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Simple Summary: In endoparasitoids that feed within small discrete resource patches, such as
seeds or fruits, body size could be subject to a trade-off: larger size could lead to increased overall
fitness but could simultaneously increase the risk of resource depletion and starvation, resulting
in a body size just below the host holding capacity. We analyzed the relationship of the larval size
of the within-fruits-developing curculionid beetle Curculio styracis (Roelofs, 1875) and the size of
the fruits of its two congeneric host species of Camellia to test this hypothesis. A logistic model can
most accurately describe larval size in association with host-fruit size after a series of models were
tested. Based on the characteristics of the optimal model, the hypothesis seemed to be confirmed
because larvae that developed in host plant with larger fruits had a larger size, and larval size in both
host species remained only a little below the host-fruit capacity. The novelty of the study is that this
hypothesis is being tested in a more formal way using appropriate mathematical models.

Abstract: The endoparasitoid body size hypothesis suggests that the size of larvae that develop in
a single host should be subject to a trade-off: larger size could lead to increase overall fitness but
could simultaneously increase the risk of resource depletion and starvation, resulting in a body size
just below the host holding capacity. However, this hypothesis has not been rigorously tested using
mathematical models thus far. The camellia weevil, C. styracis (Coleoptera: Curculionidae), is a
notorious pest attacking fruits of Camellia oleifera Abel. and C. meiocarpa Hu., in which the larvae
develop within a single fruit and larval development is limited by the available food resources. We
developed a feasible method to test this hypothesis. First, five models were used to describe the
relationship between larval mass and host size. Then, the minimum fruit threshold that had to be
met for ad libitum larval development and the corresponding larval size (Wa) of this threshold were
calculated based on the characteristics of the optimal model. Finally, the difference between the
measured larval size and the predicted larval size (Wa) was determined. The results showed that
(1) the data were better described by a logistic function than any other equation; (2) larval size in
both host plants increased with increasing fruit size until leveling off when the fruits were large
enough to allow unconstrained larval development; (3) larval size remained just below the host-fruit
holding capacity, as there was no difference between the measured and predicted larval sizes (Wa);
and (4) larvae developed in host plant with larger fruits had a larger size. These results confirmed the
endoparasitoid body size hypothesis.

Keywords: body size; Curculio styracis; trade-off; adaptive evolution; food constraints

1. Introduction

Insect size, which is closely related to potential fitness and is an important factor
driving insect trophic and reproductive strategies, is a key component of life-history
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evolution and behavioral ecology [1–12]. For interacting organisms with antagonistic
trophic relationships, such as predation, parasitism, or parasitoid, individual size and
body shape adapt to each other [13–16]. When a prey or host evolves a larger or smaller
body size, changes in the body size of its predator, parasite, or parasitoid may follow in
step to evolve to maximize fitness, or the predator, parasite, or parasitoid may evolve
other strategies [13]. In general, a larger body size is associated with higher fitness, as
evaluated based on traits such as survival and potential fecundity [1,7–12,17–20]; thus,
evolutionarily, there is underlying pressure to increase body size. However, larger size is
not always better; it also comes with potential disadvantages such as a longer development
time or higher risk of starvation [7–12,21], while smaller individuals benefit from being
able to escape the risk of host-food resource depletion and an increased number of suitable
hosts [22]. It is reported that body size of organisms can be subject to conflicting selective
pressures [7–12], especially if these organisms, such as endoparasitoid insects, complete
their development within a single host [23–26]. Under this assumption, the body size of
endoparasitoid insects that develop in a single host should be subject to a trade-off between
two conflicting selection pressures during long-term adaptive evolution, limiting body size
to just below the host holding capacity to avoid the risk of food resource depletion [13,26].
This trade-off is quite generally observed in seed-feeding weevils and other parasitoid
insects that develop within a single host [26]. However, few examples have been rigorously
tested with appropriate mathematical models.

In this study, we used C. styracis as a model to test the endoparasitoid body size hypoth-
esis. The camellia weevil C. styracis is a notorious pest attacking fruits of Camellia oleifera
and Camellia meiocarpa. Females oviposit into host fruits and usually lay a single egg per
fruit [27,28]. The larvae complete their development within a single fruit, which is pre-
maturely abscised from the tree when the larvae develop to the fourth or fifth instar [29].
Larval size is positively correlated with several fitness variables, such as survival likelihood
or potential fecundity [1,8–12,17–20]. These fitness benefits may have promoted larval size
increase. However, it is reported that host fruit size variation is common in the genus
Camellia [29–31], and the small fruits cannot allow larvae inside to increase body size un-
constrainedly because of limited resource [32]. Therefore, similar to other seed-feeding
weevils [26], the larval size of C. styracis could have evolved to a body size that is just below
the host holding capacity under conflicting selection pressures (i.e., increased fitness and
avoidance of starvation).

