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Abstract .  We find that the remodeling of the con- 
densed Xenopus laevis sperm nucleus into the paternal 
pronucleus in egg extracts is associated with phos- 
phorylation of the core histones H2A, H2A.X and 
H4, and uptake of a linker histone B4 and a HMG 2 
protein. Histone B4 is required for the assembly of 

chromatosome structures in the pronucleus. However 
neither B4 nor core histone phosphorylation are re- 
quired for the assembly of spaced nucleosomal arrays. 
We suggest that the spacing of nucleosomal arrays is 
determined by interaction between adjacent histone oc- 
tamers under physiological assembly conditions. 

X 
ENOPUS laevis oocytes and eggs have proven useful 
in demonstrating the capacity of nuclear structure to 
be remodeled and thus acquire new functions, for ex- 

ample those of transcription and replication following the 
microinjection of somatic nuclei into oocytes and eggs, 
respectively (Gurdon, 1968, 1976; Merriam, 1969; Wake- 
field and Gurdon, 1983). In a natural context, the sperm nu- 
cleus will be rapidly remodeled by the egg cytoplasm fol- 
lowing fertilization to form the paternal pronucleus (Poccia, 
1986). The molecular details as to how this dramatic re- 
structuring is accomplished have begun to be determined 
(Philpott et al., 1991; Philpott and Leno, 1992). Since the 
X. laevis paternal pronucleus is organized into a chromatin 
structure that resembles that of a normal somatic cell, 
whereas the sperm nucleus is not, the assembly of the pro- 
nucleus provides a convenient system for reconstructing the 
role of individual proteins in the assembly process. 

X. laevis sperm nuclei contain histones H3 and H4, yet 
have reduced amounts of histones H2A and H2B, and lack 
histone HI entirely (Risley and Eckhardt, 1981; Wolffe, 
1989a,b; Philpott and Leno, 1992). Several sperm-specific 
basic proteins are associated with sperm chromatin and pre- 
sumably function to compact DNA in the absence of a full 
complement of the histone proteins (Ab6, 1987; Philpott and 
Leno, 1992; Risley, 1983). The molecular chaperone nu- 
cleoplasmin (Laskey et al., 1978) functions to exchange the 
sperm-specific basic proteins for histones H2A/H2B during 
the remodeling of X. laevis sperm nuclei in egg extracts 
(Philpott and Leno, 1992). However, sperm chromatin that 
is incubated in a purified solution of nucleoplasmin and his- 
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tone H2A/H2B does not acquire higher order aspects of 
chromatin structure (Philpott and Leno, 1992). Since incu- 
bation of sperm nuclei in a complete extract leads to the fold- 
ing of nucleosomal arrays into higher-order chromatin struc- 
tures that may require linker histones and eventually the 
assembly of nuclei, it is clear that proteins or activities in 
addition to the core histones and nucleoplasmin will be re- 
quired. 

The packaging of DNA by the histones within chromatin 
occurs through a series of ordered steps. These have been ex- 
perimentally assessed using naked DNA and extracts of oo- 
cytes and eggs (Lohka and Masui, 1983, 1984; Glikin et al., 
1984; Newport, 1987; Almouzni and M6chali, 1988a,b; 
Kleinschmidt and Steinbeisser, 1991). These extracts appear 
to reproduce the chromatin assembly process that follows the 
injection of DNA into oocyte nuclei or eggs (Wyllie et al., 
1978; Forbes et al., 1983; Ryoji and Worcel, 1984; Almouzni 
and Wolffe, 1993). The first histones to stably associate with 
DNA in these extracts are H3 and H4 in the form of the 
tetramer (H3/H4)2, deposition of histones H2A and H2B 
follow (Almouzni et al., 1990, 1991; Kleinschmidt et al., 
1990). These events recapitulate the process of nucleosome 
assembly in vivo (Worcel et al., 1978), however, beyond the 
assembly of the histone core of the nucleosome little is 
known concerning the assembly of higher order structures 
(reviewed by Wolffe, 1992). 

Worcel and colleagues discovered that ATP was required 
for the assembly of a physiologically spaced nucleosomal ar- 
ray (Glikin et al., 1984). This result led to the suggestion that 
topoisomerase II, which requires ATP as an energy source 
for activity might have a major role in the assembly process. 
However, subsequent work demonstrated that topoisomerase 
I has the predominant role in chromatin assembly (Almouzni 
and M6chali, 1988b; Wolffe et al., 1987; see also Annunzi- 
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ato, 1989). Importantly hydrolysis of ATP or of other trinu- 
cleotides was found not to be necessary to provide an energy 
source for chromatin assembly (Almouzni and M6chali, 
1988b). Other explanations for the ATP requirement in chro- 
matin assembly include the stabilization of the phosphoryla- 
tion state of particular proteins by inhibiting phosphatases, 
for example the maintenance of phosphorylation of histone 
H2A.X (Kleinschmidt and Steinbeisser, 1991), of nucleo- 
plasmin (Almouzni et al., 1991) or of HMG 14/17-like pro- 
teins (Tremethick and Frommer, 1992). Importantly, exoge- 
nous ATP is not always required for the assembly of spaced 
chromatin, suggesting that any ATP requirement is an ex- 
tract-dependent phenomenon, that may vary with prepara- 
tion conditions (Crippa et al., 1993). Nevertheless, phos- 
phorylated H2A.X and HMG 14/17-like proteins have been 
suggested to have important roles in generating nucleoso- 
mal arrays in which nucleosomes have physiological spacing 
(Kleinschmidt and Steinbeisser, 1991; Tremethick and From- 
mer, 1992). Phosphorylated nucleoplasmin is also more ac- 
tive in chromatin assembly than the unmodified protein 
(Scaly et al., 1986) and may more efficiently deposit histories 
H2A/H2B to complete the assembly of the histone octamer 
(Dilworth et al., 1987). Wrapping of DNA around the his- 
tone octamer is a necessary prerequisite for formation of a 
nucleosome, and it is possible that octamer-octamer interac- 
tions might directly lead to assembly of a physiologically 
spaced nucleosomal array (Almouzni et al., 1991; see also 
Hansen et al., 1989). 

Other proteins in addition to the core histones may also 
contribute to the assembly of a chromatosome structure 
and spaced nucleosomal arrays. Xenopus oocytes, sperm, and 
eggs are severely deficient in normal somatic histone HI and 
instead contain a cleavage stage linker historic B4 that has 
•30% sequence identity to histone H1 (Smith et al., 1988; 
Wolffe, 1989a,b; Dimitrov et al., 1993; Hock et al., 1993). 
Histone B4 is an excellent candidate to replace historic HI 
in normal embryonic chromosomes. Nevertheless, supple- 
mentation of oocyte or egg extracts containing historic B4 
with exogenous histone H1 will increase the distance be- 
tween nucleosomes from 180 to as much as 220 bp (ROd- 
riguez-Campos et al., 1989). This suggests that exogenous 
histone HI is stably incorporated into chromatin under these 
conditions, however, chromatosome structures were not 
defined in these experiments. Likewise, addition of exoge- 
nous HMG 14/17 to extracts (HMG 14/17 are deficient in 
Xenopus eggs and oocytes; Weisbrod et al., 1982; Crippa et 
al., 1993), can influence the apparent spacing of nucleo- 
somes (Tremethick and Drew, 1993; Crippa et al., 1993). 
These supplementation experiments lead to the suggestion 
that histone HI-like proteins such as B4 or alternatively 
HMG 14/17-like molecules may have a key role in assem- 
bling both chromatosome structures and spaced nucleo- 
somes. 

