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Abstract

Evidence about the magnitude of the aflatoxin menace can help policy makers appreciate

the importance of the problem and strengthen policies to support aflatoxin mitigation mea-

sures. In this study, we estimated aflatoxin-induced liver cancer risk in 2016 for Tanzania

and used the information to estimate the health burden due to the aflatoxin exposure in the

country. The burden of aflatoxin-induced liver cancer was assessed based on available afla-

toxin biomarker data from a previous epidemiology study, hepatitis B virus infection preva-

lence and population size of Tanzania in 2016. The health burden due to aflatoxin-induced

liver cancer was estimated using disability adjusted life years (DALYs). The aflatoxin expo-

sures ranged from 15.0–10,926.0 ng/kg bw/day (median, 105.5 ng/kg bw/day). We esti-

mated that in 2016 there were about 1,480 (2.95 per 100,000 persons) new cases of

aflatoxin-induced liver cancer in Tanzania and assumed all of them would die within a year.

These morbidity and mortality rates led to a total loss of about 56,247.63 DALYs. These

results show, quantitatively, the cases of liver cancer and related deaths that could be

avoided, and the healthy life years that could be saved, annually, by strengthening mea-

sures to control aflatoxin contamination in Tanzania.

Introduction

Aflatoxins are fungal metabolites, primarily produced by Aspergillus, mainly A. flavus and

A. parasiticus, in foods such as maize, groundnuts, tree nuts and spices, and which have

impacted human health for many years. There are four types of aflatoxin that are important

in health and agriculture: aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2). AFB1

is the most common and most toxic of the four types. Intake of high doses of aflatoxins can

cause acute aflatoxicosis whereas intake of low to moderate doses over a long period can

result in immune suppression, impaired growth, low birth weight and liver cancer [1–3].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247281 March 11, 2021 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kimanya ME, Routledge MN, Mpolya E,

Ezekiel CN, Shirima CP, Gong YY (2021)

Estimating the risk of aflatoxin-induced liver cancer

in Tanzania based on biomarker data. PLoS ONE

16(3): e0247281. https://doi.org/10.1371/journal.

pone.0247281

Editor: Isabelle Chemin, Centre de Recherche en

Cancerologie de Lyon, FRANCE

Received: September 29, 2020

Accepted: February 3, 2021

Published: March 11, 2021

Copyright: © 2021 Kimanya et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: YYG "Aflatoxin risk assessment and

capacity building in Tanzania" from the University

of Leeds QR GCRF Research England account

number 95522719 (2017-18) www.leeds.ac.uk The

funders had no role in study design, data collection

and analysis, decision to publish or preparation of

the manuscript.

https://orcid.org/0000-0002-8320-2841
https://orcid.org/0000-0002-6210-9445
https://orcid.org/0000-0003-4927-5526
https://doi.org/10.1371/journal.pone.0247281
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247281&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247281&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247281&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247281&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247281&domain=pdf&date_stamp=2021-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247281&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1371/journal.pone.0247281
https://doi.org/10.1371/journal.pone.0247281
http://creativecommons.org/licenses/by/4.0/
http://www.leeds.ac.uk


The largest and most well-known of these effects is liver cancer. The International Agency

for Research on Cancer (IARC) has rated aflatoxins as Group 1 liver carcinogen, meaning

that there is sufficient evidence of carcinogenicity in humans [4]. It is estimated that in

2018, liver cancer was the 8th most common-incident cancer and the 4th most common

cause of cancer deaths, worldwide [3]. According to the report, there were 841,080 incident

cases of liver cancer and 781,631 deaths, globally. Hepatocellular carcinoma (HCC)

accounts for 75–85% of the global liver cancer cases [3]. The main risk factors for HCC

(chronic infection with hepatitis B virus -HBV or hepatitis C virus -HCV, aflatoxin expo-

sure, or other lifestyle factors including alcohol intake, smoking, obesity, and type 2 diabe-

tes) vary by region or country but in East Africa region (Tanzania inclusive) the main risk

factors are HBV infection and aflatoxin exposure [3]. The role of aflatoxin exposure in liver

cancer development is well documented [5,6]. The risk of developing liver cancer in indi-

viduals exposed to aflatoxins is 30-fold higher in individuals who are hepatitis B virus posi-

tive (HBV+) compared to those who are HBV negative (HBV-) [5,6]. Unfortunately, both

HBV infection and aflatoxin exposure are common in poor nations including those in

Africa [3,5,7,8].

