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Abstract: Wireless sensor networks are suitable to gain context awareness for indoor
environments. As sound waves form a rich source of context information, equipping the
nodes with microphones can be of great benefit. The algorithms to extract features from
sound waves are often highly computationally intensive. This can be problematic as wireless
nodes are usually restricted in resources. In order to be able to make a proper decision
about which features to use, we survey how sound is used in the literature for global sound
classification, age and gender classification, emotion recognition, person verification and
identification and indoor and outdoor environmental sound classification. The results of the
surveyed algorithms are compared with respect to accuracy and computational load. The
accuracies are taken from the surveyed papers; the computational loads are determined by
benchmarking the algorithms on an actual sensor node. We conclude that for indoor context
awareness, the low-cost algorithms for feature extraction perform equally well as the more
computationally-intensive variants. As the feature extraction still requires a large amount of
processing time, we present four possible strategies to deal with this problem.
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1. Introduction

Intelligent environments have been the subject of many experiments and research projects for the
last few decades. We see projects in the context of healthcare and wellbeing that are often aimed at
helping old and disabled people to remain independent in their own homes (e.g., Cook et al. [1],
Kientz et al. [2]). Other projects aim to make the home environment more comfortable and to integrate
entertainment appliances (e.g., Rashidi and Cook [3], Wu et al. [4]). A third category has its focus
on improving productivity in office environments (e.g., Raskar et al. [5], Petzold et al. [6]). Finally,
we see projects that deal with sustainability and energy usage reduction (e.g., Salomons et al. [7],
Chassin et al. [8], Jahn et al. [9]). In this survey, we focus on intelligent home environments.

A requirement for all intelligent environments is the ability to perceive the conditions of the area in
which the system is deployed and to do some form of reasoning and adaptation using the actuators that
are present. A good method to gain awareness is by listening to sounds that are being produced by the
environment. This has a number of advantages. First, sound sensors are non-obtrusive, although care
has to be taken that the sound signals are not recorded, but are immediately processed instead. Second,
sound waves are rich sources of information. Humans gain a large amount of context awareness through
listening; they recognize voices or the specific gait of people they know, recognize the appliances that are
being used through their specific sounds, determine the gender of people and the emotion of the verbal
utterance and often recognize the environment by the sound of it (street, classroom, theater).

Context awareness that is based on sound is most effective when the sound is recorded at multiple
locations in the area in which we are interested. This has a number of advantages. First, if we know the
times of arrival of a sound event in three or more locations, it is possible to determine the location of the
sound source. Second, a solution with multiple microphones allows filtering of unwanted background
noise, such as television or radio sounds. A microphone that is installed close to these types of sources
can determine whether or not the sound originates from this source and can supply sound parameters that
can be used for compensation in the sound that is recorded in other locations. Third, if multiple devices
individually process signals, they can switch roles when the need arises. For example, the node that is
positioned close to a television in our previous example can be used as an extra input for localization
when the television is switched off.

Ideally, we would like to have a high number of individual sensing and processing nodes. For newly
built homes, a wiring plan for electricity and connectivity can be incorporated in the building plans.
Existing homes do not have this possibility. To allow for a flexible solution that can be extended when
the need arises without the need to install new infrastructures, the use of a wireless sensor network
(WSN) is the logical choice. A WSN is easy to install or extend, and wireless nodes can easily be moved
when the need arises.

A challenge when using WSNs is the limited processing power and working memory of the devices.
If we want to use sound as the basis for context awareness for this type of device, we have to carefully
select an appropriate algorithm for feature extraction of the signal and for training the system. Although
there is ample research on context awareness using sound, this research in general has no limits with
respect to the processing capabilities of the hardware. In order to make an appropriate choice for an
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algorithm, an overview of the strengths and weaknesses of the algorithms with respect to CPU load and
the recognition rate is mandatory.

To meet this demand, we present a survey on the possibilities of using sound signals to gain context
awareness on a WSN. Our approach is to look at this problem first from a high level point of view in
order to gain insight into the possibilities and challenges when using this approach. This will help us to
make the results applicable for a wider spectrum of devices and applications than would have been the
case if we took a specific context as our starting point.

