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Abstract: As one of the most renewable and sustainable resources on Earth, bamboo with its high
flexibility has been used in the fabrication of a wide variety of composite structures due to its
properties. A bamboo-based winding composite (BWC) is an innovative bamboo product which has
revolutionized pipe structures and their applications throughout China as well as improving their
impact on the environment. However, as a natural functionally graded composite, the flexibility
mechanism of bamboo has not yet been fully understood. Here, the bending stiffness method based on
the cantilever beam principle was used to investigate the gradient and directional bending flexibility
of bamboo (Phyllostachys edulis) slivers under different loading Types during elastic stages. Results
showed that the graded distribution and gradient variation of cell size of the fibers embedded in the
parenchyma cells along the thickness of the bamboo culm was mainly responsible for the exhibited
gradient bending flexibility of bamboo slivers, whereas the shape and size difference of the vascular
bundles from inner to outer layers played a critical role in directional bending flexibility. A validated
rule of mixture was used to fit the bending stiffness under different loading Types as a function of
fiber volume fraction. This work provides insights to the bionic preparation and optimization of
high-performance BWC pipes.
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1. Introduction

Bamboo refers to a large variety of grass species that are widely distributed in tropical and
subtropical regions throughout the world. It is also one of the fastest growing and highest growing
herbaceous plants in the world [1]. Usually, it takes only three years for many bamboo species to
grow from seedlings to more than ten meters as an adult plant [2]. This growth period is extremely
short compared to most woods. However, bamboo contains 40–48% cellulose, 22–27% hemicellulose,
and 25–30% lignin, which is similar to the ratios reported to be in both softwood and hardwood,
which allows bamboo exhibits similar physical properties [3]. These rapidly renewable, low-cost,
high-strength, and high-rigidity characteristics make bamboo desirable material that is widely used in a
variety of fields, including construction materials, pulp and paper, biomass energy, etc. These properties
of bamboo demonstrate the potential possibilities of it being a substitute for wood under the policy of
prohibiting the felling of natural forests in China [4].
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In order to adapt to harsh natural conditions such as wind and snow during natural growth
(Figure 1a), bamboo has formed a superior hollow multi-node structure in the growth direction and
functionally graded (FG) structure on the wall layer in the long-term biological evolution process
(Figure 1b), which endows it with a unique bending flexibility feature that "bends without damage
and rebounds quickly". Taking full advantage of the excellent bending flexibility, with the processing
technology of weaving, molding and winding in carbon or glass fiber composites, the bamboo-based
heterotypic engineered components have been developed and applied using bamboo sliver as the
raw material, especially for bamboo-based winding composites (BWC) pipes (Figure 2). These BWC
pipes have become an important starting point for the development of the forestry industry in China,
where they can fulfill the roles as drainage pipelines, the body of high-speed railway cars, modern
buildings, and so on [5].

The excellent bending flexibility characteristics of bamboo are the result of the combination of
bamboo’s own properties, environmental factors, and dimensional factors. Compared with wood of
the same moisture content and size, bamboo is prone to more flexible deformation and large curvature
winding, which is caused by the difference in microstructure between bamboo and wood. Bamboo is
a typical two-phase composite material (Figure 1b): The enhanced phase fibers in vascular bundles
are the source of bamboo strength and stiffness; the matrix-phase parenchyma cells absorb energy
through plastic deformation to increase the toughness and ductility of the structure; the hierarchical
interfaces between the two Types of phase cells and the cell wall layers allows bamboo to transmit
stress well [6,7]. Therefore, the gradient structures of vascular bundles embedded in parenchyma
cells and perfect combination (hierarchical interface) of two phase cell structures the main reason
for the excellent flexibility of bamboo [8]. However, Yu research group [9] found that longitudinal
tensile modulus of bamboo was lower than the value evaluated by rule of mixture and showed that the
interface between the two phases was weaker. Therefore, the mechanism of synergistic deformation of
vascular bundles and parenchyma cells under stress was still unclear. It is still a problem in the field of
basic bamboo properties research that the test method which is an evaluation index of the internal
mechanism of bending flexibility characteristics of bamboo under the gradient distribution of vascular
bundles on the wall of bamboo culm cannot resolve.
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Figure 1. (a) Excellent bending flexibility of bamboo with hollow structure and FG structure in cross
section under heavy snow; (b) Field emission scanning electron microscope (FESEM) micrograph of
microstructure of bamboo culm with different constituents.