It is estimated that 40% (59,900 of the 155,000) global annual cases of aflatoxin-induced

liver cancer occur in Africa [7]. To arrive at this conclusion, the risk assessors estimated

the global burden of aflatoxin induced-liver cancer, using food aflatoxin levels, consump-

tion of aflatoxin contaminated foods and HBV prevalence in several countries, globally.

The assessors found that up to 28.2% of the annual liver cancer cases, globally, are linked

to aflatoxin exposure. Countries within sub-Saharan Africa are among the most important

nations for aflatoxin-related liver cancer because the climatic conditions and poor food

growing and storage practices in Africa favor growth and proliferation of the aflatoxin-

producing Aspergillus species [8,9]. The Aspergillus species can therefore colonize and

produce aflatoxins in a wide variety of food commodities, including maize, rice and

groundnuts, which are staple foods in Africa [9]. In the context of Tanzania, studies impli-

cate maize as the main source of aflatoxin exposure. Smith and Subandoro [10] reported

that for the whole of Tanzania, the staple food most highly consumed is maize, of which

nearly 400 grams a day per person is consumed and that the second most important staple

is cassava, followed by rice. In a study by Makori et al. aflatoxins were detected in 42.5% of

home-made maize based complementary flours [11]. The levels ranged from 0.40–

2,129 μg/kg and in 30.6% of samples, were above the national regulatory limit of 10 μg/kg.

Another study, Kamala et al., reported 50% of all maize based food samples intended for

human consumption were contaminated with aflatoxins and in the contaminated samples,

28% exceeded the limits of 5μg/kg [12].

Kimanya et al. [13] detected aflatoxins in 18% of maize samples from four regions of

Tabora, Ruvuma, Kilimanjaro, and Iringa in Tanzania, at levels of up to 158 μg/kg. Twelve per-

cent of the samples exceeded the Tanzania regulatory limit (10 μg/kg) for total aflatoxins. A

risk assessment performed by Shirima et al. [14] in three of these regions (Iringa, Tabora and

Kilimanjaro), found high prevalence of chronic aflatoxin exposures (measured as aflatoxin

albumin -AF-alb adducts in blood) in young children. The exposure levels were associated

with maize diet, increased with age, and varied with season and location [14]. The increase in

exposure with age reflects the combined effect of increased consumption of contaminated fam-

ily food as children grow whereas the variation in exposure reflects the seasonal and regional

variation of aflatoxin contamination in food. The seasonal variation would be expected

because concentrations of aflatoxin increase during storage, and the regional variation because

climatic conditions in Tabora are more favorable for aflatoxin formation in food compared to

Iringa and Kilimanjaro [13].
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Although measures to prevent and reduce aflatoxin contamination and exposure in food

exist, there is low adoption of such measures in Africa. The low adoption of aflatoxin mitiga-

tion measures is partly attributed to limited appreciation, among policy makers, of the health

and economic impacts of aflatoxins. Policy makers find it difficult to understand the extent to

which aflatoxins affect the human society, especially in the case when death is not a significant

outcome under chronic exposure [15,16]. Generating more evidence about the magnitude of

the aflatoxin menace (such as incidences of liver cancer and deaths associated with the disease)

can help policy makers appreciate the importance of the problem and strengthen policies to

support aflatoxin mitigation measures.

Cancer registration system in Africa is, despite development, still of limited capacity. Can-

cer incidence data, either crude or organ specific, is not fully available nor accurate in these

countries. It is thus not possible to estimate aflatoxin-induced liver cancer based on registra-

tion figures on cancer incidence in a specific population such as Tanzania.