We hypothesized that (1) larval size is constrained by food availability and, thus, the
size should increase progressively with increasing host fruit size until leveling off at a
certain fruit size: in fruits over that size, larval size would no longer be constrained and is
predicted to stabilize (i.e., reach the potential larval size); (2) larval size should evolve to
remain just below the host holding capacity (i.e., mean larval size should be equal to the
larval size predicted by the minimum host threshold necessary to reach the potential larval
size); and (3) the larvae developed in C. oleifera, with larger fruits, should be significantly
larger than those developed in C. meiocarpa, with smaller fruits.

2. Materials and Methods
2.1. Study System

Field work was carried out in a C. oleifera forest (located at 116 m, 26◦17′45.08′′ N,
112◦26′03.35′′ E, in Changning City, Hunan Province, South China) and a C. meiocarpa forest
(located at 284 m, 26◦56′14.93′′ N, 111◦28′08.32′′ E, in Shaoyang County, Hunan Province,
South China). The two sites are located approximately 200 kilometers apart, with a hilly
landscape. They cover areas of approximately 7 hm2 and 6 hm2, respectively.

C. styracis is a weevil that feeds on camellia fruits [27,33,34]. The reported crop losses
of C. oleifera caused by this weevil are extremely variable, usually ranging from 22.3 to
60.2% and sometimes from 60 to 100% [27]. C. meiocarpa fruits are damaged more seriously
than those of C. oleifera [31,35]. Weevil females excavate a hole through the fruit coat using
their rostrum and then turn around and oviposit inside the fruit. The peak of oviposition
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occurs from mid-June to mid-July [27]. The weevils usually lay one egg per fruit, and the
occurrence of multiple larvae per fruit was extremely rare [27,28]. The larvae go through
five instars [36] and complete their development inside a single fruit by feeding on the seeds;
when the larvae develop to the 4th~5th instar, the infested fruits are usually prematurely
abscised [29]. Larvae of dropped fruits remain inside until their development is finished.
Mature larvae make a round hole with a diameter of 3~5 mm before leaving the fruits to
overwinter in earthen cells in the soil in the first year, where they pupate from August to
November in the next year. The emerged adults pass over the second winter in the soil and
come out during late April and early May of the third year [28]. Once larvae leave fruits,
their foraging behavior will stop.

2.2. Sampling Methods
2.2.1. Dry Mass of Larvae in Fallen Fruits

In 2018, forty trees in the C. oleifera forest were randomly selected for sampling [18,37,38].
This survey was conducted every 10 days from the beginning of fruit drop to the end of fruit
harvesting. All fallen fruits under the tree canopy were collected, after which indehiscent
fruits with no exit holes were selected, placed individually in plastic cups, and numbered
before their linear dimensions (length and width) were measured to the nearest 0.01 mm
with a digital caliper. Each fruit was checked regularly at 8:00 and 20:00 every day to register
emerged larvae. The newly exited larvae were individually placed in 1.8 mL refrigerated
centrifuge tubes and stored at −20 ◦C. In each set of collected samples, each fruit was
dissected two weeks after the emergence of the last larva to check for remaining larvae and
to assess whether the available food had been depleted. The whole experiment was carried
out at room temperature. Finally, the collected larvae were placed in an oven (Jinghong
Experimental Equipment Co., LTD, Shanghai, China) at 60 ◦C and baked to constant mass,
and the dry mass was then measured to the nearest 0.1 mg with an electronic balance
(Shimadzu, Shanghai, China).