As sound processing on resource-limited devices is rarely the subject of research, we will first survey
the use of sound for context awareness in general in Sections 2 and 3. Subsequently, we will focus on
the applicability of our findings for wireless sensor nodes in Sections 4 and 5. Section 2 discusses the
types of classifications that researchers are able to make using sound signals. Section 3 focuses on the
methods of processing the sound signal or, to be more precise, on the feature extraction algorithms that
are executed on sound signals in order to gain context awareness. In Section 4, we describe our efforts
to harmonize the results of the literature in order to create a fair comparison of the performance of the
features for the task of context awareness. Section 5 discusses the applicability of the feature extraction
algorithms on wireless sensor nodes.

2. Categories of Sound Detection

There are several types of information that can be extracted from a sound signal. During our survey,
we encountered seven categories: global sound classification, gender recognition, age classification,
person recognition, emotion recognition, indoor environment sound source recognition and outdoor
environment sound source recognition. These categories will be discussed in more detail in the following
sections. There are other categories, but they are often too specialized to be of interest for our survey.
An example of this is the classification of pig stress calls by Schön et al. [10]. Although Schöns results
are interesting, there are no additional articles to be found on the same subject.

In Figure 1, we present an overview of the types of sound classifications that we see in literature.
Most research projects are focused on recognition or classification of particular sound events; only a few
projects deal with the challenge of automatically recognizing activities from sound signals, although this
is, in many cases, the underlying reason for performing sound event recognition. Most closely linked to
instantaneous activity recognition is the recognition of indoor sound events, as many indoor sounds can
be linked to a single activity. We observe that, in general, the order and duration of the events are good
indicators of the actual activities.

In this work, we will not look into the music subcategory in more detail. We are mainly interested in
sounds that give information about the context. Although the music genre of background music can be
an indicator of the environment, the number of cases in which this is actually useful is small.
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Figure 1. Classifications of sound events.

2.1. Global Sound Classification

Global sound classification denotes the effort to classify the sound signal into a limited amount of
classes that are dissimilar in nature. A typical example of the classes is <music, speech, environmental
sounds>. Often, this type of classification serves as a preprocessing step for the actual application. For
example, before speech recognition is performed, it is necessary to know whether speech is actually
present in the sound signal.

As the sound signals of these classes are highly dissimilar in nature, the required amount of processing
power for the classification can be kept relatively low (see Section 4.3).

2.2. Gender Classification and Age Classification

As is the case with global sound classification, gender classification and age classification are often
used as a preprocessing step for another application. In particular, speaker identification and verification
problems can benefit from the results of gender and age recognition. Li et al. [11] conclude that limiting
the search space to speakers from the same gender considerably reduces the error rates for speaker
verification and identification.

Age recognition is harder when the number of classes is high (see also Section 4.4). Although some
research tries to classify up to seven classes, most publications limit themselves to two or three classes,
typically <child, adult> and <child, adult, senior>, respectively.

In many cases, recognition of age and gender is performed in conjunction. Of these two, gender
recognition achieves higher accuracies than age recognition. Chen et al. [12] note that first detecting
gender is beneficial for experiments that detect age.
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2.3. Person Recognition

The recognition of people using sound is being researched in many projects. Typically, the recognition
is taking place using the voice signals of people. A notable exception is the research performed by Alpert
and Allen [13], who perform recognition using the gait of people on stairs.

When writing about speaker recognition, different authors sometimes use the same word with
different meanings. To clarify the discussion, Homayoon Beigi [14] discerns six types of
speaker recognition:

• Speaker verification (authentication): The speaker has identified himself; the speech signal is used
as a kind of password.
• Speaker identification: Identify who is talking.
• Speaker and event classification: Pooling similar audio signals into bins; an example is

gender classification.
• Speaker segmentation: Retrieve the parts of a sound signal that belong to certain speaker; gives an

answer to the question “who is talking when?”.
• Speaker detection: Detect one or more (specific) speakers in a stream of audio; this category

encompasses segmentation, as well as identification/verification
• Speaker tracking: Track a specific speaker in an audio stream; other speakers are regarded

as irrelevant.