The risk of aflatoxin-induced liver cancer in a nation can be estimated on the basis of the

two risk factors of HBV infection and aflatoxin exposure [5,6]. HBV prevalence rates for vari-

ous nations as published from the year 2000 were summarized in [7,17]. Aflatoxin exposure in

an individual can be estimated by combining the daily per capita consumption of food with

aflatoxin content in the consumed food and dividing the result by body weight of the individ-

ual. However, estimation of dietary aflatoxin exposure is cumbersome and gives unreliable

results due to many factors including difficulties in estimation of food consumption and inac-

curacy in measuring aflatoxin contamination in the consumed food. The use of biomarkers of

aflatoxin exposure is a more reliable means of estimating aflatoxin exposure as it directly mea-

sures internal doses in individuals [18–20]. We here utilize a dataset of aflatoxin biomarkers

for Tanzania collected by Shirima et al [14] to assess the burden of aflatoxin-induced liver can-

cer in the country. The outcomes of this assessment may be used to advocate for formulation

of appropriate policies for control of aflatoxins in Tanzania and other countries of Africa with

similar aflatoxin exposure patterns.

Materials and methods

Source of the child dataset

The AF-alb adduct biomarker dataset employed in this study was extracted from an epidemio-

logical study conducted in three villages of Kigwa, Nyabula and Kikelelwa located in agroeco-

logically different and distant zones of Tanzania [14]. Kigwa is located in Tabora region

(western zone), Nyabula in Iringa region (southern zone) and Kikelelwa in Kilimanjaro region

(northern zone) of Tanzania [13]. The three sites in the study are considered as representative

of aflatoxin exposure in Tanzania.

Regional and sampling point distribution of the children

The AF-alb adduct levels were determined in blood samples collected from the group of chil-

dren at three time points; at recruitment (during maize harvest season when newly harvested

maize was consumed) and six and 12 months after recruitment (during the season when stored

maize was consumed) to account for variation in exposure due to both age and season. The

number of subjects from whom the AF-alb measures were obtained as well as the number of

samples collected at each sampling point are described in Shirima et al [14]. Briefly, 41, 57 and

49 children were studied for aflatoxin biomarker from Tabora, Iringa and Kilimanjaro, respec-

tively. The exposure biomarker levels of these children were studied at the three time points as

described above, with a small number of loss at follow-up. In total, 436 AF-alb measures were

PLOS ONE Liver cancer risk from aflatoxin in Tanzania

PLOS ONE | https://doi.org/10.1371/journal.pone.0247281 March 11, 2021 3 / 11

https://doi.org/10.1371/journal.pone.0247281


generated from blood samples collected at the three time points. The distribution of the AF-

alb measures according to region and sampling points is shown in Table 1.

Characteristics of the children

Characteristics of the children were described in Shirima et al. [14]. Briefly, at recruitment, all

the children were already introduced to complementary foods. The foods were maize-based

and given in form of a porridge. Other foods given to the children were groundnuts, banana,

potatoes, rice, finger millet, beans, cassava, meat, fresh cow’s milk, eggs, vegetables, and fruits.

Levels of the biomarker of exposure increased with age. At recruitment, AF-alb was detected

in 67% of the children (6–14 months old) with a geometric mean concentration of 4.7 pg

adducts/mg of albumin. The levels increased to 84% and 12.9 pg AF-alb adducts/mg of albu-

min 6 months after recruitment, and to 99% and 23.5 pg AF-alb adducts/mg of albumin at 12

months after recruitment, respectively. About 96% of the children were from subsistence farm-

ing households. Eighty nine percent mothers to these children had completed primary educa-

tion, and 78% were married. Families in the Kilimanjaro region were socioeconomically

wealthier than those in Tabora or Iringa.

Analysis method. The AF-alb adducts were analysed using an ELISA-based method at

the University of Leeds (UK). The ELISA method has been previously described [20]. The

limit of detection (LOD) for the assay was 3 pg AF-alb adducts/mg of albumin. Values below

the LOD were assigned half of the LOD at 1.5 pg AF-alb adducts/mg of albumin.

Summaries of the distribution of the AF-alb dataset are shown in Table 2.

