  2,” “Node Score Cutoff  =  0.2,” 
“K-Core  =  2,” and “Max.Depth  =  100” (Bader & Hogue, 
2003).

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.r-project.org/
https://www.r-project.org/
https://david.ncifcrf.gov/
https://string-db.org/
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2.5  |  Identification and analysis of hub genes

The top 10 hub genes were selected using the degree algo-
rithm (Chin et al., 2014) in cytoHubba (a Cytoscape plugin). 
The cBioPortal database online portal (http://www.cbiop​
ortal.org) was used to analyze the network of hub genes and 
their coexpressed genes.

2.6  |  Overall survival analysis

The survival R package was used to analyze the relationship 
between DEGs expression levels (including hub genes) and 
the overall survival of patients. We tested this relationship 
with a log-rank test and landmark analysis, where p <  .05 
was regarded as statistically significant.

3  |   RESULTS

3.1  |  Immune scores and stromal scores 
are significantly correlated with clinical 
parameters

We downloaded gene expression profiles and clinical infor-
mation of ccRCC patients from TCGA database. We then 
matched immune and stromal scores of these patients via the 
estimate package in R. Next, we obtained 530 patients with 
complete immune and stromal scores; stromal scores ranged 
from −1,433.76 to 1,967.19 and immune scores ranged from 
−693.95 to 3,328.20 (Table 1). The median immune/stro-
mal score was used as the cut-off value to classify all ccRCC 
patients into low- and high- immune/stromal score groups. 
Analyses of the relationship between patient immune or stro-
mal scores and overall survival using the survival package in 
R showed that patients in the high-immune score group had a 
poorer prognosis than those in the low-immune score group. 
After 4.3 years of follow-up, patients in the high-stromal score 
group had a worse prognosis than those in the low-stromal 
score group (Figure 1). In addition, we analyzed the relation-
ship between patient immune or stromal scores and clinical 
parameters (Figure 2) and found that the clinical parameters 
(histological grade, pathological, T, and M stages) increased 
with higher immune scores (p < .05). Increased stromal scores 
were associated with an increase in T stage (p < .05).

3.2  |  Identification of DEGs

To better understand the correlation between gene expression 
profiles and immune and/or stromal scores, we analyzed the 
gene expression profiles of the 530 ccRCC patients. We cat-
egorized the patients based on the median of their immune 

or stromal scores (high vs. low, for each); Figure 3 shows 
that the gene expression profiles can be used to differenti-
ate the two groups. For immune scores, 512 genes were 
upregulated and 147 genes were downregulated in the high-
score versus low-score group (|log2 fold change (FC)|> 1, 
FDR  <  .05; Figure 4a). Similarly, for stromal scores, 259 
genes were upregulated and 152 genes downregulated in the 

T A B L E  1   Immune scores, stromal scores, and clinical data of 
patients with ccRCC

Characteristic n
Stromal score 
(range)

Immune score 
(range)

Age      

≤60 264 −1433.76 to 1778.24 −693.95 to 3,328.20

＞60 266 −1375.62 to 1967.19 −389.80 to 3,223.9

Gender      

Female 186 −1433.76 to 1828.05 −693.95 to 3,238.35

Male 344 −1413.81 to 1967.19 −660.28 to 3,328.2

Histological 
grade

     