2.2.2. Dry Mass of Larvae in Sleeve Experiments

Forty trees in the C. meiocarpa forest were randomly selected for sampling in our study
areas, and 11 branches with fruits were randomly selected from each tree. Then, nylon
mesh sleeves (40 × 60 cm, made of 40 mesh nylon) were installed in mid-May 2018 (before
females laid eggs) on branches to prevent weevil females from ovipositing their eggs in
the fruits inside the sleeves. From 2 June to 21 August (the oviposition season), sleeves
were selected using a sampling regime in which one sleeve was randomly selected from
each tree every 8 days and removed from the branch to allow females to lay eggs in the
fruits for 8 days, after which the sleeve was reinstalled. The fruits inside the sleeves were
all collected 30 days after oviposition, when the larvae had almost reached maturity (third
to fifth instars) and the infested fruits had ceased to develop and were close to falling off;
these fruits were taken to the laboratory for the same treatment described above.

2.3. The Model

The fresh mass of camellia fruit cannot be used as a measure of available food resources
in weevil-infested fruits because of the consumption of the seeds. Fruit shape varies on
these trees, which may produce orange-, spherical-, peach-, umbilical-, and oval-shaped
fruit. The seeds inside the fruit are approximately spherical, so the relative size of fruits can
be estimated with the following formula:

V =
4
3

π

(
D
2

)3
, (1)

where V is the adjusted volume of the fruits, and D is the diameter of the fruits.
Bonal and Muñoz [26] built an empirical model (a negative exponential model) to

assess the relationship between C. elephas larval size and Quercus ilex acorn size. Previous
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studies have shown that the relationship between insects and ages approximately follows
a sigmoidal curve [39–43], and the Richards, von Bertalanffy, Gompertz, and logistic
equations are commonly used to describe the course of mass increases with age [43–47]. In
the case of the Camellia weevil studied herein, the larvae can develop to different stages
(ages) in hosts of different sizes; therefore, we hypothesized that the relationship of larval
mass versus host size should conform to a sigmoidal curve.

In this study, the larval size increment per unit increment of host fruit size was defined
as the marginal effect (dW/dV). Four sigmoidal equations and a negative exponential
equation [26] were selected to describe the relationship between the larval size of C. styracis
and host fruit size:

(1) The Richards equation,

W = Wm

(
1± be−KV

)−(1/n)
; (2)

(2) The von Bertalanffy equation,

W = Wm

(
1− 1

3
e−K(V−VI)

)3
; (3)

(3) The Gompertz equation,

W = Wme−e−K(V−VI ) ; (4)

(4) The logistic equation,

W =
Wm

1 + e−K(V−VI)
; (5)

(5) The negative exponential equation,

W = Wm − e−K(V−d), (6)

where W is the larval dry mass, V is the volume of the host fruit, Wm is the asymptote mass
(i.e., the potential larval size), K is the marginal effect constant, b is the integration constant,
n is the shape parameter determining the position of the inflection point of the curve, VI is
the host fruit volume at the inflection point, and d is the displacement of the entire function
along the V-axis in the negative exponential equations.

The accuracy of the models could be determined based on the mean square error
(MSE) and Akaike’s information criteria (AIC). Smaller AIC or MSE values for any model
indicated that a certain model fit the data better than the others [48,49].

2.4. Data Analysis

SPSS 13.0 and Origin 9.0 were used for data analysis and mapping. Nonlinear fit-
ting between larval dry mass and fruit size was performed via the Levenberg–Marquardt
method. An independent samples t-test or an ANCOVA was used to analyze the differ-
ences in fruit size or in larval size between C. oleifera and C. meiocarpa, respectively, and
a single-sample t-test was used to analyze the significance of the difference in larval size
between the measured and predicted values. The correlation of larval dry mass with either
the immature (egg and larva) period in host fruit or the number of days needed for larval
emergence after the collection of dropped fruit was analyzed using linear regression.

3. Results

A small number of fruits produced two larvae in each plot. We did not use the fruits
with two larvae due to the small sample size. There were 134 C. oleifera fruits (ranging
from 1.08 to 15.33 cm3) and 320 C. meiocarpa fruits (ranging from 0.67 to 11.83 cm3) with



Insects 2022, 13, 246 5 of 12

one larva per fruit, and the size frequency of the infested fruits is shown in Figure 1. The
greater the larval mass, the shorter the immature (egg and larva) period in host fruit was,
and the fewer days were needed for larval emergence after the collection of dropped fruit
(R2

adj = 0.0408, p = 0.0002, Figure 2; R2
adj = 0.4082, p = 0.0000, Figure 3). Thirteen and 17

larvae failed to emerge from their host fruits of C. oleifera and C. meiocarpa, respectively, and
their dry masses were significantly lower than those of the larvae that emerged normally
(C. oleifera: t145 = 4.187, p < 0.0001; C. meiocarpa: t335 = 3.336, p = 0.0009; Figure 4).