In this work, we have directly examined the role of histone 
phosphorylation and of the linker histone B4 in chromatin 
structure during the remodeling of Xenopus sperm chroma- 
tin. We find that although major changes in historic phos- 
phorylation occur concomitant with remodeling, these changes 
do not contribute to generating spaced (180 bp) nucleosomal 
arrays. We also find that although histone B4 has a role in 
generating a chromatosome-like particle within sperm chro- 
matin, it does not contribute to the physiological spacing of 
nucleosomes. 

Materials and Methods 

Preparation of Eggs and Sperm 
X. /aev/s frogs were purchased from Xenopus I (Ann Arbor, MI). Unfertil- 
ized eggs were obtained from X. /aev/s by injection of human chorionic 
gonadotropin (Sigma Chemical Co., St. Louis, MO). Eggs were collected 
in modified high salt Barth's saline (Gurdon and Wickens, 1983), dejellied 
with 2% cysteine at pH 7.8, rinsed several times, and sorted to remove all 
damaged or abnormal eggs. 

Microinjections were carried out by the method of Kay 0991). Usually 
25 ~l of [3H]lysine (75-100 Ci/mmol; Amersham Corp., Arlington 
Heights, IL) and 300 /~l of [3H]arginine (35-70 Ci/mmol, Amersham 
Corp.) were dried and resuspended in 50 #l of injection buffer (88 mM 
NaCl, l0 mM Hepes, pH 6.8) and 20 nl of this solution were injected in 
the cytoplasm of each ock-vte, egg, or embryo. 

X. laevis sperm nuclei were prepared by the method of Blow and Laskey 
(1986). Testes were homogenized in 2 ml SuNaSp (250 mM sucrose, 75 mM 
NaCl, 0.5 mM spermidine, and 0.15 mM spermine). Nuclei were pelleted 
by centrifugation at 1,000 g for 5 min and were resuspended in 0.5 ml 
SuNaSp. Demembranation was performed by the addition of 20 ~i of a 1 
mg/ml solution of lysolecithin. After 10 min, the reaction was stopped by 
the addition of 1 ml SuNaSp containing 3 % bovine serum albumin at 0°C. 
The sperm nuclei (>98% pure) were washed three times in SuNaSp and 
finally resuspended in SuNaSp plus 30% glycerol. 

Preparation of Low- and High-Speed Egg Extracts 

Unfertilized eggs were dejellied and where necessary microinjected with 
[3H]lysine and [3H]arginine before extracts were prepared as previously 
described (Lohka and Masui, 1983, 1984). Briefly, dejellied eggs were dis- 
rupted by direct centrifugation (9,000 g for 30 rain) at 4°C in a modified 
extraction medium (20 mM Hepes, pH 7.5, 70 mM potassium chloride, 1 
mM DTT, 5 % sucrose, 10/.tg/ml leupeptin). The supernatant after this cen- 
trifngation step is the low-speed extract. The low-speed extract was recen- 
trifuged at 150,000 g for 60 min. The supernatant after this centrifugation 
step was the high-speed extract. All extracts were used immediately after 
preparation. 

Phosphorylation of sperm chromatin components, of egg extract proteins 
or of decondensed sperm nuclei was examined by direct mixing of 
[~2PlATP with the constituents. Normally 106 nuclei, 10-/~1 extract or the 
two combined were radiolabeled with 10 zCi of [732P]ATP unless indi- 
cated otherwise. 

Preparation of Antibodies to Histone B4, 
Immunoblotting, and Immunodepletion 
All cloning steps for the production of 134 as a fusion protein were done 
using standard methodology (Maniatis et al., 1982). The B4.2 clone 
(provided as the kind gift of R. Smith, Eli Lilly, Indianapolis, IN) was used 
to produce a DNA fragment containing the entire IM coding sequence by 
PCR using the following primers: 5zC_K~T GAT TCT CCC ATG GCT CCT- 
3' and 5~CCC CGG ATC CTC GAG TAT ATC AGC CTA-3'. The former 
primer introduced a NcoI restriction site at the ATG encoding the transla- 
tional start of 134 and the latter primer introduced a Xhol site nine nucleo- 
tides beyond the TAG translational termination codon (Smith et ai., 1988). 
The resulting fragment was restricted with these two enzymes and ligated 
into NcoI-XhoI-restricted pGEX-KG (Onan and Dixon, 1991), giving a 
construct that fused the IM coding sequence in-frame to the coding se- 
quence of glutathione-S-tmnsforase. This construct was transformad into 
the Escherichia coil strain BL21 (DE3) pLysS, from which the fusion pro- 
tein was isolated after induction with isopropyl-fl-l)-thiogalactopyranoside 
(IPTO) I . 

To obtain a large amount of the fusion protein for immunization of rabbits 
to produce polyclonal antibodies, inclusion bodies were isolated from in- 
duced bacteria as follows: the cells from 250 mi of bacterial culture were 
thawed and resuspended in 5 ml of buffer A (2.4 M sucrose, 40 mM Tris- 
HCI, pH 8.0, 10 mM EDTA) and allowed to sit on ice for 30 rain. 20 ml 
of buffer B (50 mM Tris-HCl, pH 7.4, 100 mM KC1, 1 mM EDTA, 1 mM 
DTT, 100/tg/ml lysozyme, 75/tg/rnl PMSF) was then added and the incuba- 
tion on ice continued for an additional 80 min. DNase I (20/~g/rnl), 10 mM 
MgCI2, and 0.1% deoxycholate were added and the incubation on ice con- 
tinued until the viscosity of the mixture decreased (•30 min). The prepara- 
tion was then centrifuged in a rotor (SW'28; Beckman Instruments, Palo 

1. Abbreviation used in this paper: IPTG, isopropyl-/3-D-thlogalactopy- 
ranoside. 
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Alto, CA) for 30 min at 8,000 rpm to collect the inclusion bodies. The 
pellets were carefully resuspended in wash buffer (buffer B plus 10 mM 
EDTA and 0.5% Triton X-100) and allowed to sit at room temperature for 
10 rain. The inclusion bodies were centrifuged again in an SW28 rotor, as 
above, and then solubilized in 10 ml of 10 mM Tris-HCL, pH 8.0, 1 mM 
D'rT, and 6 M urea. The preparation was incubated at 37"C for 30 rain and 
then centrifuged at 10,000 rpm in a rotor (SS34; Sorvall, Newton, CT) for 
20 rain to remove bacterial debris. The urea was removed by stepwise dialy- 
sis in buffer C (25 mM Tris-HCl, pH 8.0, 25 mM NaCI, 1 mM DTT, and 
75 #g/ral PMSF) with 4, 2, and 0 M urea. A final dialysis was performed 
against 25 mM Tris-HCI, pH 8.0, 25 mM NaCI, 1 mM DTT, and 10% 
glycerol, and the dialyzed preparation was spun in an SS34 rotor at 10,000 
rpm for 20 rain. The fusion protein cunstituted the major protein in superna- 
tam from the inclusion body preparations. Rabbit anti-B4 sera were pro- 
dueed at Spring Valley Farms (Sykesville, MD) using 175 #g of protein from 
the inclusion body preparations for the initial injection and subsequent 
boosts. 