G1 14 −615.34 to 1,054.71 −136.19 to 2,368.85

G2 227 −1375.62 to 1768.6 −389.80 to 3,102.67

G3 206 −1433.76 to 1888.47 −693.95 to 3,328.2

G4 75 −690.60 to 1967.19 255.63 to 3,238.35

GX 5 −1413.81 to 945.64 −660.28 to 1859.09

Unknown 3 −385.32 to 654.11 362.53 to 1518.59

Stage      

I 265 −1433.76 to 1778.24 −693.95 to 3,135.31

II 57 −1413.81 to 1764.27 −660.28 to 3,328.2

III 123 −827.01 to 1888.47 −9.16 to 3,306.6

IV 82 −690.60 to 1967.19 189.47 to 3,238.35

unknown 3 822.33 to 1,346.92 780.29 to 3,094.80

T stage      

T1 271 −1433.76 to 1778.24 −693.95 to 3,135.31

T2 69 −1413.81 to 1764.27 −660.28 to 3,328.20

T3 179 −827.01 to 1967.19 −9.16 to 3,306.60

T4 11 −339.67 to 1757.07 925.24 to 2,884.05

N stage      

N0 239 −1413.81 to 1967.19 −660.28 to 3,328.20

N1 16 −394.15 to 1627.16 688.28 to 3,306.60

Nx 275 −1433.76 to 1778.24 −693.95 to 3,238.35

M stage      

M0 420 −1433.76 to 1888.47 −693.95 to 3,328.20

M1 78 −690.60 to 1967.19 189.47 to 3,238.35

Mx 30 −615.34 to 1,375.84 −136.19 to 3,022.26

Unknown 2 818.41 to 1752.31 1,424.61 to 2,235.77

Survival status      

Death 166 −1413.81 to 1967.19 −660.28 to 3,328.20

Alive 364 −1433.76 to 1757.07 −693.95 to 3,306.60

http://www.cbioportal.org
http://www.cbioportal.org
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high-score versus low-score group (|log2 fold change (FC)|> 
1, FDR <0.05; Figure 4b). We also analyzed the shared up-
regulated and downregulated genes in both high-score groups 
(immune and stromal scores) and found 48 upregulated and 

47 downregulated genes (Figure 5). These 95 genes obtained 
by comparing the high versus low immune scores and stro-
mal score groups were regarded as DEGs and subsequently 
used in further analyses.

F I G U R E  1   The correlation between 
(a) immune scores or (b) stromal scores 
of patients and overall survival. Immune 
scores and stromal scores were significantly 
associated with the prognosis of patients 
(p < .05)

F I G U R E  2   The relationship between immune scores or stromal scores of patients and clinical parameters. Immune scores were differential 
in gender, grade, clinical stage, T stage, and M stage parameters (p < .05); stromal scores were only differential in age and T stage parameters 
(p < .05). (a) Immune scores and age; (b) Immune scores and gender (p < .05); (c) Immune scores and grade (p < .05); (d) Immune scores and 
pathological stage (p < .05); (e) Immune scores and T stage (p < .05); (f) Immune scores and N stage; (g) Immune scores and M stage (p < .05); 
(h) Stromal scores and age (p < .05); (i) Stromal scores and gender; (j) Stromal scores and grade; (k) Stromal scores and pathological stage; (l) 
Stromal scores and T stage (p < .05); (m) Stromal scores and N stage; (n) Stromal and M stage
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3.3  |  Correlation between DEGs and 
overall survival

To assess the prognostic value of the 95 DEGs, we analyzed 
the relationship between the expression of each DEG and 
overall survival of the ccRCC patients. Among the 95 DEGs, 
43 were significantly related to overall patient survival 
(p < .05); the top 10 results are shown in Figure 6.

3.4  |  GO function and KEGG pathway 
enrichment analyses of DEGs

To understand the potential mechanisms underlying the 95 
DEGs and ccRCC development, we performed GO function 
annotation and KEGG pathway enrichment analyses using 
the DAVID database and its online analysis tool. The GO 
function analyses of the DEGs were divided into the follow-
ing three parts: biological process (BP), molecular function 
(MF), and cell component (CC), and the top 15 results are 
shown in Figure 7a,b and Table 2. The DEGs were primarily 
enriched in the immune response (BP), extracellular region 
(CC), and cytokine activity (MF). Results of KEGG pathway 
enrichment analyses indicated that the DEGs were mainly 
enriched in six pathways involved in cytokine‒cytokine 
receptor interaction, hematopoietic cell lineage, primary 

immunodeficiency, chemokine signaling pathway, steroid 
hormone biosynthesis, and intestinal immune network for 
IgA production (Figure 7c,d and Table 3).

3.5  |  Construction of the PPI network of 
DEGs and analyses of the modules

To further explore the interaction of the DEGs and their 
mechanisms underlying the regulation of ccRCC develop-
ment, we utilized the STRING online database to analyze the 
DEGs and construct a PPI network. The results were down-
loaded and analyzed in the Cytoscape software. In the PPI 
network, we identified 53 genes (Figure 8a) and 4 function 
modules (using MCODE). We selected the most important 
module (Figure 8b) and used the STRING database to ana-
lyze the biological processes associated with the genes in this 
module. Our results indicate that the genes were mainly en-
riched in the B-cell receptor signaling pathway (Figure 8c).