Figure 1. Frequency of the weevil-infested fruits: (a) C. oleifera; (b) C. meiocarpa.

Figure 2. Linear correlation between the immature (eggs and larvae) period (d) in fruit and the larval
dry mass (g) of C. meiocarpa.

Figure 3. Linear correlation between the days needed for larval emergence after the collection of
dropped fruit and the larval dry mass (g) of C. oleifera.
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Figure 4. Difference in larval dry mass (mean ± SE, g) between exited and non-exited larvae. Black
bars, C. oleifera; lined bars, C. meiocarpa. Values above the error bars indicate sample sizes. Different
letters indicate significant differences in larval dry mass (t test, p < 0.05).

The data were suitable for fitting with all five models (p < 0.0001, Table 1), and
comparisons based on MSE and AIC showed that four sigmoidal functions led to a better
fit to the data than the negative exponential function. The dry masses predicted from these
equations were rather similar throughout the middle portions of the curves but deviated
from one another at either end. In both hosts, the logistic model showed the lowest MSE
and AIC, indicating that it was the most appropriate function for describing larval mass in
association with fruit size (Table 1, Figure 5). Therefore, the logistic curve was taken as an
example to analyze the dynamic characteristics of the models in this study.

Table 1. Fitting effect between larval dry mass (g) and fruit size (cm3), model parameters and co-
ordinates of points Ib and Ia. I: Negative exponential model, W = Wm − e−K(V−d); II: Richards

model, W = Wm
(
1± be−KV)−(1/n); III: von Bertalanffy model, W = Wm

(
1− 1

3 e−K(V−VI )
)3

;

IV: Gompertz model, W = Wme−e−K(V−VI ) ; V: logistic model, W = Wm
1+e−K(V−VI )

, where W is the larval
dry mass, V is the volume of the host fruit, Wm is the asymptote mass (i.e., the potential larval size),
K is the marginal effect constant, b is the integration constant (host size scale parameter), n is the
shape parameter determining the position of the inflection point of the curve, VI is the host fruit
volume at the inflection point, and d is the displacement of the entire function along the V-axis in
the negative exponential equation. Ib and Ia are the two critical points (before and after the inflexion
point, respectively) of the models at which the second derivative of the marginal effect was equal to
zero and the first derivative reached its maximum and minimum values, respectively.

Host Model
Goodness-of-Fit Parameters of Models Coordinates of Ib and Ia

MSE AIC p Wm K VI/d n Ib (Vb, Wb) Ia (Va, Wa)

Camellia
oleifera

I 1.063 × 10−4 −1222.99 <0.0001 0.0459 0.3077 −9.0492
II 1.050 × 10−4 −1223.71 <0.0001 0.0434 0.7423 26.5858 1.7188 (1.6644, 0.0123) (5.7147, 0.0359)
III 1.050 × 10−4 −1224.63 <0.0001 0.0446 0.4281 2.1216 (0.2635, 0.0008) (3.9796, 0.0273)
IV 1.047 × 10−4 −1225.02 <0.0001 0.0442 0.4825 2.4970 (0.5025, 0.0032) (4.4915, 0.0302)
V 1.043 × 10−4 −1225.61 <0.0001 0.0436 0.6356 3.2885 (1.2165, 0.0092) (5.3606, 0.0344)

Camellia
meiocarpa

I 9.760 × 10−5 −2952.09 <0.0001 0.0306 0.3145 −11.5828
II 9.722 × 10−5 −2952.37 <0.0001 0.0284 1.6766 5615.5633 10.0592 (2.2433, 0.0175) (5.3014, 0.0268)
III 9.741 × 10−5 −2952.71 <0.0001 0.0300 0.4013 0.4625 (−1.5196, 0.0005) (2.4446, 0.0184)
IV 9.735 × 10−5 −2952.92 <0.0001 0.0297 0.4433 0.8100 (−1.3612, 0.0022) (2.9812, 0.0203)
V 9.716 × 10−5 −2953.54 <0.0001 0.0293 0.5649 1.5676 (−0.7638, 0.0062) (3.8989, 0.0231)
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Figure 5. Relationships between larval dry mass (g) and fruit size (cm3) based on logistic model:
(a) C. oleifera; (b) C. meiocarpa.