The bending flexibility of the materials or engineered components (the reciprocal of the bending
stiffness EI) refers to the deflection caused by the unit force within the range of elastic deformation.
The current test method of flexibility includes 2-point [10], 3-point [11] and 4-point bending test [12] for
obtaining the bending modulus E of the material, whereas the section moment of inertia I is obtained
by the test size. In order to simulate the loading conditions of bamboo in natural environmental
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conditions, such as lateral wind, the bending stiffness method based on the cantilever beam principle
can be applied to the study of the bending flexibility of thin bamboo slivers for BWC pipes with
a thickness of 1 mm. At present, this method has been used for slender and thin materials in the
millimeter or micrometer scale, such as single plant single fiber [13], polymer film [14], and paper and
paperboard [15], which is a fast and east test that provides high precision measurements.
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Among the efforts focused on the bending properties of bamboo, it appears that differences
in strength, modulus, fracture toughness, and failure mode of bamboo pertaining to the gradient
distribution of vascular bundle of bamboo have been studied the most extensively [8,16–18] whereas
the importance of flexibility deformation behavior, alongside their corresponding internal mechanisms
interacted with the tissue structure of bamboo, has seen little study due to it being underrated.
Therefore, this study aims to clarify the influence and intrinsic mechanism of the directional structure
and gradient structure of bamboo vascular bundles on the bending flexibility and introduce a numerical
model to predict the gradient flexural behavior along the thicknesses of bamboo culm. This will provide
insights to bamboo’s flexible deformation during the natural growth process, bamboo-sliver traditional
handicrafts, processing of novel bamboo-based heterotypic engineering component, and bio inspired
design of advanced structural and functional materials. Due to this insight and understanding the
natural mechanical design principles of bamboo, which can provide theoretical guidance for directional
bionic preparation and optimization of high-performance BWC pipes can be known.

2. Materials and Methods

2.1. Sample Preparation

Mature (about 4 years old) Moso bamboo (Phyllostachys edulis) was collected from bamboo
plantations located in Fujian Province China and were selected as the raw materials for this study.
Straight and non-defective middle bamboo culm (about 5 m above the ground) was chosen to ensure
stable mechanical performance. According to sample size requirements for BWC pipes [5], bamboo
culm sections (H = 10 mm) were divided into smooth slivers (5 layers, marking as B1 to B5) with
same size (60 × 5 × 1 mm3) but different fiber volume fractions from the inner to outer parts (Figure 3).
15 samples were selected for each layer for later tests. All samples were kept at room temperature
of 20 ◦C and relative humidity of 65% until a constant weight (moisture content of 10%), and were
pressed under an iron plate to prevent deformation.
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Figure 3. Schematic diagram of processing of samples and calculation of fiber volume fraction (Vf).

2.2. Fiber Volume Fraction Calculation

Assuming that the vascular bundles embedded in the parenchyma cells are straight and complete,
a clear cross-sectional image of the sample was taken using an optical microscope. A clear sample
of the fiber profile in Figure 3 was selected and used to calculate the pixel area using Image Pro Plus
6.0 graphics processing software (Media Cybernetics, Silver spring, MD, USA), marking as s and sf.
The fiber volume fraction (Vf) of each sliver was calculated through Equation (1)

V f =
s f

s
(1)

2.3. Bending Flexibility Test Methods

According to DIN 53121, the bending stiffness method based on the principle of cantilever beam
was used to evaluate the bending flexibility of the specimens and was performed on a bending stiffness
tester (Lanbo Testing Instrument Co. Ltd., Shenzhen, China). A slower bending speed of 10 ◦/s and
load cell of 10N (Figure 4a) was used for the stiffness test. The maximum span thickness ratio (l/h = 50)
was selected to minimize the impact of inter-laminar shear strain. The beam-shaped sample was
clamped at one end in a clamp that rotated and was subjected to a force, P, acting perpendicular to
the surface of the sample at the start of the test, at a bending length, l, from the clamp. In Figure 4b,
a typical curve of force versus angular deflection (P-α) of the specimens was recorded. The slope (P/α)
of the initial linear portion was used to calculate the bending stiffness (S) and bending flexibility (F)
according to Equations (2) and (3).