Conversion of units. The overall dataset (Table 2) was used for assessment of national

level exposure and health impact of aflatoxins. To give insight of the exposures and health

impacts in the regions (Tabora, Kilimanjaro and Iringa) from which the biomarker data were

obtained, assessment was also carried out for each of the regions. All the biomarker measures

were converted into exposures in μg/kg bw/day (for an individual of 70 kg) by using the

method described by Shephard [21]. Specifically, a biomarker measure (in pg AF-alb/mg albu-

min) was divided by 100 in order to obtain an equivalent exposure in aflatoxin B1 (AFB1) μg/

kg bw/day. Shephard estimated that 100 pg AF-alb adducts/mg of albumin represents exposure

of 1,000 ng of AFB1/kg bw/day [21]. The author estimated this relationship by finding a mean

of 107 pg AF-alb adducts/mg of albumin per 1 μg AFB1/kg bw/day estimated by Gan et al. [22]

and 94 pg AF-alb adducts/mg of albumin per 1 μg AFB1/kg bw/day recalculated from a previ-

ous estimate by Wild et al. [23].

Estimation of population risk for aflatoxin-induced liver cancer

The population risk (cases per 100,000 people) for aflatoxin-induced HCC was estimated

using the approach described by the Joint FAO/WHO Expert Committee on Food Additives

(JECFA) [5,6]. The JECFA provided specification of HCC potency factors for aflatoxins as 0.01

cases per 100,000 persons per year per ng of aflatoxin/kg bw/day for individuals without

chronic HBV infection and 0.30 corresponding cases for individuals with chronic HBV

Table 1. Regional and sampling point distributions of the AF-alb measures.

Sampling point Tabora Iringa Kilimanjaro Overall

Recruitment (n) 41 57 49 147

6 months after recruitment (n) 37 55 54 146

12 months after recruitment(n) 36 54 53 143

Overall (n) 114 166 156 436

https://doi.org/10.1371/journal.pone.0247281.t001
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infection. The calculation employed Eq 1.

Population risk ðcases per 100; 000 personsÞ ¼ Median exposure value � Average HCC potency;

Where; Average HCC potency ¼ ðHBV þ prevalence �HCC potency with HBVþÞ þ
ðHBV � � HCC Potency with HBV� Þ ð1Þ

This assessment employed the median exposures described in Table 2 (after exposures had

been converted into ng/kg/bw/day) and the HBV prevalence of 4.2% for Kilimanjaro, 4.3% for

Iringa and 6.2% for the nationwide population [24]. Since there are no published HBV+ preva-

lence data for Tabora, the nationwide prevalence of 6.2% was used for this region.

Estimation of annual incidence of aflatoxin-induced liver cancer

The annual incidence of aflatoxin-induced liver cancer for Tanzania was estimated based on

the median population risk as estimated above, and the population size for Tanzania in 2016

which was 50,144,175 [25]. Likewise, annual incidences of aflatoxin-induced liver cancer for

Iringa, Kilimanjaro, and Tabora were estimated based on the calculated median population

risks and respective population sizes of 984,882, 1,759,048 and 2,576,053 in 2016 [25].

Estimation of the Disability Adjusted Life Years (DALYs)

Mean Disability Adjusted Life Years (DALYs) due to aflatoxin-induced liver cancer in Tanza-

nia were calculated by multiplying the median annual incidence of aflatoxin-induced liver can-

cer, as estimated in this assessment, by DALYs per one case of all-cause aflatoxin liver cancer

cases, calculated by this study. DALY is the summary measure used to give an indication of

overall burden of disease. The sum of years of life lost and years lived with disability represents

DALYs. One DALY can be interpreted as one lost year of “healthy” life.

The calculation of DALYs per capita (case) of all-cause liver cancer cases, was based on

updated results from the Global Burden of Diseases (GBD) Project 2016 [26] for Tanzania.

The GBD project provides summaries of DALYs, Years of Life Lost (YLL) and Years Lived

with Disability (YLD) incidences of diseases for various locations on the globe. The reported

number of all-causes liver cancer cases for Tanzania in 2016 is 1,623 and DALYs, 61,756. The

case-fatality rate for liver cancer in Tanzania can be as high as 95% [3] making the number of

deaths (mortality) almost equal to the total number of cases. Upon obtaining these numbers of

all-cause liver cancer cases (1,623) and the total DALYs due to liver cancer (61,756), the num-

ber of DALYs per capita (case) of 38 was calculated by dividing the latter by the former.