To affinity purify anti-B4 antibodies, soluble fusion protein was obtained 
as follows: bacteria were induced and treated as described above for the 
preparation of inclusion bodies through the SW28 centrifugation. The su- 
pernatant from this centrifugation was incubated with rotation for I h at 4°C 
with t ml of glutathione-Sepharose beads (Pharmacia Fine Chemicals, Pis- 
cataway, NJ) that had previously been washed extensively with buffer D (10 
mM Hepes-KOH, pH 8.0, 1 mM I/IT, 75 #g/ml PMSF). After this incuba- 
tion, the supernatant was removed and the beads were washed extensively 
with buffer D plus 150 mM NaCI. The fusion protein was eluted from the 
beads using buffer D plus 5 mM glutathione, and then it was dialyzed into 
coupling buffer (0.1 M NaHCO3, pH 8.3, 0.5 M NaC|). This purified so|u- 
ble fusion protein was coupled to CNBr-activated Sepharose 6B according 
to the manufacturer's suggestions and antibodies directed against the protein 
were then purified from the sera by standard methods (Harlow and Lane, 
1988). All Western blots using this antibody were made by standard meth- 
otis (Harlow and Lane, 1988), and in most cases they were visualized using 
India ink before incubation with the antibody to ascertain transfer and to 
visualize the protein molecular weight standards that were also electropho- 
resed on the gels. 

Immunodepletion of IM from Xenopus extracts was performed essen- 
tially as described by Dasso et al., (1992). Briefly protein A-Sepharose 
beads (Sigma Chemical Co.) were blocked by two 15-min room temperature 
incubations with 3.5 vol of bovine serum albumin (10 mg/ml) in PBS. They 
were then washed three times in 3.5 vol of PBS. After washing, 600 #1 of 
purified anti-iM antibodies (350 #g/ml) was added to 100 #1 of packed 
beads, and the mixture was allowed to incubate at room temperature for ! h 
with rotation. To prepare beads for mock treatment of extracts, preimmune 
serum containing an approximately equivalent amount of immunoglobulin 
G was diluted with PBS to 600 ~1, and then incubated with 100 ~1 of packed 
beads. After incubation with antibodies, the beads were washed three times 
in 400 #1 of PBS. To deplete the cytosol fraction, 4 vol of cytosol and I 
vol of packed beads were incubated at 4°C for 1.5 h with rotation. The beads 
were pelleted by centrifugation, and the cytosol was removed and rein- 
cubated for an additional 1.5 h with 1 vol of fresh beads. PBS contains 
125 mM NaCI, 2.7 mM KCI, 1.5 mM KH2PO4, and 8.1 mM Na2HPO4. 
XB contains 100 mM KCI, 1 mM MgCI2, 0.1 mM CaCI2, 50 mM sucrose, 
and 10 mM Hepes (pH 7.7). 

Micrococcal Nuclease Digestion of Chromatin 
X. /aev/s sperm nuclei isolated as described by Blow and Laskey (1986) 
were taken immediately after isolation or were incubated in the low or high 
speed egg extracts as described. The nuclei (generally 100-#1 vol containing 
107 nuclei) were diluted into 700 #1 of buffer XN (50 mM Hepes-KOH, 
pH 7.0, 250 mM sucrose, 75 mM NaCI, 0.5 mM spermidine, 0.15 mM sper- 
mine) and pelleted at 3,000 g. The pelleted nuclei were further washed twice 
in 500 #1 of buffer XN, before resuspension in micrococcal nuclease diges- 
tion buffer (lO mM Tris HCI, pH 7.5, 80 mM NaCI, 2 mM CaCI2, 25% 
glycerol). Micrococcal nuclease (I-10 U per 106 nuclei) was added and 
digestion allowed to occur at room temperature for 5 rain. To stop the reac- 
tion 30 mM EDTA was added to the samples and contaminating RNA re- 
moved through digestion with RNase A. After addition of 0.5% SDS and 
digestion with proteinase K the samples were deproteinized by extraction 
with phenol/chloroform. After ethanol precipitation DNA fragments were 
analyzed by electrophoresis. 

Electrophoretic Analysis of the Proteins 
SDS-polyacrylamide (18%) gel electrophoresis was carried out as de- 
scribed by Laemmli (1970). Two-dimensional electrophoresis was per- 

formed as described by Russanova et al., (1980, 1989). The proteins were 
first separated in a 15% polyacrylamide slab gel containing 7 M urea and 
5% acetic acid (Panyim and Chalkley, 1969). The strip with the separated 
proteins was then cut out from the gel and placed on the top of a second 
gel, which was made of a 2-3 cm 5 % stacking gel and a 12-15 cm separating 
gel, containing 0.4% Triton X-100, and 6 M urea (West and Bonner, 1980). 
The gels were stained either with 0.1% Coomassie Brilliant Blue R-250 
(Bio-Rad Laboratories, Cambridge, MA) or with silver nitrate as described 
by Wray et al. (1981). 

For identification of the tritium-labeled or -phosphorylated histories the 
gels were stained with Coomassie to determine the position of unlabeled 
carrier histones that served as markers, destained, treated with Amplify 
(Amersham Corp.) as recommended by the manufacturer, dried, and au- 
toradiographed. 