S =
EI
b

=
60
π
×

P
α
×

l2

b
(2)

F = S−1 (3)

The specimens underwent two Types of loading, which was determined according to the
orientation of the arrow shape of the fibers. The arrow shape of the fibers points in the direction of
the inside of the bamboo culm the slivers were made from. Type I loading, the fibers arrow shape is
pointing upwards so when it is loaded the inside part of the fibers are in compression and the outside
part is in tension outside (Figure 4c). Type II loading, is the inverse of Type one loading and reverses
the orientation of the fibers by 180 degrees (Figure 4c). 15 specimens were cut from each layer.
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3. Results and Discussion

3.1. Gradient Bending Flexibility

Figure 1a shows that bamboo is a typical FG structural material where the fibers in the bamboo
culm are densely distributed in the outer layers and sparsely scattered in the inner layers. This change
in fiber concentration causes a gradient bending behavior of bamboo slivers from inner layer (B1) to
outer layer (B5), which is schematically depicted in Figure 5 and summarized in Table 1. In addition,
the increase in bending force as the bending angle increases is also shown in Figure 5.

Type I loading (Figure 4c) of bamboo in a natural environment was used to analyze its gradient
flexible behavior. The elastic bending behavior characterization of Type I loading demonstrated
qualitatively that bamboo slivers (B5) prepared from the outer layer with their high fiber volume
fractions (~38.9 ± 6.0%) exhibited high bending stiffness and low bending flexibility, whereas bamboo
slivers (B1) prepared from the inner layer, with low fiber volume fractions (~15.5 ± 1.7%), exhibited
high bending flexibility and low bending stiffness (Table 1). Further, at the cellular level, the gradient
variation along the diameter of cell size is also an important factor for the gradient mechanical behavior
of bamboo. As displayed in Figure 6b1,b2,c1,c2, the diameter of fibers in the inner layer was slightly
larger than that in the outer layer, while the parenchyma cells in the outer layer were larger.

Since bamboo is a typical FG material (Figure 6a), its hollow cylindrical sclerenchyma fibers in
vascular bundles (aggregates of fibers and parenchyma cells) help to contribute to the flexural modulus
and bending stiffness of the bamboo slivers, while the matrix phase parenchyma cells with large cavity
and thin wall easily absorb energy due to elastic deformation which increases the structural flexibility.
The multi-scale weak interfaces between the two-phase cells and the cell wall layers increase flexibility
due to interfacial slip. Therefore, the gradient bending flexibility of bamboo slivers can be attributed
mainly to gradient distribution and gradient variation of cell size of reinforcing fibers embedded in
parenchyma cells along the thickness direction from inner to outer layers.
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The flexible slivers prepared from the bamboos inner layer is used to wind to the inner layers
of the bamboo pipe, while the rigid bamboo outer layer is used to wind the outer layer of the pipe.
This combination of soft inner and rigid outer layers helps to prepare WPCs and optimize the processing
of the pipe structure and its structural bionics purposes.
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Table 1. The physical and mechanical properties of bamboo slivers under different bending Types.

Sample
Air-dried

Density (ρ)
(g/cm3)

Fiber Volume
Fraction (Vf) (%)

Loading
Modes

Bending
Stiffness (S)

(mN·m)

Bending
Flexibility (F)

(mN−1·m−1 × 10−3)

Difference of
Flexibility (%)

B1 0.55 ± 0.03 a 14.9 ± 2.7 a Type I 349 ± 48 a 2.92 ± 0.38 a
3.05Type II 359 ± 46 a 2.83 ± 0.48 a

B2 0.60 ± 0.03 b 15.8 ± 2.8 a Type I 434 ± 61 b 2.35 ± 0.34 b
4.89Type II 450 ± 65 b 2.23 ± 0.31 b