In all cases, we aim to retrieve characteristics that are particular to an individual from a spoken
utterance. In this survey, the category “person recognition” encompasses both speaker verification and
speaker identification.

Another field where human speech is analyzed is speech recognition. Although at first sight, speech
recognition and speaker recognition are dissimilar in nature, many authors note that the features that are
helpful in speech recognition also give high success rates for speaker recognition (see Section 4.5).

2.4. Emotion Recognition

Besides the explicit message that is present in human speech, an import part of human speech is
the implicit message that is conveyed. The implicit message, or the implicit part of the message, is
usually characterized by the emotion of the utterance. The subject of automatic emotion recognition is
thoroughly described in an article by Cowie et al. [15]. In their article, they mention the augmentation
of human judgment (e.g., in lie detection), tutoring (knowing when the user becomes bored or irritated),
alerting (a hospital patient in distress) and entertainment (toys that respond to their owner’s mood).

2.5. Environmental Sound Recognition (Indoor)

The need for indoor sound event recognition often occurs in projects that are concerned with
healthcare and ambient assisted living. The sounds that are produced in the various rooms of a house
are good indicators of the activities that take place. A good example is given by Chen et al. [16], who
perform recognition of bathroom sounds in order to detect the personal hygiene behavior of dementia
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patients. Another example is given by Stäger et al. [17], who perform quite well in recognizing typical
kitchen sounds (average: 85% accuracy).

2.6. Environmental Sound Recognition (Outdoor)

There are two main applications for outdoor environmental sound recognition. One application is the
detection of “danger” situations. Łopatka et al. [18] use the sound signal as reinforcement for a video
surveillance detection systems. The other application is detection of the type of environment (e.g., <train
station, roadside, nature>). Outdoor sounds convey much information about the location in which the
sounds are recorded, as shown by Peltonen et al. [19].

3. Features for Sound Detection

Now that we have insight into the types of classifications that are performed on sound signals, we
will look into the different ways of extracting information from the signals. There are many ways of
extracting features from a sound wave. Some of them are computationally inexpensive, whereas others
require high processing power. For certain categories, some features are better suited for recognition
than others. Before showing an overview of the places where features are being used, we group the
features into four categories, which will be elaborated in the remainder of this section: time domain
features (Section 3.1), frequency domain features (Section 3.2), features inspired by voice production and
perception (Section 3.3) and long-term features (Section 3.4). In Section 3.5, we discuss the complexity
of these algorithms. The actual differences in calculation time during a benchmark test will be presented
in Section 4.

More details about the calculation of the various features can be found in Appendix A.

3.1. Time Domain

Most feature extraction algorithms require a frequency analysis as the first step. There is however a
small group of algorithms that use the signal in its raw form. These time domain features are often
used when processing power is an issue. The preprocessing that needs to be done for this type of
feature is less than when using frequency domain features. Applications that are deployed on wireless
sensor nodes or on wearable devices often employ time domain features to gain knowledge about the
environment. For these devices, battery-life is an important issue, so the algorithms that are being used
must be computationally inexpensive.

Typical time-domain features include the following:

• The zero crossing rate (ZCR) is the rate of sign-changes along a signal or the number of times that
the sound signal crosses the x-axis. This feature excels in separating voiced and unvoiced frames.
Voiced frames, for example music waves, have high ZCR rates. Unvoiced frames, which often
occur in environmental situations, show low zero crossing rates. The human voice contains both
voiced and unvoiced parts.
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• Short-time energy (STE) is a measure for the energy of the frames of a sound signal. This measure
gives insight in the intensity and the variations in intensity of a sound signal. As an example, there
are more silence frames in speech than in music.
• The sound amplitude (SA) provides information about the proximity or the loudness of a

sound source.
• Peak detection (PD) is the detection of the points in time that a sound signal exceeds a

certain threshold.

3.1.1. Haar-Like Features

Haar-like filtering for sound signals is a technique introduced by Jun Nishimura and Tadahiro
Kuroda [20]. The technique of Haar-like filtering is well established in the field of 2D face detection,
where it is used to recognize particular parts of faces (Papageorgiou et al. [21]).