Results

Aflatoxin exposures in ng per kg bw per day

The nationwide aflatoxin exposures ranged 15.0–10,926.0 ng/kg bw/day (median, 105.5 ng/kg

bw/day). The highest median exposure was recorded for measures from Tabora (median,

Table 2. Regional and size distributions of the aflatoxin biomarker data.

Tabora (n = 114) Iringa (n = 166) Kilimanjaro (n = 156) Overall (n = 436)

% > LOD 97 79 78 84

Range (pg/mg albumin) 3.00–1092.60 3.00–253.70 3.00–631.20 3.00–1092.60

Median (pg/mg albumin) 24.25 6.10 10.55 10.55

LOD = 3 pg AF-alb adducts/mg of albumin.

https://doi.org/10.1371/journal.pone.0247281.t002
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242.5 ng/kg bw/day; range, 15.0–10,926.0 ng/kg-bw/day). Exposure ranges in Kilimanjaro

were 15.0–6,312.0 ng/kg bw/day (median, 105.50 ng/kg bw/day) and in Iringa, 15.0–2,537.0

ng/kg bw/day (median, 61 ng/kg bw/day).

Eighty one percent (81%) of the exposures for Tabora exceeded the national median expo-

sure of 105.5 ng/kg bw/day. Table 3 shows the regional variation in patterns of exposures per

quartiles of the exposure distributions.

The risk, cases and DALYs of aflatoxin induced liver cancer

The overall median (nationwide) population risk for aflatoxin-induced liver cancer was esti-

mated to be 2.95 per 100,000 people. The median population risks (cases per 100,000 persons)

varied from 1.37 (Iringa) to 6.79 (in Tabora). Based on these median population risks, the total

number of aflatoxin-induced liver cancer cases per year as well as respective DALYs for Iringa,

Kilimanjaro, Tabora and Tanzania, in general, were estimated and presented in Table 4.

Discussion

We estimated that in 2016, the population risk (cases per 100,000 people) for aflatoxin-induced

liver cancer in Tanzania was 2.95. We also estimated that the population risk in the studied

regions varied from 1.37 (in Iringa), through 2.34 (in Kilimanjaro) to 6.79 (in Tabora). The

risks estimated for Iringa, Kilimanjaro, Tabora and Tanzania are similar to risks recently

reported for Borgou (7.4) in Benin or Kano (1.4) in Nigeria or Bamako (2.0) in Mali [27]. All

these countries have tropical climates which provide favorable conditions for mycotoxin con-

tamination in foods (maize and groundnuts, in particular). The risk (6.79 cases per 100,00 peo-

ple) estimated for Tabora is about two-fold of the nationwide risk (2.95 cases per 100,000

people). We have previously reported that contamination of aflatoxins in maize flour con-

sumed by the children from whom the biomarker data were generated was much more com-

mon in Tabora compared to Iringa or Kilimanjaro [14]. Such differences between regions

reflect differences in climate and soil conditions. Tabora is one of the semi-arid regions of Tan-

zania. Drought is one of the factors predisposing crops to fungal infection and mycotoxin for-

mation. Further, most people in Tabora consume groundnuts as staple food, and the crops is

susceptible to aflatoxin contamination [29].

We estimated that in 2016, Tanzania had 1,480 new cases of aflatoxin-induced liver cancer

and that the total DALYs (healthy life years lost) due to these aflatoxin-induced liver cancer

cases would be 56,247.63 (112 DALYs per 100,000 persons). These healthy life years could be

saved if workable aflatoxin control measures are adopted in this country. From risk manage-

ment point of view, strict food regulations and effective enforcement are the best strategies,

where possible. But, in subsistence farming communities such as those in Tanzania, amongst

many other mitigation methods explored, to date the best option to minimize the risk of

Table 3. Variation in patterns of exposures (ng/kg bw/day) according to regions.