B3 0.67 ± 0.03 c 26.1 ± 2.7 b Type I 586 ± 39 c 1.71 ± 0.11 c
4.57Type II 619 ± 69 c 1.63 ± 0.18 c

B4 0.72 ± 0.03 d 30.3 ± 2.1 c Type I 737 ± 71 d 1.37 ± 0.12 d
6.19Type II 790 ± 91 d 1.28 ± 0.16 d

B5 0.80 ± 0.03 e 38.9 ± 5.8 d Type I 942 ± 71 e 1.07 ± 0.08 e
5.31Type II 996 ± 86 e 1.01 ± 0.08 e

a, b, c, d, e Different letters in the same column indicate significant differences among layers. (p < 0.05).

3.2. Directional Bending Flexibility

In addition to the gradient bending flexibility due to the FG distribution of fibers along the thickness,
the bending flexibility of bamboo slivers in different layers also exhibited obvious directionality, which is
schematically displayed in Figures 7 and 8 and listed in Table 1.

Compared to the Type I, the Type II had a higher slope of the curve. Bamboo slivers from B1
to B5, exhibited slightly lower bending flexibility than under Type I loading, which demonstrated
that bamboo had better flexibility to adapt to a natural environment loading Type. Further, B4 and
B5 prepared from the outer layers possessed a larger difference of bending flexibility, 6.19% and
5.31%, respectively, whereas B1 and B2 prepared from the inner layers had a lower bending flexibility
difference of 3.05% and 4.89%.

In the cross section of the bamboo culm (Figure 6a), the anatomical shape and size of vascular
bundles shows obvious directionality. From inner layer to outer layer, the long axis of the approximately
elliptical vascular bundles gradually becomes shorter, and the short axis is shortened, which leads to a
semi-open arrow structure (Figure 6c) containing two fibers sheaths (aggregate of fibers) simplified
from an open structure (Figure 6b) consisting of four similarly sized and substantially symmetrical
fibers sheaths [19]. The smaller difference of flexibility in inner layers (e.g., B1 and B2) in different
loading Types was due to the almost elimination of the gradient characteristics in the thickness direction
(due to the samples being very thin) and substantially symmetrical structure of the vascular bundles
in the inner layers. the higher difference of flexibility in outer layers (e.g., B4 and B5) was due to the
bottom of the sample being in tension there were fewer fibers sheaths present under Type I loading
(Figure 4a) when compared with the Type II. This meant the directional structure of the vascular
bundles lead to the difference of flexibility due to the reduced concentration of vascular bundles present
between the two Types of loading.
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3.3. Modeling and Predicting of the Gradient Bending Flexibility

In light of the exhibited graded bending behavior along the thickness of the bamboo strips,
the classical model given by Equations (4), the rule of mixtures, was introduced to quantitatively
analyze relationships between the elastic modulus, component content, and predict elastic mechanical
properties of materials at certain fiber contents.

E = E f ·V f + Ep · (1−V f ) (4)

where E is the flexural modulus of bamboo slivers of different layers with fiber volume fraction Vf;
and Ef and Ep are the flexural modulus of fibers and parenchyma cells, respectively. Considering that
the bamboo sliver with a specific size is a beam structure, the expression of the bending stiffness as a
function changing with fiber volume fraction derived from Equations (4) is as follows:

S = EI
b =

(E f−Ep)·h3

12 ·V f +
Ep·h3

12
F = S−1

(5)

where
Ep·h3

12 is the bending stiffness of parenchyma cells with thickness of h; and
(E f−Ep)·h3

12 is the
difference of bending stiffness between of fibers and parenchyma cells; the thickness (h) was kept at
1 mm throughout the study.

By Fitting Equation (5) to the test values of the bending stiffness derived for all bamboo slivers
samples under different loading Types, the relationship between bending stiffness and fiber volume

fraction exhibit a high linear positive correlation (Figure 9).The slope
(E f−Ep)·h3

12 and intercept
Ep·h3

12 of
the line S-Vf were obtained, and the theoretical parameters in the model (i.e., Sp, Ep, Sf and Ef) and
flexibility of fibers and parenchyma cells with thickness of h were calculated (Table 2).