Nishimura and Kuroda have adapted this idea to apply for one-dimensional sound signals. A Haar-like
filter ranges in length from two to 20 and consists of consecutive one’s followed by a number of −1’s,
with possibly leading or trailing zeros or zeros between the series of one and−1. For each frame (length:
20–32 ms) of the sound signal, the products of the filters hm and consecutive parts of the signal s are
added in order to obtain the filter value xm (see Equation (1)).

xm =
N∑
n=0

∣∣∣∣∣∣
Wfilter∑
k=0

hm(k)s(n ·WShift + k)

∣∣∣∣∣∣ (1)

Nishimura and Kuroda note that for each filter hm, the value of xm is typically highest for signals that
contain a large amount of a specific frequency. Some effort has to be made to find the appropriate filters
for the type of sound to be recognized. It must be noted that Haar-like filtering, for 2D applications as
well as 1D signals, must be regarded as a weak classifier. However, calculation of Haar-like features can
be performed very efficiently.

3.2. Frequency Domain

The frequency domain offers a number of interesting features that can be used for sound analysis. In
this section, we will briefly describe the simple features. ‘Simple’ in this case points to the fact that the
values of the Fourier analysis of the sound signal are more or less used without post-processing. We
discern the following features:

• Spectral centroid: The balancing point of the spectral power distribution; gives an indication of
whether the signal contains more higher or lower frequencies.
• Bandwidth: The width of the range of the frequencies that the signal occupies; this is a measure

for the flatness of the sound signal.
• Spectral roll-off: The frequency bin below which 93% of the distribution is concentrated; this is a

measure of the skewness of the spectral distribution.
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• Spectral flux: The average variation value of spectrum between the adjacent frames in a one-second
window; this is typically highest for environmental sound, a bit lower for speech and even lower
for music.
• Weighted phase deviation: Phase deviations of the frequency bins in the spectrum weighted by

their magnitude; as an example, ambient sound and music will have a smaller phase deviation
than voice.
• F0/Base frequency: A measure of the base formant of speech; this is often used in speaker recognition.
• Cochleogram/spectrogram: A graph that shows the presence of frequencies in the sound signal

over time; this is often used in speech recognition.

3.3. Sound Production and Perception

Another method of extracting features from a sound signal is to look at the way sound is being
produced by the human vocal system and how sounds are perceived by the auditory system. Using this
inspiration, a number of methods of feature extraction have come up as valuable for speech recognition.
Interestingly, these features are often suitable for speaker detection, as well. We consider two of the most
popular types of features: linear predictive cepstral coefficients (LPCCs) and mel (melody) frequency
cepstrum coefficients (MFCCs).

3.3.1. Linear Predictive Cepstral Coefficients

Linear predictive analysis is inspired by the way that the human vocal system produces sounds.
The method provides accurate estimates of speech parameters, such as pitch, formants and spectrum.
LPC analysis was introduced in the late 1960s. The method analyzes the speech signal by estimating
the formants of the sound wave through autocorrelation. Each sample of the original sound signal is
expressed as a linear combination of the previous samples. Typically, the number of coefficients that is
estimated ranges from 10 to 20. The coefficients are subsequently used to perform a cepstrum (inverse
spectrum) analysis. The objective of this cepstral analysis is to isolate the contributions of the excitation
source and the vocal tract system components. This process is graphically depicted in Figure 2. More
details can be found in Appendix A.

Figure 2. Linear predictive cepstral coefficient (LPCC) calculation.
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3.3.2. Mel Frequency Cepstrum Coefficients

MFCCs are inspired by the human auditory system. Human perception of frequencies does not
follow a linear scale. Variations in lower frequencies are perceived more accurately than variations
in high frequencies. To take this into account, the subjective pitch is measured on the “mel scale”; see
Figure 3. This scale is more or less linear for frequencies up to 1 kHz and logarithmic above this value.
The coefficients are calculated by applying the mel scale to the results of the Fourier transform first.
After this step, the discrete cosine transform is calculated. The amplitudes of the resulting spectrum
constitute the MFCCs. Typically, the number of coefficients is 12. This process is graphically depicted
in Figure 4. More details can be found in Appendix A.
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Figure 3. Mel (melody)-spaced filter bank.