The logistic curve, marginal effect, and first and second derivatives are shown in
Figure 6. The maximum marginal effect occurred when the first derivative was equal to zero.
Then, the inflection point of the logistic curve was found to be I (WI, VI). When the second
derivative of the marginal effect was equal to zero, the first derivative reached its maximum
or minimum value, indicating that the marginal effect changed most dramatically; the
corresponding points (i.e., Ib (Wb, Vb) and Ia (Wa, Va)) were the two critical points in the
logistic curve. Thus, the curve could be divided into three stages based on these points: a
slow change stage (before point Ib, V < Vb), a fast change stage (between points Ib and Ia,
Vb < V< Va), and an asymptotic change stage (after point Ia, V >Va) of the marginal effect.
The coordinates of these two points in the Richards, von Bertalanffy, and Gompertz models
could be obtained by the same method (Table 1).

Figure 6. Dynamic characteristics of the marginal effect of C. styracis larval development: (a) C. oleifera;
(b) C. meiocarpa. A, logistic model; B, marginal effect (dW/dV); C, first derivative of marginal effect;
D, second derivative of marginal effect. I (WI, VI), the inflexion point of the logistic model; Ib (Wb, Vb),
the critical point (before the inflexion point) between the slow change stage and fast change stage of
marginal effect; Ia (Wa, Va), the critical point (after the inflexion point) between the fast change stage
and asymptotic change stage of marginal effect.

According to the logistic curve, the two critical points may have extremely important
biological meaning. There were almost no data distributed in the scatter plots of larval
dry mass versus host fruit size (Figure 5) in the slow change stage (V < Vb), in which the
larvae could develop to 21.13% (Wb/Wm × 100%) of their potential size. This means that
the larvae cannot mature in fruits smaller than Vb. For fruits larger than Vb, the frequency
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of different fruit sizes is shown in Figure 1. The value of Vb calculated with the logistic
model presented the minimum fruit threshold for larval emergence. Larval size increased
with host fruit size and nearly leveled off at the critical point of Ia (Wa, Va) (Figure 6a), at
which larval size reached 78.87% (Wa/Wm × 100%) of the potential size. Therefore, Wa
is a parameter value just below the potential size, and Va is the minimum fruit threshold
that must be reached for ad libitum larval development. Once the fruit size exceeded this
threshold (Va), the proportion of depleted fruits rapidly decreased (Figure 7).

Figure 7. Proportions of fruit types depleted by the larvae smaller (black bars) or larger (lined bars)
than Va value (cm3) based on the logistic model in which larval size levels off.

Mean fruit size is an obvious measure of host capacity, and mean dry mass is a measure
of larval size at this capacity. There was no significant difference between the mean larval
dry mass (see Table 2) and Wa (see Table 1) according to a single-sample t-test (C. oleifera:
t133 = 0.301, p = 0.764; C. meiocarpa: t319 = −1.616, p = 0.107, respectively), indicating that
the measured larval size was just below the host capacity.

Table 2. Comparisons of measurements performed on infested fruits between the two Camellia species.
The mean is presented as the mean ± SE.

Measurements Camellia
oleifera

Camellia
meiocarpa

Independent Samples t-Test
or Pearson Chi-Square Test

Fruit size (cm3) 6.87 ± 0.27 4.14 ± 0.12 t452 = 9.180 p < 0.0001
Larval dry mass (g) 0.0348 ± 0.0012 0.0222 ± 0.0006

Percentage of fruits depleted 35.8% 56.6% χ2
1 = 16.255 p < 0.0001

In contrast, each potential larval size (Wm) in C. oleifera fruit calculated from the five
models was approximately 1.5 times that in C. meiocarpa fruit (Table 1), and the ANCOVA
also indicated that the larvae showed a larger size (F1,450 = 30.628, p < 0.0001, Table 3)
when they developed in the fruits of C. oleifera, which produces larger fruits (t452 = 9.180,
p < 0.0001, Table 2), presenting a lower risk of resource depletion (χ2

1 = 16.255, p < 0.0001).

Table 3. Analyses of covariance of larval dry mass of two host species of C. styracis subjected to
different fruit size.