3.6  |  Identification and analyses of 
hub genes

To identify hub genes of the ccRCC microenvironment, 
we further analyzed the PPI network of DEGs using the 

F I G U R E  3   Heatmap of differential 
gene expression in the low score group 
(immune scores or stromal scores) and the 
high score group (immune scores or stromal 
scores). (a) Immune scores (low score in left 
and high score in right; |log2 fold change 
(FC)|> 1, FDR < 0.05); (b) Stromal scores 
(low score in left and high score in right; 
|log2 fold change (FC)|> 1, FDR < 0.05)

F I G U R E  4   Differentially expressed 
genes (DEGs) in (a) immune scores and (b) 
stromal scores. Red represents upregulated 
genes, green represents downregulated 
genes, according to |log2 fold change (FC)|> 
1, FDR <0.05
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degree algorithm in Cytoscape software. Ten hub genes 
were screened, based on their degree score. The screened 
hub genes were as follows: CD19, CD79A, IL10, IGLL5, 
POU2AF1, CCL19, AMBP, CCL18, CCL21, and IGJ 
(Figure 9a,b and Table 4). A network of the hub genes and 
their coexpressed genes was analyzed using the cBioPor-
tal database, with a total of six hub genes in this network 
(Figure 9c). We analyzed the correlation between hub gene 
expression and overall ccRCC patient survival; the results 
are shown in Figure 10.

4  |   DISCUSSION

In this study, we used TCGA database to screen tumor 
microenvironment-related genes to explore the novel 
prognostic biomarkers and therapeutic targets of ccRCC. 
Moreover, we compared the gene expression profiles of 
530 patients with high versus low immune scores (or stro-
mal scores) and found 42 genes to be involved in the im-
mune response.

First, we analyzed the relationship between immune/
stromal scores and prognosis of ccRCC and found patients 
with high immune/stromal scores had a worse overall 

survival. In addition, the immune scores were significantly 
related to the clinical parameters (gender, grade, patholog-
ical stage, T stage, and M stage). These results suggested 
that the change of tumor microenvironment prominently 
correlated with the prognosis and development of ccRCC. 
We then analyzed the gene expression profiles of the pa-
tients in the high- versus low-score groups and obtained 
95 DEGs, which included 48 upregulated and 47 downreg-
ulated genes. Overall survival analysis of these 95 genes 
resulted in the identification of 43 genes associated with 
ccRCC patient outcomes. These results showed that tumor 
microenvironment-related genes are an important predictor 
of ccRCC patient prognosis.

Next, we subjected the 95 DEGs to GO and KEGG en-
richment analyses. Results of the GO functional analysis 
indicated that DEGs were mainly enriched in the immune re-
sponse (BP), extracellular region (CC), and cytokine activity 
(MF). These results suggest that the DEGs play a vital role 
in regulating the ccRCC microenvironment, and could influ-
ence ccRCC development. Previous studies have suggested 
that the immune response contributes to tumor progression 
and drug resistance of various cancers (Astaneh, Dashti, & 
Esfahani, 2019; Miranda et al., 2019; Pitt et al., 2016), in-
cluding bladder (Flores-Martín et al., 2019; Holland et al., 

F I G U R E  5   Common differentially 
expressed genes in immune scores and 
stromal scores. (a) Common upregulated 
genes; (b) common downregulated genes

F I G U R E  6   Top ten Kaplan–Meier analysis results of DEGs correlated with overall survival
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F I G U R E  7   Top 15 GO enrichment terms of DEGs (a and b) and KEGG pathway analysis of DEGs (c and d)

T A B L E  2   Top 15 GO enrichment terms from analysis of DEGs

Category ID Term Count p-value

BP GO:0006955 Immune response 16 3.24105E-06

BP GO:0006954 Inflammatory response 10 5.99498E-05

BP GO:0002683 Negative regulation of immune  
system process

6 8.33701E-05

BP GO:0009611 Response to wounding 12 0.000118248

BP GO:0042592 Homeostatic process 14 0.000167634

CC GO:0005576 Extracellular region 26 7.3887E-05

CC GO:0005624 Membrane fraction 13 0.001961813

CC GO:0005887 Integral to plasma membrane 16 0.002557573

CC GO:0005626 Insoluble fraction 13 0.002656894

CC GO:0031226 Intrinsic to plasma membrane 16 0.00317684

MF GO:0005125 Cytokine activity 7 0.000354613

MF GO:0004252 Serine-type endopeptidase activity 6 0.000888895

MF GO:0008009 Chemokine activity 4 0.001424593

MF GO:0008236 Serine-type peptidase activity 6 0.001692938

MF GO:0042379 Chemokine receptor binding 4 0.001711249
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T A B L E  3   KEGG pathway analysis of DEGs