Figure 4. Mel frequency cepstrum coefficient (MFCC) calculation.

3.4. Long-Term Features

The previous features all are calculated using small frames of the sound signal (20–40 ms). The last
category of features are used to capture properties of the sound signal over a longer period of time. Two
good examples of long-term features are jitter and shimmer. Jitter is defined as the variation in the base
frequency of the sound signal; shimmer is the variation in amplitudes. These features are known to carry
information regarding the age and gender of speakers.
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3.5. Orders of Complexity

In order to gain a first notion of the algorithms’ calculation cost, we consider their orders of
complexity. See also Appendix A for more details about the calculation of the features.

• Time domain features (ZCR, STE, sound amplitude (SA), PD): O(N)

• Haar-like features: O(N); for each filter hm, the values are multiplied with the signal values s(i).
If the number of filters is f , this results in f ∗N multiplications.
• Frequency domain features: Press et al. [22] argue that the FFT can be calculated in O(Nlog2N)

complexity. All frequency domain functions require an additional O(N) step after calculation of
the frequency spectrum, so they each have the same order of magnitude as the calculation of FFT.
• MFCC and LPCC both use the FFT as one of the main steps. Other steps that are performed in

both algorithms have lower complexity than the calculation of the FFT. Therefore, the complexity
of both algorithms can be expressed as O(Nlog2N).
• Jitter, shimmer: small additional calculations required after calculation of F0 and SA, respectively.

Looks at consecutive frames; the order of this is O(N), so jitter and shimmer have orders equal to
the FFT (O(Nlog2N)) and time domain (O(N)), respectively.

The orders of complexity give information about the asymptotic behavior of the algorithms. Constant
factors are a negligible factor for higher numbers of data. We see proof for this in our benchmark tests
(Section 4.1).

4. Performance of Features for Sound Detection

The previous sections give an overview of the types of classifications of sound signals and of the
features that can be extracted from these signals. In this section, we connect these two categories. We
will give insight into the achieved results of classification experiments that use the various types of
feature extraction found in the literature. We will specifically look at the calculation costs and achieved
accuracy of the various approaches.

For the recognition accuracy, we use the numbers that the authors provide in their articles. See
Appendix B for a detailed description of the results found in the surveyed papers. The detailed
description also provides insight into the training method that has been used in the respective papers.
In this survey, our goal is to make a fair comparison of these papers. There is however a challenge as
a result of the different ways that the results are being presented. Some authors measure recognition
accuracy for their experiments, while others aim to find the equal error rate by tweaking the parameters
of the learning algorithms. Some authors have detailed information about the classes that have been
found, and others present their results in a more global way. Another major difference between articles
is the number of examples that have been used for training and verification. As a result, some articles
present more accurate results than others.

For the processing power metric, we calculate the relative execution time (RET), which we determine
using a procedure that we describe in Section 4.1. For the experiments that combine features, we add the
RETs of the separate features in order to estimate the combined calculation.
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In Section 4.2, we briefly consider the memory footprint of the feature extraction algorithms that we
use throughout this survey.

Sections 4.3 through 4.7 provide the results of our comparison. The graphs that we present use the two
axes that we are interested in (RET vs. accuracy). The data points in the graphs show the features that
have been used to achieve the presented accuracies and the authors and year of the concerning article.

4.1. Relative Execution Time

As each author uses their own implementation of the feature extraction algorithms, we wrote our
own tests that compare the execution time necessary for extracting the different features. The times are
compared with respect to the algorithm that takes the least time, hence relative execution time. In order
to be able to compare the different features in a fair way, we implemented the test algorithms on an
actual wireless sensor node: the Jennic JN5148 module. The microprocessor of this module consists of
a 32-bit RISC CPU and has 128 kB available for program code and data. By choosing only one specific
device to perform our benchmark test, we do not deliver extensive proof of the validity of the results for
wireless sensor nodes in general. However, our choice for a representative hardware platform provides
us with strong indications that these results are valid for a broad spectrum of WSNs. Devices that are
equipped with hardware that is dedicated to a certain task of signal processing, such as hardware Fourier
transforms, will have better performance on the benchmark tests that we performed.