Results 

Changes in Protein Composition of Sperm Chromatin 
during Decondensation and Replication 
Xenopus sperm nuclei undergo a defined series of morpho- 
logical changes during the remodeling process. The first 
stage of nuclear decondensation occurs very rapidly (<10 
rain) in a high speed (150,000 g) supernatant of eggs (see 
Materials and Methods) and requires only nucleoplasmin 
(Philpott et al., 1991). The second stage of decondensation 
leading to pronuclear formation (,030 rain) requires the as- 
sembly of a nuclear envelope, and occurs only in low speed 
egg extracts (9,000 g) in which the nuclear membranes are 
present (Lohka and Masui, 1984). Finally, the fully assem- 
bled pronucleus has the capacity to replicate its DNA and 
duplicate its chromosomal structures (Lohka and Masui, 
1983; Blow and Laskey, 1986; Wolffe, 1993). Chromatin 
decondensation and pronuclear assembly were monitored by 
light microscopy using both fluorescence and phase contrast 
to image the nuclei (see Wolffe, 1989a). We examined the 
proteins present in sperm nuclei at each stage of this process 
using two-dimensional gel electrophoresis (Russanova et al., 
1980, 1989; Dimitrov et al., 1993). In each case we carried 
out a parallel electrophorefic analysis of histones isolated 
from the nucleated erythrocytes of Xenopus (RBC). There 
are several unusual features of Xenopus sperm chromatin 
(Fig. 1 A). The linker histone H1 is severely reduced in abun- 
dance, an observation confirmed using HI-specific antibod- 
ies (data not shown; Wolffe, 1989a; Dimitrov et al., 1993; 
Philpott and Leno, 1992). Histones H2A and H2B are also 
reduced in abundance compared to histories H3 and I-[4, 
however, they are not completely absent (Risley, 1983; 
Wolffe, 1989a; Philpott and Leno, 1992). The identities of 
each of the core histones were confirmed by transfer to 
nitrocellulose and gas phase sequencing (data not shown). 
With respect to histone acetylation, histories H4 and H2B 
are predominantly deacetylated. The level of histone acety- 
lation in Xenopus sperm chromatin is even less than to that 
found within the transcriptionally repressed, nonreplicating 
Xenopus erythrocyte chromatin (Fig. 1 A, compare RBC 
with Sperm nuclei). This is in contrast to the hyperacetyla- 
tion of histone H4 that occurs during trout spermiogenesis 
(Christensen et al., 1986). Three new proteins appear in 
sperm nuclei compared to RBC, these are labeled x, y, and 
z in Fig. 1 A. Each of these peptides was microsequenced. 
Protein x was identical to histone H3 and subsequent elu- 
tion and reduction followed by electrophoresis revealed it to 
be a dimer of histone H3, probably formed through cross- 
linking of H3 molecules mediated by oxidation of the -SH 
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Figure 1. The protein composition ofX./aev/s sperm chromatin be- 
fore (A) and after (B) remodeling in the X. /aevis high speed egg 
extract. (A) Two-dimensional gel electrophoretic patterns of pro- 
teins after staining with Coomassie Blue are shown of X. laevis 
erythrocyte chromatin (RBC) or X. laevis sperm nuclei. The core 
histories H2A, H2B, H3, H4 are indicated as are the linker histones 
H1 and HI*. The deacetylated (0) and monacetylated (1) forms of 
H4 are indicated. Within sperm nuclei are three novel proteins indi- 
cated by x, y, and z (see text for details). (B) As in A except the 
sperm nuclei have been decondensed in high speed egg extract. The 
positions of the core histories and of proteins x, y, and z are indi- 
cated. The position of three new proteins: s, t, and IM that accumu- 
late in sperm nuclei in the extract are shown. 

group of cysteine 110 (data not shown). This accounts for the 
apparent depletion of historic H3 relative to H4. Protein z 
has the partial NH2-terminal peptide sequence Ala.Ser.Pro. 
Pro. Ala. Arg. Lys. Lys. Arg. Lys. Arg. Ash. Gin. Pro. Gly. Tyr. 
Ser.Gln.Leu.Val.Val.Lys.Thr.Ile, which has limited (45%) 
identity to the NH2-terminal tail of histone H2B (Wells and 
McBride, 1989). It did not prove possible to obtain any pep- 
tide sequence from protein y, however, it is likely that both 
proteins z and y are similar to the family of X./aev/s sperm- 
specific proteins described by Ab6 and colleagues (Abd and 
Hiyoshi, 1991; Hiyoshi et al., 1991). 

During the first stage of sperm decondensation in the high 
speed supernatant of Xenopus eggs, proteins y and z are rap- 
idly removed from sperm probably by interaction with 
nucleoplasmin (Philpott and Leno, 1992). Several new pro- 
teins appear concomitant with the decondensation process 
(Fig. 1 B) including more H2B (deacetylated), and the pro- 
teins s and t. Protein s is H2A.X (see later; Dilworth et 
al., 1987; Mannironi et al., 1989; Kleinschmidt and Stein- 
beisser, 1991), and microsequencing established that t is a 

Figure 2. Immunoblot identifying histone 134 as accumulating in 
Xenopus sperm chromatin following incubation in high speed egg 
extract. (A) Two-dimensional electrophoretic analysis of proteins in 
Xenopus sperm nuclei alone (le~) or following incubation in high 
speed egg extract. The position of B4 is indicated. Two filters 
stained with Indian ink after Western transfer are shown. (B) Im- 
munodetection of historic B4 on these filters after reaction with 
polyclonal antibodies specific for B4 (Dimitrov et al., 1993). 

Xenopus homolog of HMG2. The partial NH2-terminal 
peptide sequence of protein t is Gly.Lys.Gly.Asp.Pro.Asn. 
Lys.Pro.Arg.Gly.Lys.Met.Ser.Ser.Tyr.Ala.Tyr.Phe.Val. 
Gln.Tyr.Cys.Arg.Glu.Glu.His.Lys.Lys.Lys.Phe, which is 
identical to the NH2-terminal sequence of the chicken 
HMG2 protein (Davis and Burch, 1992) and distinct from 
the human HMG1 protein (Shirakawa et al., 1990; Tsuda et 
al., 1988). The histone 134 also accumulates in decondensed 
sperm nuclei (Fig. 1 B), the identity of B4 was confirmed 
using specific antibodies (Fig. 2; Dimitrov et al., 1993). All 
of the major components stably incorporated into the decon- 
densed sperm nucleus have thus been identified. 

We extended our analysis of protein incorporation into 
sperm chromatin during the first stage of decondensation by 
making use of high-speed egg extracts prepared from eggs 
in which the histones had been previously radiolabeled with 
[3H]lysine and [3H]arginine (Materials and Methods; Dimi- 
trov et al., 1993). This enables the distinction to be made 
between proteins that originate entirely from stores se- 
quested in the oocyte, and proteins (radiolabeled) that origi- 
nate in part from the translation of stored maternal mRNA 
in the egg. The newly synthesized proteins taken up at this 
time are histones H2A, H2B, HMG2 (protein t) and B4 (Fig. 
3). Histone H2A.X is not apparent using this assay (Fig. 3). 
This is in contrast to results obtained when total protein is 
stained (Fig. 1 A). This difference presumably reflects incor- 
poration of H2A.X into sperm chromatin from stores laid 
down in the oocyte and what is probably a low rate of H2A.X 
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Figure 3. Newly synthesized proteins taken up by sperm chromatin 
during decondensation in radiolabeled high speed extract. Left 
hand panel shows total proteins in decondensed sperm nuclei fol- 
lowing staining with Coomassie Blue. (Note: the spot immediately 
to the right H2B is some incompletely depleted protein z.) Right 
hand panel shows radiolabeled proteins synthesized in the eggs be- 
fore extract preparation, that are taken up by sperm chromatin. The 
positions of histories H2A, H2B, B4, and protein t are indicated. 

synthesis from endogenous mRNA in the egg (see later). The 
histone H2A.X that was previously synthesized during oo- 
genesis is stored as a complex with nucleoplasmin (Dilworth 
et al., 1987). 