Source of Variation
Larval Dry Mass(g)

d.f. F p

Model 3 86.552 <0.0001
Host species (H) 1 30.628 <0.0001

Fruit size (F) 1 116.591 <0.0001
H × F 1 4.530 0.034
Error 450
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4. Discussion

Little work has focused on the relationship between endoparasitiod insects and their
hosts. Our results showed that the logistic model provided the best fit to the data among
the tested models, and that host fruit size of C. styracis does constrain parasitoid size.
This limitation is mainly imposed by the availability of food. In small fruits, the seeds
are depleted, and the larvae cannot reach their potential size. There have been many
reports about the limitations on endoparasitoid size imposed by host size [5,22,25,37,50],
but few quantitative studies have been carried out through modeling to address this
issue [26]. Our models estimated the fruit-holding capacity of the two host species by
calculating the maximum potential size that the larvae could reach. Moreover, based on the
characteristics of the model rather than a conditional algorithm (an empirical method), the
model calculated the minimum fruit threshold necessary to reach the maximum potential
larval size and the corresponding larval size (Wa) predicted by this threshold. In this way,
we can explicitly assess the suitability of a host for larval development according to its size.
By testing the difference between mean larval size and Wa, we could further assess whether
the larvae have evolved such that their size remains just below the host holding capacity.

In this study, small fruits were often depleted (Figure 7, Table 3), and the curve of
the larvae whose dry mass increased with increasing host fruit size conformed to the
logistic model, showing that the body size of the weevil larvae increased as much as
possible. In general, larval size is a key factor associated with fitness; for example, larger
larvae show a higher likelihood of survival over the long overwintering period and will
become larger adults with higher potential fecundity [1,5,18,51]. In this study, the mass of
non-exited larvae was significantly lower than that of the larvae that emerged normally
(Figure 4), indicating that these larvae may be not vigorous enough to exit from fruits
due to lack of adequate or high-quality nutrition and thus have longer internal fruit
duration, while the larger the larvae were, the shorter their immature period in the fruits
was observed to be (Figure 2), and the shorter the time required for larval emergence after
fruit collection. Therefore, larger larvae would avoid the risk of predation to a certain
extent. We think that these fitness benefits could be one of the main factors responsible
for the evolution of C. styracis body size. As a matter of fact, this evolutionary trend
seems to be quite widespread within the Curculio group [26]. Comparative interspecific
studies have shown that shifts to exploit larger seeds are followed by a body size increase,
provoking morphological diversification between the Curculio species [3]. However, larval
size cannot be increased without restriction to avoid the risk of starvation because the
amount of resources available to endoparasitoid insects that develop in a single host fruit
is limited [22,26]. Our results showed that there was no significant difference between the
mean dry mass of the larvae and the values (W2) predicted by the minimum fruit threshold
that had to be met for larval development ad libitum, indicating that the larvae of C. styracis
have evolved such that their body size remains just below the host-fruit holding capacity
under conditions of resource limitation.

More interestingly, we found that larval size differed between the two Camellia species
at the population level. This phenomenon has also been reported in other Curculio
species [5]. For endoparasitoids that feed within small discrete resource patches, such
as seeds or fruits, body size at the population level was affected not only by resource
availability and quality but also by intraspecific competition [26,52–55]. In our study sys-
tems, the occurrence of multiple larvae per fruit was extremely rare. There were three (for
C. oleifera) and seven (for C. meiocarpa) fruits with two larvae in each fruit, accounting for
2.2% and 2.1% of the weevil-infested fruits, respectively. This meant that larval size in this
study is mainly determined by resource availability, while larval intraspecific competition
has almost little effect on it. Obviously, the fruits in C. oleifera, compared with those in
C. meiocarpa, have a larger size and thus greater holding capacity for larval development.
Therefore, a larger size of the within-C. oleifera-fruits-developing larvae is expectable if the
endoparasitoid body size hypothesis holds.
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5. Conclusions

A method was proposed to test the endoparasitoid body size hypothesis using
C. styracis and two congeneric host species of Camellia that differ in average fruit size.
We tested a series of models and found that a logistic model most accurately describes
larval size in association with host-fruit size. Based on the characteristics of the optimal
model, the potential larval size was calculated to estimate host-fruit holding capacity of
the two host species, and the endoparasitoid body size hypothesis seemed to be confirmed
because (1) larval size in both host plants increased with increasing fruit size until leveling
off when the fruits were large enough to allow unconstrained larval development; (2) larval
size remained only a little below the host-fruit capacity; and (3) larvae developed in host
plant with larger fruits had a larger size.
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