The benchmark program is directly compiled for the Jennic JN5148 chipset. The nodes have no
additional operating system. Besides the test software, no other processes are running. All calculations
are performed using floating point numbers. All algorithms use the same sound fragments. These sound
waves have a sampling frequency of 8 kHz, which is a frequency that is both feasible for the Jennic
analog-digital converter and holds enough information of the recorded sound. For the calculation of the
features, it is best to choose a frame length of 20–40 ms. If the signal is shorter, the number of samples
for a spectral estimate will be too low; if the signal is longer, the signal changes too much throughout the
frame, which causes the results of the feature extraction algorithms to become less meaningful. As the
Fourier transform, which is used by the frequency domain features and MFCCs, requires a frame length
equal to a power of two, we choose a frame length of 256 samples. This frame length corresponds to
32 ms, which fits in the desired interval of 20–40 ms. This frame length is used by all of our
benchmark tests.

The RET is determined by measuring the time it takes for each feature extraction algorithm to finish.
We noted that repeated executions of the benchmark tests resulted in exactly the same measurements,
as did running the same test on two different nodes. The length of the sound wave that was processed
had very little effect on the outcome of the measurements. The difference in processing time between a
signal of one second and a signal of 32 ms was less than 0.1% for all algorithms.

Figure 5 shows the resulting RET for a subset of the different features that we tested. The features
that are not present in this figure have computation times that are of the same magnitude as the other
features of the same category. A notable difference exception to this rule are the long-term features (jitter
and shimmer). Calculation of jitter is comparable to frequency domain features, whereas shimmers are



Sensors 2015, 15 7473

calculated even faster than other time domain features. The reason for this is that the calculation of
shimmers requires almost no multiplication operations.

Figure 5. Relative execution time per feature. ZCR, zero crossing rate; STE,
short-time energy; F0, base frequency.

Table 1 shows the RET for each group of features. We choose the value one for the least
computationally-intensive feature category. As research that uses long-term features usually includes
both jitters and shimmers, the value for this category is derived from the most computationally-intensive
feature. The abbreviations in Table 1 will be used in the remainder of this article.

Table 1. Relative execution time (RET).

Feature Abbreviation RET

Time domain features TD 1
Haar-like features Haar 3.5
Frequency domain features FD 15
Long-term features long 15
LPCC features LPCC 30
MFCC features MFCC 78

It might seem odd that the benchmark program of MFCCs results in a RET five-times the size of
the corresponding value for frequency domain (FD) features, as both have the same order of complexity
(see Section 3.5). This difference is caused by the higher number of steps that must be taken in order
to calculate MFCCs (Section 3.3.2), including the calculation of 26 filter values and a discrete cosine
transform. These steps have a constant length, independent of the frame size. In other benchmark tests,
we saw that for longer frames (1 s and up), the RETs of the FD and MFCC algorithms are much closer.
As we argued before, however, this is too long for meaningful feature extraction.

4.2. Memory Footprint

Besides RET, another metric that might be of interest is the memory footprint of the various feature
extraction algorithms. In our implementations, the algorithms have between 10 and 200 lines of code.
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The memory demands are influenced most by the length of the frames of the sound signal that is being
analyzed, as for some algorithms, it is necessary to allocate a buffer of the same size for intermediate
results. These frames are short by design (see Section 4.1). In our benchmark programs, this resulted in
a need for at most 1.6 kB of memory. Doubling the frame size (or the sampling rate) results in a demand
of at most 2.6 kB. Given the fact that sensor nodes often have 100 kB or more of memory, these memory
demands are not of great importance when considering which algorithms to use. Memory footprint is
therefore not included as a criterion for the remainder of this survey.