Similar results are obtained using low speed extracts of 
Xenopus eggs in which the histones have been radiolabeled. 
This experiment examines protein uptake under conditions 
where the possibility of DNA replication is eliminated 
through the addition of aphidicolin, which inhibits DNA 
polymerase ct. Thus, before replication (Fig. 4, Before) only 
H2A, H2B, HMG2, and B4 are incorporated into sperm 
chromatin. Analysis of paternal pronuclei following replica- 
tion in the radiolabeled extract (Blow and Laskey, 1986; 
Wolffe, 1993; in the absence of aphidicolin), reveals that all 
four core histones plus a great many other radiolabeled pro- 
teins are incorporated into nuclei (Fig. 4, After). Replication 
was monitored by incorporation of radiolabeled dCTP into 
DNA, more extensive analysis has shown efficient semi- 
conservative DNA replication (Wolffe, 1993). Thus the 
replication process makes use of both stored proteins and 
those proteins that are being synthesized within the egg, 
these include histones H3 and H4. We conclude that during 
both the first and second stages of sperm decondensation in 
the assembly of a replication competent paternal pronucleus, 
there is only the incorporation of a limited number of pro- 
teins into the remodeled sperm chromatin in stoichiomet- 
ric amounts. These proteins include core histones H2A, 
H2A.X, and H2B, HMG2 and the histone IM. Following 
replication, a much broader spectrum of proteins undergoing 
active synthesis in the egg are incorporated into nuclei. It is 
surprising that relatively large quantities of nonhistone pro- 
teins are incorporated into replicating nuclei compared to 
the histones (Fig. 4, After). This may reflect a greater reli- 
ance on de novo synthesis of nonhistone proteins to assemble 
nuclei in the egg following fe~ilization than of the core his- 
tones. We next examined what changes in chromatin struc- 
ture occur concomitant with these major changes in protein 
composition. 

Figure 4. Newly synthesized proteins taken up by sperm chromatin 
during complete pronuclear assembly in the radiolabeled low speed 
egg extract before and after replication of the pronuclei. (Lef/) Ra- 
diolabeled proteins synthesized in the eggs before extract prepara- 
tion, that are taken up by sperm chromatin during pronuclear as- 
sembly. The positions of histories H2A, H2B, 134, and protein t are 
indicated. In this experiment aphidicolin (125 #g/ml) is added to 
the extract to inhibit DNA replication. (Right) Radiolabeled pro- 
teins synthesized in the eggs before extract preparation that are 
taken up by replication sperm pronuclei. The positions of the core 
histones are indicated. No aphidicolin is added to this extract. 

The Assembly of  Nucleosomal Arrays during the 
Remodeling of  Sperm Chromatin 

Previous work has suggested that although sperm chromatin 
has unusual sensitivity to micrococcal nuclease compared to 
somatic nuclei, a repeating structure similar to that of a nu- 
cleosomal array could be visualized following resolution of 
DNA fragments derived from micrococcal nuclease diges- 
tion (Wolffe, 1989a). The DNA fragments of nucleosomal 
size (multiples of ~180 bp) within sperm chromatin are not 
as clearly resolved as those resulting from digestion of so- 
matic (RBC chromatin) especially on extended micrococcal 
nuclease digestion (Fig. 5 A). This could be explained by a 
reduction of the differential accessibility of micrococcal 
nuclease to linker DNA compared to DNA in the "nucleoso- 
mal core" within sperm chromatin compared to somatic 
chromatin. In somatic chromatin the linker DNA between 
nucleosomal cores is much more accessible to micrococcal 
nuclease than the DNA within the core (van Holde, 1988), 
hence, the linker DNA is digested before DNA within the 
core (Noll and Kornberg, 1977). Exposure of sperm chroma- 
tin to increasing concentrations of micrococcal nuclease 
leads to a heterogenous distribution of DNA fragment sizes. 
Moreover, in contrast to the clear resolution of chromato- 
some (168 bp; Simpson, 1978) and core particle (146 bp) 
length DNA fragments on extensive micrococcal nuclease 
digestion of somatic (RBC) chromatin, no significant selec- 
tive accumulation of fragments of this length is clearly 
resolved on digestion of sperm chromatin (Fig. 5 B). The 
chromatosome is a 168-bp long DNA fragment that interacts 
with both core histones and a single molecule of linker his- 
tone, it accumulates as a kinetic intermediate during micro- 
coccal nuclease digestion of normal somatic cell chromatin 
(Simpson, 1978). This failure to accumulate chromatosome 
or core length DNA fragments indicates that DNA in the 
"linker" has comparable accessibility to micrococcal nucle- 
ase in sperm chromatin to that associated with the core his- 
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Figure 5. Remodeling of nucleosomal arrays during sperm nuclear 
decondensation in the high speed egg extract. Markers are for A and 
C, a 1-kb ladder (GIBCO-BRL, Gaithersburg, MD), the marker 
DNA fragment indicated by the asterisk is 517 bp in length. Mark- 
ers for B and D are the same 1-kb ladder (GIBCO-BRL), however 
the DNA fragment indicated by the asterisk is 154 bp in length. 
(A) Mieroeoceal nuclease digestion of sperm ehromatin alone is 
shown (Sperm), together with Xenopus erythroey~ ehromatin 
(RBC). DNA is shown after deproteinization resolved on a 1.5 % 
agarose gel. The size of nueleosome core length DNA is indicated 
by the horizontal arrow. (B) Mierococcal nuclease digestion of 
sperm chromatin alone does not lead to signilicant accumulation 
of stable nucleosome core (146 bp) or ehromatosome (168 bp) 
length DNA fragments. Extensive mierococcal digests of sperm 
chromatin (Sperm) and of erythrocyte ehromatin (RBC) are shown 
resolved on a nondenaturing 10% polyaerylamide gel. Nucleosome 
core length DNA is indicated by the closed horizontal arrow, chro- 
matosome length DNA by the open horizontal arrow. (C) As in A 
except the sperm chromatin has been decondensed in the presence 
of the high speed egg extract. (D) As in B except the sperm ehroma- 
tin has been de, condensed in the presence of the high speed egg ex- 
tract. 

H2A.X, H2B, HMG2, and B4 (Fig. 1). We next  asked what 
role the histone B4 had in the chromatin structural transi- 
tions observed. 

Histone B4 Is Necessary for the Formation of  
Chromatosome Structures during the Remodeling 
of  Sperm Chromatin 

We depleted Xenopus egg extracts of the B4 protein using 
specific antibodies (Fig. 2). Serial dilution of the extract, fol- 
lowed by slot blotting and immodetection revealed that I34 
concentrations were severely reduced by immunodepletion 
(see Fig. 6 B). We then allowed sperm nuclei to be remod- 
eled in mock- and B4-depleted extracts. Depletion of his- 
tone B4 has no effect on sperm chromatin decondensation at 
the light microscopic level (not shown). Sperm nuclear chro- 
matin was then digested extensively with micrococcal 
nuclease. Chromatosome size DNA fragments (168 bp) only 
accumulated in the egg extracts containing the histone 134. 
Thus incorporation of histone 134 stabilizes histone-DNA 
contacts that are resistant to micrococeal nuclease from 146 
to 168 bp (Fig. 6 A, note that equal amounts of DNA are 
loaded in lanes 4 and 5). We conclude that histone B4 is 
functioning like a linker histone in the assembly o f a  chro- 
matosome (Simpson, 1978; Hayes and Wolffe, 1993). These 
results were confirmed with a range of digestion conditions 
(not shown). Our next experiments examined whether deple- 
tion of the histone B4 from egg extracts would influence the 
spacing of nucleosomes, which has been suggested as a func- 
tion for linker histones (Rodriguez-Campos et al., 1989). 
Remarkably we find that depletion of B4 has no effect at all 
on the spacing of nucleosomal arrays (,'~180 bp) within the 
resolution of this assay (+ 5 bp) (see Fig. 10 A). We con- 
clude that B4 is not important in determining the separation 
of histone octamers along the DNA molecule. 