Percentile Taborax Kilimanjaroy Iringaz Tanzaniax

0.05 42.0 15.0 15.0 15.0

0.25 105.0 30.0 31.0 37.0

0.5 242.5 105.5 60.5 105.5

0.75 447.0 252.0 121.0 270.5

0.95 2,386.0 1,506.0 492.0 1,591.5

X, = Average potency of 0.02798, y, = Average potency of 0.02218; z, = Average potency of 0.02247.

https://doi.org/10.1371/journal.pone.0247281.t003
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aflatoxins contamination and exposure is adoption of good agricultural practices (including

biocontrol technology) during pre-harvest and post-harvest stages of food management

(including appropriate storage). Bandyopadhyay et al. reported that adoption of biocontrol

has been proven to reduce aflatoxins by as much as 98% in staples (such as maize and ground-

nut) across several countries in Africa [9]. Also, it was demonstrated by Wu and Khlangwiset

[16] for Nigeria that, at an upper estimate, if that technology is adopted up to 184,000 DALYs

will be saved annually. Wu and Khlangwiset [16] showed further that if the post-harvest inter-

vention package tried by Turner at al. [28] in Guinea is adopted in that country, 1,121 DALYs

related to aflatoxin-induced liver cancer cases would be saved, annually. The post-harvest

intervention package consisted of six components which are cheap and available to most Tan-

zanians. The components are education on hand-sorting of nuts, natural fibre mats for drying

the nuts, education on proper sun-drying, natural-fibre bags for storage, wooden pallets on

which to store bags, and insecticides applied on the floor of the storage facility under the

wooden pallets [28]. These examples demonstrated the extent of healthy life years that can be

saved in Nigeria and Guinea if those countries adopted these measures to prevent aflatoxin-

induced liver cancer. Although the estimates for Nigeria and Guinea are not directly transfer-

able to the Tanzania situation, they show that adoption of these cost-effective interventions

requires fewer resources than can be served through minimized risks of aflatoxin exposure

and liver cancer. As for setting and enforcing appropriate maximum limits for aflatoxins in

food, Abt Associates Inc. estimated that the monetary loss due to aflatoxin-induced liver can-

cer in Tanzania can be reduced to $147 million if the country enforces its national limit of

5 μg/kg set for AFB1 in food [29]. However, it should be noted that implementation of stan-

dards is a challenge because majority of the people in developing countries like Tanzania con-

sume their own grown foods or locally unpackaged foods, which are not formally regulated.

Other options for minimizing the risk of aflatoxin contamination and exposure include diver-

sification of diet to reduce consumption of aflatoxin prone foods, removal of toxins (through

means like sorting and screening) at household level and vaccination of the general population

against Hepatitis B and C Viruses to minimize the risk of liver cancer development [8].

We estimated the annual aflatoxin-induced liver cancer cases in Tanzania using biomarker

data. In Tanzania, the aflatoxin biomarker data was derived from children. The use of these

dataset was with a strong assumption that they represent the aflatoxin exposure in the entire

populations of Tanzania in 2016. Nonetheless, it is worth noting that although Shirima et al.
[14] noted that children may have higher intake of aflatoxin than adults, relative to their body

size, a study in Uganda [30] found no significant difference in aflatoxin levels among children

and adults. The use of data from children to estimate the burden of aflatoxin-induced liver

cancer is also warranted by the fact that a recent study by the Africa Liver Cancer Consortium

shows that liver cancer tends to develop at a younger age in Africa than in other regions of the

world [31]. It is not possible to know the actual exposure that contributed to liver cancer inci-

dence in 2016, but the biomarker data provides the best source of data for making an estima-

tion. These data measure exposure over a period including different seasons and in three

geographical regions, so give an integrated estimate of exposure in Tanzania.

Table 4. Estimated population risk, annual cases and DALYs for aflatoxin-induced liver cancer.

Location Median exposure (ng/kg bw/day) Population risk (cases per 100,000 persons) Liver cancer cases in 2016 DALYs in 2016

Iringa 61.0 1.37 13 512.98

Kilimanjaro 105.5 2.34 41 1,564.14

Tabora 242.5 6.79 175 6,641.98

Tanzania (nationwide) 105.5 2.95 1,480 56,247.63

https://doi.org/10.1371/journal.pone.0247281.t004
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The total number of aflatoxin-induced liver cancer cases per year was estimated to be 1,480.