The flexural modulus and bending stiffness of the fibers ranged between 27–29 GPa and
2200–2400 mN·m, respectively, which was significantly larger than that of parenchyma cells, and the
flexibility of the fibers was significantly smaller than that of parenchyma cells. Compared with Type II,
the flexibility of the fiber under Type I (0.44 × 10−3 mN−1

·m−1) was slightly higher, while the flexibility
of the parenchyma cells (27.99 × 10−3 mN−1

·m−1) slightly lower. This indicated indicates that bamboo
has higher flexibility under natural loading conditions. This is of significance for the preparation and
optimization of the WPCs because more rigid pipes can wound from bamboo slivers under inside
tension (Type II) instead of non-uniform winding that chaotically and disorderly puts bamboo slivers
under both Type I and Type II loading. The theoretical flexural modulus of parenchyma cells (Ep) was
consistent with bending test value (0.37 ± 0.11 GPa) of An [9] which were obtained by manual peeling,
but significantly lower than tensile modulus (3.7 ± 0.4 GPa) that was obtained by Amada [20], which
was related to the anisotropy, bamboo species and test methods, etc. The theoretical Ef was higher than
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the indentation modulus (22.8 ± 2.8 GPa) measured by nano-indentation and was similar to tensile
modulus (30.1 ± 3.0 GPa) by micro-tensile testing [21], in which it related to various factors such as
growth environment of bamboo, test conditions, and error. Therefore, in view of the high quality
of the fit (RI

2 = 0.904, RII
2 = 0.901 in Figure 9) between the bending stiffness and the fiber volume

fraction and close compatibility between the theoretical value of the flexural modulus with fibers and
parenchyma cells and experimental values of that measured by others, the validity of the introduced
rule of mixtures for bending stiffness could be verified. At the same time, the model could also provide
theoretical guidance for the study of mechanical properties of natural FG materials [22] (including
bamboo, bones and shells, etc.) as well as bionics and preparation, where WPCs could finally achieve
excellent flexible bending behavior without breaking under the extreme external loading.
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Table 2. Predicting value of mechanical properties of fibers and parenchyma cells by a rule of mixture.

Types
Bending Stiffness (S)

(mN·m)
Flexural Modulus (E)

(GPa)
Flexibility (F)

(mN−1·m−1 × 10−3)

Parenchyma Cells Fibers Parenchyma Cells Fibers Parenchyma Cells Fibers

Type I 35.73 2287 0.429 27.45 27.99 0.44
Type II 30.45 2401 0.365 28.82 32.84 0.42

4. Conclusions

Bamboo material’s remarkable graded flexibility is stemmed from the concurrent graded
distribution and gradient variation of cell size of tougher fibers embedded in weaker parenchyma cells
along the thickness of bamboo culm.

As the fiber volume fraction increases from the inside to the outside, the flexibility of the bamboo
slivers gradually decreases. Moreover, gradient variation of the size of fibers and parenchyma cells
also contributes to this trend of flexibility.

Due to the variation of the shape of the vascular bundles, the bamboo slivers demonstrated an
obvious difference in directional flexibility under different loading Types. Relatively small difference
of flexibility in the inner layer is attributed to symmetrical structure of the vascular bundles, while the
difference in the outer layer is larger due to the arrow structure of the vascular bundles pointed from
the outside to the inside.

A numerical model for bending stiffness with high fitness and close compatibility has been adopted
to validate its relationship to the fiber volume fraction, which helps to understand the mechanical
design and predict mechanical properties of FG materials for bionics purpose.

This combination of soft inner layers and rigid outer layers due to the change in concentration
of vascular bundles can be used to improve how BWC pipes are manufactured by improving how
the bamboo sliver is layered up in the pipe. So by no longer winding BWC pipes with disregard to
orientation of the vascular bundles where a non-uniform random structure would exist an engineered
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lay-up can be used to optimize the vascular bundles orientation to help better improved the flexural
and stiffness properties of the pipe. By constructing the BWC pipes in this manner the process of
manufacturing these pipes can be improved and the variation in the pipe properties can be reduced
allowing for improved quality control of their production.
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