tones. In contrast, sperm nuclei that have been incubated in 
the high-speed egg extract prior to micrococcal nuclease di- 
gestion, generate a stable nucleosomal array following di- 
gestion (Fig. 5 C, Wolffe, 1989a; Philpott and Leno, 1992). 
Importantly, more extensive micrococcal digestion of re- 
modeled sperm chromatin reveals the presence of clearly re- 
solved ehromatosome and core particle length kinetic inter- 
mediates (Fig. 5 D). The presence of core particle length 
DNA indicates association of all of the core histories. The 
presence of chromatosome length DNA indicates that a pro- 
tein is acting like a true linker histone in the presence of the 
core historic within the egg extract, in order to assemble the 
chromatosome. We suggest that the remodeling of Xenopus 
sperm chromatin involves structural transitions from a struc- 
ture in which nucleoprotein complexes distinct from nucleo- 
somes are regularly arrayed along the DNA molecule (Fig. 
5 A) to one in which a more conventional nucleosome orga- 
nization exists (Fig. 5, C and D). This transition involves the 
loss of proteins z and y and the accumulation of H2A, 

Figure 6. Histone B4 is essential for the assembly of chromato- 
somes in the egg extract. Xenopus high speed egg extract was 
depleted of historic B4 using polyclonal antibodies (Materials and 
Methods). (,4) Xenopus sperm chromatin was allowed to decon- 
dense in high speed egg extract that was depleted for B4, or that 
was mock depleted. The chromatin was then extensively digested 
with micrococcal nuclease, DNA was deproteinized and fragments 
resolved on a nondenaturing 8 % polyaerylamide gel. As a control 
sperm ehromatin that had been decondensed in untreated extract 
containing B4 protein was also digested (Control). Markers are a 
1-kb ladder (GIBCO-BRL). (B) Depletion was assayed by slot blot- 
ting serial dilution of mock depleted and depleted extract, and then 
immunoblotting using antibodies against histone B4. 
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Histone Phosphorylation during the Sperm 
Chromatin Remodeling Process 

We wished to examine whether the phosphorylation of his- 
tones might have a role in the sperm chromatin remodeling 
process. Several correlations have been made between his- 
tone phosphorylation and biological processes. For example, 
phosphorylation of histone H2A.X has been proposed as a 
major determinant of nucleosomal spacing during chromatin 
assembly on small plasmid DNA molecules (Kleinschmidt 
and Steinbcsser, 1991). Phosphorylation of histone H3 has 
been correlated with transcriptional activation (Mahadevan 
et al., 1991). Linker histone phosphorylation has been para- 
doxically associated with both mitotic chromosome conden- 
sation (Roth and AUis, 1992), and with chromosome decon- 
densation and transcriptional activity (Aul0cn et al., 1992). 
We initially incubated Xenopus sperm nuclei with [,y32p]_ 
ATP in isolation in order to determine whether any sperm 
chromatin associated histone kinases might exist. We detect 
the specific phosphorylation of sperm histone H2A (Fig. 7, 
32p-labeled). As a control we incubated the egg extract 
alone with [3,32p]ATP and failed to observe any histone 
phosphorylation (Fig. 7, Extract riP-labeled). We have not 
yet identified the spots reflecting radiolabeling within the egg 
extract alone. Our next experiments involved the incubation 
of Xenopus sperm nuclei at decreasing ratios of nuclei to egg 
extract in the presence of ['y32p]ATP (Fig. 5). As previously 
reported (Kleinschmidt and Steinbesser, 1991), H2A.X is 
phosphorylated in chromatin, however we find that histone 
H2A is also phosphorylated. The proportion of H2A.X that 
is phosphorylated compared to H2A increases as the ratio 
of sperm nuclei to cytoplasm decreases, until the equivalent 
amounts of phosphorylated H2A and H2A.X are present 
(Fig. 8, A-C). Thus, both H2A.X incorporation into chro- 
matin and H2A.X phosphorylation might appear to be a con- 
sequence of the more effective de.condensation of sperm 
chromatin observed under these conditions and may have a 
role in the assembly of nucleosomal arrays (Kleinschmidt 
and Steinbeisser, 1991; but see Figs. 9 and 10 later). Surpris- 
ingly histone H4 is also phosphorylated in sperm nuclei (Fig. 
8). This phosphorylation probably derives from kinases 
present within the egg extract, since H4 is not phosphory- 
lated in sperm in the absence of extract. Thus both histones 
H2A and H4 which are already within sperm chromatin, and 

Figure 8. Phosphorylation of proteins in sperm chromatin in- 
cubated in high speed egg extract. Sperm nuclei were incubated in 
high speed egg extract in the presence of ['r32p]ATP at three ra- 
tios: (A) 2 x 106 nuclei per #1 extract; (B) 5 x 10 s nuclei per #1 
extract; and (C) 2 x 105 nuclei per/~1 extract. The stained gels of 
marker histones from Xenopus erythrocyte nuclei are shown in the 
lower panel, radiolabeled proteins in sperm chromatin in the upper 
panel. The positions of core histories H2A, H2A.X, and 1-14 are in- 
dicated. 

histone H2A.X which is assembled into sperm chromatin 
from a storage form in egg cytoplasm are phosphorylated. 
Quantitation of the levels of phosphorylation (not shown) 
suggest that >50% of these histones are stably phos- 
phorylated in a de, condensed sperm nucleus. 

Figure 7. Phosphorylation of 
proteins in sperm chromatin 
alone, on in egg extract alone. 
Coomassie Blue stained sperm 
nuclear proteins arc shown for 
reference (Sperm Nuclei). An 
autoradiogram is shown of 
sperm nuclear proteins incu- 
bated with [3,32p]ATP (32p_ 
labeled) or of high speed egg 
extract incubated with [3PzP] - 
ATP (Extract 32P-labeled). 
The position of H2A in radio- 
labeled sperm chromatin is in- 
dicated, as are the approxi- 
mate mobilities of the core 
histones (open circles) in the 
radiolabeled extract. 
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Figure 9. Kinetics of histone phosphorylation during sperm chro- 
matin remodelling in high speed egg extracts and inhibition of phos- 
phorylation by calf intestinal phosphatase (CIP). Markers are of 
the phosphorylated histories shown in Fig. 8 resolved on two- 
dimensional gels, that have been excised, eluted and resolved on an 
18% polyacrylamide gel containing SDS (lanes 1-3). (Note: the 
two spots for H2A.X are due to the loading of two adjacent gel 
wells.) The kinetics of phosphorylation of sperm chromatin pro- 
teins during decondensation in high speed egg extract is shown, 
proteins were isolated after 1, 15, or 60 min of incubation plus 
[-r32P]ATP. In lane Z both sperm chromatin and egg extract were 
incubated with calf intestinal phosphatase (CIP) (20 U) before mix- 
ing with [-r32P]ATP. 