The burden of aflatoxin-induced liver cancer is consistent with the high rates of HBV infection

and aflatoxin exposure in this country. The HBV+ prevalence applied for Tanzania is 6.2%

[24] and aflatoxin exposure in this country is known to be high [14,32,33]. The subjects from

whom the biomarker data were obtained consumed a diet that was predominantly maize

based [14]. We previously reported a significant correlation between the dietary intake of afla-

toxins and the blood aflatoxin biomarker levels [34]. It may also be seen from Table 3 that afla-

toxin exposure varies among individuals in the country. The reasons for the variation were

discussed in detail by Shirima et al. and were found to be largely due to local climate and die-

tary diversity [14]. Exposure is likely to be higher in areas where drought, high temperature,

low soil fertility, pest infestation and other stresses are common, as these factors affect plant

growth and vigor, thus increasing the likelihood of fungal infection, as well as the levels of afla-

toxins produced by the Aspergillus fungi [9]. In addition, households that cannot afford a

diversified diet are at a higher risk of aflatoxin exposure because their per capita consumption

of aflatoxin prone foods is higher [10].

In addition to liver cancer, aflatoxin exposure is associated with other health effects such

immune suppression [35] and stunting [14,36,37]. We estimated aflatoxin-related health

impacts for liver cancer only, because this is the only endpoint for which a clear etiology mech-

anism is established [5,6]. We also estimated DALYs related to aflatoxin-induced liver cancer

as an attempt to present the aflatoxin problem in a language that can be appreciated by policy

makers. Therefore, the results presented here may be an underestimate of the total impact of

aflatoxin contamination in Tanzania. The overall intention is to trigger more policy actions for

mitigation of the aflatoxin problem in the country as well as other countries of Africa where

aflatoxin exposure is a problem. This evidence is important because in the absence of aflatoxi-

cosis outbreak it is very difficult for policy makers to understand the magnitude of the health

impacts of chronic exposures to aflatoxins as the toxins are not visible and the impacts (such as

liver cancer) manifest long after the exposure. We understand the importance of health-related

economic impacts of aflatoxin exposure, but due to limited resources we could not include

them in this assessment. The economic impacts include raised demand for medical services,

falling labor efficiency, the time sufferers spend seeking medical attention, and the time spent

by family members attending to the sick.

Liu and Wu estimated that up to 28.2% of all-cause liver cancer cases in a country can be

attributable to aflatoxins [7]. Assuming the estimation applies to the Tanzania situation, the

all-causes annual liver cancer cases for Tanzania would be as high as 5,248 (1,480�100/28.2).

The Global Disease Burden Project of 2016 reported the total number of all-causes liver cancer

for Tanzania as 1,623 [26]. The current analysis suggests aflatoxin exposure makes a substantial

contribution to liver cancer in Tanzania. The country does not have a population-based cancer

registry. The data available, on which cases in the Global Burden of Diseases project are based,

was obtained from patients referred to the country’s national cancer hospital (The Ocean Road

Cancer Institute), in Dar es Salaam. Thus, the total cancer cases are likely to be higher than

reported in the Global Burden of Disease Project [38].

The assessment confirmed that aflatoxin exposures in Tabora and other regions where

maize and groundnuts are consumed in larger quantities, are extremely high and the popula-

tions are at relatively higher risk of aflatoxin-induced liver cancer. The use of biomarkers of

aflatoxin exposure made it possible for us to estimate the burden of aflatoxin-related liver can-

cer in Tanzania, using DALYs. The DALYs represent the healthy life years that could be

averted, annually, by strengthening measures to control aflatoxin contamination in Tanzania.

We recommend urgent financial investments for mitigation of the aflatoxin problems in

PLOS ONE Liver cancer risk from aflatoxin in Tanzania

PLOS ONE | https://doi.org/10.1371/journal.pone.0247281 March 11, 2021 8 / 11

https://doi.org/10.1371/journal.pone.0247281


Tanzania and other countries of Africa. The costs for mitigating the problem are expected to

be by far lower than the benefits (health losses) estimated in this assessment.
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