ID Pathway Count p-value Genes

hsa04060 Cytokine‒cytokine receptor interaction 11 4.85E-06 CCL13 IL2RA TNFSF13B CCL21 CCL19 
TNFRSF17 HGF IL7R XCR1 IL10 CCL18

hsa04640 Hematopoietic cell lineage 5 0.002402127 CR1 CD19 IL2RA MS4A1 IL7R

hsa05340 Primary immunodeficiency 3 0.022496299 CD19 CD79A IL7R

hsa04062 Chemokine signaling pathway 5 0.034718017 CCL13 CCL21 CCL19 XCR1 CCL18

hsa00140 Steroid hormone biosynthesis 3 0.037388975 CYP17A1 HSD11B1 HSD11B2

hsa04672 Intestinal immune network for IgA production 3 0.041959354 TNFSF13B TNFRSF17 IL10

F I G U R E  8   Constructed PPI network of DEGs and analysis of module. (a) PPI network of DEGs; red nodes represent upregulated DEGs and 
green nodes represent downregulated DEGs. The blue and red lines indicate the combined score from low to high. (b) The most important module; 
(c) biological process of all genes in the most important module
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2019), lung (Hays & Bonavida, 2019; Sorich, Rowland, 
Karapetis, & Hopkins, 2019), and breast cancers (Wagner 
et al., 2019). The results of the KEGG enrichment analyses 
suggested that the DEGs were mostly enriched in cytokine‒
cytokine receptor interaction, hematopoietic cell lineage, 
primary immunodeficiency, chemokine signaling pathway, 
steroid hormone biosynthesis, and intestinal immune net-
work for IgA production. These signaling pathways also 
play a key role in the ccRCC microenvironment and the pro-
gression of ccRCC. Previous studies indicated that the cy-
tokine‒cytokine receptor interaction might participate in the 

development of glioblastoma (GBM) (Agrawal et al., 2018) 
and osteosarcoma (Tsukamoto et al., 2012), and modulate 
the tumor microenvironment of hematopoietic cell lineage. 
Therefore, regulation of the tumor microenvironment could 
impact tumor progression (Flores et al., 2018; Xiong et al., 
2015). Hematopoietic stem cells, through the myeloid lin-
eage, may act as progenitors for cancer-associated adipocytes 
(CAAs) and cancer-associated fibroblasts (CAFs); these cells 
could remodel the tumor microenvironment, thereby driving 
all aspects of tumor progression, including tumor growth 
and survival, chemoresistance, tumor vascularization, tumor 

F I G U R E  9   Identification and analysis 
of hub genes. (a) The ten hub genes were 
identified using Cytoscape. (b) Degree value 
of the ten hub genes; (c) hub genes and 
their co-expression genes were analyzed via 
cBioPortal database

T A B L E  4   List of 10 hub genes

Rank Gene name Gene ID Description Location Expression Degree score

1 CD19 930 CD19 molecule Chr16p11.2 Upregulated 19

2 CD79A 973 CD79a molecule Chr19q13.2 Upregulated 13

3 IL10 3586 interleukin 10 Chr1q32.1 Upregulated 11

4 IGLL5 100423062 immunoglobulin lambda-like polypeptide 5 Chr22q11.22 Upregulated 10

5 POU2AF1 5450 POU class 2 homeobox associating factor 1 Chr11q23.1 Upregulated 10

6 CCL19 6363 C-C motif chemokine ligand 19 Chr9p13.3 Upregulated 8

7 AMBP 259 alpha−1-microglobulin/bikunin precursor Chr9q32 Downregulated 8

8 CCL18 6362 C-C motif chemokine ligand 18 Chr17q12 Upregulated 7

9 CCL21 6366 C-C motif chemokine ligand 21 Chr9p13.3 Upregulated 7

10 IGJ (JCHAIN) 1114 Ig J chain (joining chain of multimeric IgA 
and IgM)

Chr4q13.3 Upregulated 7
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invasion, and tumor cell metastasis (Xiong et al., 2015). 
Moreover, primary immunodeficiency (Yazdani et al., 2017), 
chemokine signaling pathway (Meng, Xue, & Chen, 2018; 
Zhou, Cao, Li, & Zhao, 2018), steroid hormone biosynthesis 
(Boibessot & Toren, 2018; Hima & Sreeja, 2016), and intes-
tinal immune network for IgA production (Liang et al., 2018) 
all participate in tumor progression and regulation of the 
tumor microenvironment. Moreover, we performed module 
analyses on the constructed PPI network, selected the most 
significant module, and performed BP analysis of the genes 
in this module. We found that the genes in the module were 
primarily enriched in the B-cell receptor signaling pathway. 
These results indicate that the development of ccRCC and 
changes to the ccRCC microenvironment might be related to 
these biological processes.