We wished to determine whether the phosphorylation of 
histones during the remodeling of Xenopus sperm chromatin 
was necessary for the assembly of nucleosomal arrays. Our 
first experiments were to definitively attribute the identity of 
the phosphorylated proteins visualized on the two-dimen- 
sional gels. The proteins provisionally identified as phos- 
phorylated H2A, H2A.X, and H4 were resolved on two- 
dimensional gels, excised from the gel, and resolved on an 
18% polyacrylamide gel containing SDS (Laemmli, 1970). 
As previously reported (Mannironi et al., 1989; Kleinschmidt 
and Steinbesser, 1991) histone H2A.X has a mobility less 
than that of histone H2A in this type of electrophoresis system 
(Fig. 9, lane 1). The kinetics of histone phosphorylation 
when sperm nuclei are incubated in the high speed extract 
are rapid (Fig. 9, lanes 4-6).  Historic H2A is phosphorylated 
within 1 min, and all three core histones, H2A, H2A.X, and 
H4 are modified within 15 min. In these experiments con- 
stant amounts of total sperm nuclear proteins were loaded 
in every gel lane. The rapid phosphorylation of histone H2A 
is probably due to the histone and histone kinase already be- 
ing present in sperm chromatin (Fig. 7). Stable phosphoryla- 
tion of the core histones can be inhibited by incubation of 
sperm nuclei and high speed egg extract with calf intestinal 
phosphatase (Fig. 9, lane 7, CIP). Therefore we next asked 
whether nucleosomal arrays could be assembled in the ab- 
sence of stable histone phosphorylation. 

The assembly of nucleosomal arrays during sperm chro- 
matin remodeling is unaffected by the absence of stable his- 
tone phosphorylation (Fig. 10 B). Therefore, we propose 
that there is no requirement for stable phosphorylation of the 
histones in order for nucleosome assembly to occur or for 

Figure 10. Neither histone B4 nor stable historic phosphorylation 
are required for the assembly of spaced nucleosomal arrays. (A) 
Historic IM was either depleted or mock depleted from high speed 
egg extracts before sperm nuclear decondensation in these extracts 
(see Fig. 6). The de.condensed sperm chromatin was digested with 
micrococcal nuclease, digestion products were deproteinized and 
resolved on a 1.5 % agarose gel before staining with eithidium bro- 
mide. The numbers and horizontal lines refer to DNA fragments 
corresponding to one (1), two (2), or three (3) nucleosomes. Mark- 
ers are a 1-kb ladder (GIBCO-BRL). The asterisk indicates a DNA 
fragment size of 517 bp. (B) As in A except de, condensation of 
sperm nuclei was in the presence (+ CIP) or absence (Control) of 
nuclei and extract treated with calf intestinal phosphatase (see 
Fig. 9). 

the nucleosome to be physiologically spaced ('~180-bp per 
nucleosome) during the assembly of the paternal pronucleus 
from sperm chromatin. 

Discuss ion  

We have determined the major changes in chromosomal pro- 
tein composition during the transition from a condensed 
sperm nucleus to the paternal pronucleus. In agreement with 
previous work, histones H2A and H2B (Philpott and Leno, 
1992), and H2A.X (Dilworth et al., 1987; Mannironi et al., 
1989; Kleinschmidt and Steinbesser, 1991) are incorporated 
into the chromatin of the paternal pronucleus. Here we dem- 
onstrate that HMG2 and historic B4 are also incorporated 
into the paternal pronucleus. Sperm-specific proteins z and 
y are lost from chromatin during this remodeling process 
(Ab6, 1987; Philpott and Leno, 1992). We have also found 
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that major transitions occur in core histone phosphorylation 
during sperm chromatin remodeling. These include not only 
phosphorylation of histone H2A.X, as previously reported 
for chromatin assembly on naked DNA (Kleinschmidt and 
Steinbesser, 1991) but also phosphorylation of histones H2A 
and H4. 

The Transition from the Condensed Sperm Nucleus 
to the Paternal Pronucleus 

X. /aev/s sperm nuclei retain a full complement of histones 
H3 and H4 which form the arginine-rich kernel of the nu- 
cleosome core (Fig. 1 A; Camerini-Otero et al., 1976; Hayes 
et al., 1991). The presence of the (H3/H4)2 tetramer in X. 
Laev/s sperm chromatin probably accounts for the pre- 
existing ladder of spaced nucleoprotein complexes following 
micrococcal nuclease digestion (Fig. 5 A). The nucleosome 
is built around the (H3/H4): tetramer, histones H2A/H2B 
can only bind to DNA if the tetramer has wrapped 120-bp 
DNA around it, and histone H1 can only bind once histones 
H2A/H2B are present (van Holde, 1988; Hayes et al., 1991). 

In contrast to the full complement of histones H3 and I-I4, 
histories H2A and H2B are relatively deficient in X. /aev/s 
sperm chromatin (Risley, 1981; Wolffe, 1989b), and histone 
H1 is absent from sperm (Wolffe, 1989a). This is consistent 
with the lack of protection of core and chromatosome length 
DNA following extended micrococcal nuclease digestion 
(Fig. 5 A). Although the molecular mechanisms leading to 
histone H2A, H2B, and H1 displacement during spermato- 
genesis and spermiogenesis are unknown, it is likely that 
these proteins are replaced with sperm-specific proteins 
(Ab~ 1987, Fig. 1 A, proteins z and y). These proteins are 
removed remarkably rapidly on incubation of sperm nuclei 
in Xenopus egg extract (Fig. 1 B). This removal is believed 
to be catalyzed by nucleoplasmin, the molecular chaparone 
that also directs the sequestration of histories H2A.X and 
H2B in the oocyte (Dilworth et al., 1987; Philpott and Leno, 
1992). 

Our two-dimensional gel system clearly resolves the in- 
corporation of both histones H2A and H2A.X (protein s) 
into sperm chromatin during the remodeling process (Fig. 
1 B). H2A.X is absent from sperm chromatin before incuba- 
tion in the egg extract (Fig. 1, compare A with B). Further- 
more, examination of newly synthesized histones in the egg 
that are incorporated into sperm pronuclei, does not reveal 
any H2A.X incorporation, only that of H2A and H2B (Figs. 
3 and 4). Thus the H2A.X must derive from protein synthe- 
sized and stored in the developing oocyte (Woodland and 
Adamson, 1977). Incorporation of core histones H2A and 
H2B, together with pre-existing histories H3 and I-I4 ac- 
counts for the protection of nucleosome core length (146 bp) 
DNA fragments on extended micrococcal nuclease digestion 
(Fig. 5 D). 

We demonstrate that two other proteins aside from the 
core histones are incorporated into sperm chromatin during 
the assembly of the pronucleus, the linker histone B4 (Figs. 
1 and 2) and HMG2 (Fig. 1). Both of these proteins are pres- 
ent in amounts such that the majority of nucleosomes would 
be expected to contain a molecule of B4 and/or HMG 2 (Fig. 
1 B). The expression of the histone Hl-like protein, B4 is 
restricted to oogenesis and early embryogenesis (Smith et 
al., 1988; Dimitrov et al., 1993; Hocket al., 1993; Cho and 
Wolffe, 1994). Depletion of B4 protein from the Xenopus egg 

extract prevents the accumulation of chromatosome length 
DNA (,o168 bp) during micrococcal nuclease digestion of 
pronuclear sperm chromatin (Fig. 6). However, chromato- 
some length DNA accumulates in normal decondensed 
sperm chromatin containing B4 (Figs. 5 D and 6). Since the 
formation of a chromatosome requires the presence of a 
linker histone molecule (Simpson, 1978; Hayes and Wolffe, 
1993) we propose that histone 134 is functioning as a true 
linker histone in the paternal pronucleus. 

The presence of HMG 1- and 2-like molecules has been 
previously reported in X./aev/s oocytes (Kleinschmidt et al., 
1983; Weisbrod et al., 1982). It has also been suggested that 
HMG 1 might be capable of replacing histone H1 in chroma- 
tin (Jackson et al., 1979). However, normally HMG 1 or 2 
is associated with a relatively minor fraction of chromatin 
<5% (Goodwin et al., 1977; Isackson et al., 1980). Within 
sperm chromatin, the stoichiometry of the protein would 
suggest that an HMG 2-like molecule would potentially be 
associated with ,o50% of the chromatin. Such an abundant 
protein might be involved in nucleosome assembly (Bonne- 
Andrea et al., 1984), or the assembly of nucleosomal arrays. 
The Xenopus sperm pronucleus has a functional requirement 
for rapid replication and chromatin assembly, but is nor- 
mally transcriptionally quiescent (Wolffe, 1989a). Future 
experiments will explore the role ofXenopus HMG 2 in these 
nuclear functions. 

Replication of the paternal pronucleus is necessary for in- 
corporation of newly synthesized histones H3 and H4 in the 
sperm pronucleus (Fig. 4). This result demonstrates that his- 
tones H3 and I-I4 within the sperm pronucleus do not readily 
exchange with histones H3 and H4 in the low speed extract 
in the absence of replication. This is consistent with the 
results in mammalian cells dividing in culture (Louters and 
Challdey, 1985; Jackson, 1990). During replication newly 
synthesized histones H3 and H4 will be assembled into nu- 
cleosomes together with nascent DNA. 

The Assembly of Nucleosomal Arrays 

Several hypotheses have been proposed to account for the as- 
sembly of nucleosomal arrays with a physiological spacing 
of approximately 170-180 bp (reviewed by Wolffe, 1992). 
These include interaction of the core histones alone with 
DNA (Almouzni et al., 1991), interaction of core histones 
plus phosphorylated histone H2A.X with DNA (Klein- 
schmidt and Steinbeisser, 1991), interaction of core histones 
plus linker histones with DNA (Rodriguez-Campos et al., 
1989), and interaction of core histones plus HMG 14/17-like 
proteins with DNA (Tremethick and Frommer, 1992). We 
do not detect HMG 14/17--like proteins in Xenopus sperm 
chromatin (Fig. 1) or in egg extracts (Crippa et al., 1993; 
Weisbrod et al., 1982). This would appear to exclude a direct 
structural role for these proteins in establishing spaced nu- 
cleosomal arrays in Xenopus sperm chromatin. More sur- 
prisingly there is no histone H1 in Xenopus eggs or sperm 
(Wolffe, 1989a,b), however, histone IM is necessary for the 
assembly of chromatosomes in the sperm pronucleus (Fig. 
5). Our results demonstrate the depletion of histone B4 from 
the egg extract does not prevent the assembly of nucleosomal 
arrays with a physiological spacing of ,o180 bp (Fig. 10 A). 
This implies that the assembly of chromatosomes is not 
necessary to assemble a physiologically spaced nucleosomal 
array. 
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We also examined the phosphorylation of histones during 
sperm chromatin remodeling. We find that histones B4, H3, 
and H2B are not phosphorylated during the remodeling pro- 
cess. However a histone I-I2A kinase is associated with 
sperm chromatin, and the histone H2A in sperm chromatin 
is phosphorylated in the presence of [-/32p]ATP (Fig. 7). 
Histones 1-I4 and H2A.X are also phosphorylated within 
sperm nuclei in the presence of the high speed egg extract. 
The in vivo phosphorylation of H4 that has been documented 
is at the NH2-terminal serine residue, this occurs in the 
cytoplasm shortly after histone synthesis (Sung and Dixon, 
1970; Ruiz-Carillo et al., 1975; Jackson et al., 1976). Like 
H2A, no functional significance has been attached to the 
phosphorylation of historic H4. In contrast, the phosphory- 
lation of historic H2A.X has been correlated with the re- 
constitution of physiologically spaced chromatin in vivo 
(Kleinschmidt and Steinbesser, 1991). 

We find that histone H2A.X incorporation and phos- 
phorylation correlates with the efficiency of decondensation 
of sperm chromatin into pronuclei (Fig. 8). However, we 
also find that complete elimination of stably phosphorylated 
amino acids using calf intestinal phosphatase (Fig. 2) does 
not influence nucleosome spacing (Fig. 10). These results 
contrast with those of Kleinschmidt and Steinbesser (1991) 
who observed an elimination of nucleosome alignment com- 
pletely at high alkaline phosphatase concentrations (cited as 
data not shown; Kleinschmidt and Steinbeisser, 1991). How- 
ever our experiments differ in that we make use of sperm 
chromatin as a template whereas Kleinschmidt and Stein- 
beisser (1991) examine de novo nucleosome assembly on 
naked duplex DNA. Nevertheless it seems unlikely that his- 
tone H2A.X which constitutes at most 50% of the H2A in 
sperm chromatin (Fig. 1) could account for 100% ofnucleo- 
some spacing. This observation coupled to the physiological 
spacing of nucleosomes in the absence of significant phos- 
phorylation of H2A.X lead us to suggest that historic phos- 
phorylation is not essential for the assembly of canonical 
nucleosomes or nucleosomal arrays within the paternal pro- 
nucleus. 

We conclude that the core histories themselves, in particu- 
lar histories H2A and H2B play the major role in nucleosome 
spacing (see Aimouzni et al., 1991). We note that a nucleo- 
some-like ladder is pre-existing in Xenopus sperm (Fig. 5 A; 
Wolffe, 1989a), perhaps this acts as a framework for subse- 
quent assembly of true nucleosomal arrays. Considerable 
evidence supports interactions of the core histone with 160- 
180 bp of DNA. Hydroxyl radical footprinting of DNA 
associated with the histone octamer reveals ,x,180 bp of pro- 
tection (Hayes et al., 1990). Likewise histone-DNA cross- 
linking reveal 180 bp of contacts between the histone octamer 
and DNA (Pruss and Wolffe, 1993). Our results strengthen 
the hypothesis that the assembly of physiologically spaced 
nucleosome arrays depends on the core histories alone, and 
their interactions during the assembly of the nucleosome 
core. 

Note 
While this work was in preparation, Ohsumi and colleagues 
reported the role of histone H1X (Ohsumi and Katagiri, 
1991) in chromosome condensation in Xenopus mitotic ex- 
tracts (Ohsumi et al., 1993). The authors conclude that HIX 
is not required for mitotic chromosome condensation or the 

assembly of nucleosomal arrays, but is required for the as- 
sembly of a chromatosome. While it is possible that H1X is 
identical to histone B4 based on our observations in this 
manuscript, such an identity has not been established at this 
time. 
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