Finally, we selected 10 DEGs as hub genes using the de-
gree algorithm. The hub genes are CD19, CD79A, IL10, 
IGLL5, POU2AF1, CCL19, AMBP, CCL18, CCL21, and IGJ 
(JCHAIN). We then analyzed the correlation between these 
10 DEGs and the prognosis of ccRCC patients and found that 
three hub genes (IL10, IGLL5, and POU2AF1) were associated 
with overall patient survival. These three genes are of particu-
lar interest. Interleukin-10 (IL10) is produced by immune cells 
(e.g., macrophages, T lymphocytes, and natural killer cells) 
and functions as a multifunctional immune-regulatory cyto-
kine with both immunosuppressive and antiangiogenic effects 
(Sheikhpour et al., 2018). IL10 plays an important role in both 
immune-mediated diseases and cancer (Geginat et al., 2016; 
Mannino et al., 2015); Wang et al found that lower serum IL10 
levels were correlated with a better prognosis in cervical cancer 
patients (Wang et al., 2018). In addition, IL10 might promote 
tumor cell proliferation and metastasis through immunosup-
pression. A previous study has shown that it promotes IL6 
expression and synthesis, which gives rise to cell proliferation 
via B-cell lymphoma-2 (Bcl-2) upregulation that changes the 
proliferation/apoptosis equivalence toward neoplastic cell pro-
liferation (Sheikhpour et al., 2018). IGLL5 encodes one of the 

immunoglobulin lambda-like polypeptides and plays a signif-
icant role in tumor progression. Liang et al reported that fu-
sion of the IGLL5 gene might promote metastasis of the lymph 
nodes and play a role in breast cancer development (Liang et 
al., 2015). Moreover, White et al found that an IGLL5 mutation 
was associated with the incidence and progression of multiple 
myeloma (MM) (White et al., 2018). POU2AF1 is also an im-
portant gene in tumorigenesis and tumor progression. Zhao et 
al. reported that POU2AF1 is activated by amplification (or 
through other mechanisms) and may promote MM progression 
by accelerating the growth of MM cells through direct transacti-
vation of one of its target genes, TNFRSF17 (Zhao et al., 2008). 
Expression dysregulation or POU2AF1 mutation is also related 
to the development of chronic lymphocytic leukemia (CLL) 
(Auer et al., 2005).

The tumor microenvironment plays an important role in the 
evolution of tumors. For example, in breast cancer, changes 
in the tumor microenvironment components were considered 
a key element for cancer development and progression, as 
well as potential therapeutic targets. Various components of 
the tumor microenvironment, such as suppressive immune 
cells, soluble factors, and altered extracellular matrix, act to-
gether to impede effective antitumor immunity and promote 
breast cancer progression and metastasis (Soysal, Tzankov, 
& Muenst, 2015). In addition, changes in the tumor micro-
environment have also been found to be correlated with drug 
resistance; Mikami et al. (2019) detected upregulated expres-
sion of PD-1 and PD-L1 in tumor-infiltrating immune cells 
(TIIC) in the tumor microenvironment, related to the resis-
tance of vascular endothelial growth factor-tyrosine kinase 
inhibitors (VEGF-TKIs).

In the present study, we examined how patterns of gene 
expression in the tumor microenvironment influenced com-
ponents of the microenvironment and the prognosis of ccRCC 
patients. Our results provide data that will support further ex-
plorations of the complex interactions between the tumor and 
its environment in ccRCC. Inevitably, our study had a few 

F I G U R E  1 0   Kaplan–Meier analysis results of hub genes (p < .05). Three hub genes were found to be correlated with the prognosis of 
ccRCC patients: (a) IL10, (b) IGLL5, and (c) POU2AF1
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limitations. First, we used data from public databases that were 
not verified in prospective clinical trials. Second, the functions 
of the DEGs that impact the development of ccRCC need to be 
investigated further through in vivo and in vitro experiments.

5  |   CONCLUSION

In summary, our study revealed correlations between the 
ccRCC microenvironment and patient prognosis, and also 
between gene expression in the microenvironment and 
overall survival of patients. These findings increase the 
understanding of the mechanisms through which gene ex-
pression affects the prognosis and development of ccRCC 
through the tumor microenvironment. This study also 
screened several candidate genes and biological pathways 
that may contribute to the search for biomarkers and thera-
peutic targets of ccRCC. However, further experiments are 
necessary to probe the biological function of these genes 
in ccRCC.
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