4.3. Global Recognition of Sounds or the Classification of Sounds into Global Categories

The classification of sounds into global categories can be done with high accuracies (see
Figure 6). Not many articles can be found that deal with this type of classification. The work that
has been performed in this field shows that the classification into <speech, non-speech> classes can be
performed with the highest accuracies using simple algorithms; speech consists of a narrower bandwidth
of frequencies and has more pauses (silence) in the sound signal than non-speech signals.

Figure 6. Relative execution time for global sound recognition.

As the signals are different in nature, the features that are chosen for the recognition task are not
required to be highly discriminative for similar sounds. Instead, it is sufficient to use “lightweight”
features, like time domain features and simple frequency domain features. The learning techniques that
are used for this category have in common that they are aimed at finding similarities of individual samples
(e.g., K-nearest neighbor, vector quantization).

In Figure 6, we see that the required processing power for the algorithms of both articles is quite
low. Nishimura and Kuroda [20] only use the computationally-efficient Haar-like features to distinguish
speech from non-speech sounds. Lu et al. [23] also take into account the music category. Using
only simple time and frequency features, they manage to achieve a high separation between speech



Sensors 2015, 15 7475

and non-speech sounds (approximately 95% accurate). The other categories are harder to distinguish
using only these types of features. Using linear spectral pairs for the experiments improves the results of
the recognition of music (93% accuracy) and other environment sounds (84% accurate).

4.4. Gender and Age

In Figure 7, we see that the detection of the gender of a speaker can be done with high accuracy. Apart
from time domain features and long-term features, most features are suitable for gender recognition.
For most authors, there is even no need to combine features in order to increase accuracy. Pronobis
and Magimai-Doss [24] show that the F0 feature and higher order features (MFCC, LPCC) perform
comparably well. F0 is a value that denotes the base frequency of the sound signal. This corresponds
with the way people distinguish male voices from female voices: men have lower voices than women.
Haar-like features can be selected to be responsive to certain frequencies, so basically, this leads back
to the same principle. Pronobis and Magimai-Doss have a spectacular 100% accuracy for gender
classification using only F0. This perfect score is only achieved when classification is performed on
the voiced speech parts of a clean speech signal. Experiments that use all speech frames or degraded sets
of speech signals perform slightly worse, although the accuracy remains higher than 93%.

Figure 7. Relative execution time for gender recognition.

Estimation of age results in lower accuracies than recognition of gender (see Figure 8). Experiments
that are limited to the distinction between adults and children achieve the best results. Finer-grained
distinctions lead to estimates that are sometimes only a little better than random guessing. A good
example of the accuracy getting lower is given by Sadeghi and Homayounpour [25]. For two age classes,
the accuracy is 72%, and one more added class causes the accuracy to drop to 61%.
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Figure 8. Relative execution time for age recognition.

In three articles, the authors describe experiments to determine age and gender simultaneously. In
Figures 7 and 8, these results are marked with an asterisk (*). Of these results,Kim et al. [26] manage to
get the highest accuracy. In their paper, they describe experiments to determine both the age and gender
of a person separately, as well as simultaneously. Age is restricted to the classes <adult, child>. The
age + gender experiments involve the classes <male, female, child>. Chen et al. [12] perform
recognition of age and gender in two stages: first, gender is determined with a good accuracy (91% male,
81% female). The second stage consists of the determination of the age group (<child, adult, elder>).
Performance drops significantly in this case (54% accuracy), although age determination without the
previous step of gender recognition delivers even lower accuracies. Van Heerden et al. [27] even include
a fourth age group (<child, young, adult, senior>). The performance of their experiments are comparable
to Chen et al.

4.5. Identification of People

One of the most frequent uses of sound classification in the literature besides the recognition of speech
is the identification of people. Two types of features are dominantly used for this purpose. Nowadays,
many projects use MFCCs, having more or less replaced the usage of derivatives of linear predictive
coding. Although the inspiration for both types of features is different, the results are more or less
comparable. In some cases, LPCCs outperform MFCCs; in other cases, MFCCs are better.

The results in the papers we considered are often hard to compare, as the number of speakers that are
to be identified or verified varies highly. Nevertheless, it can be interesting to look at the differences.
We see, for example, that the results for identification attempts are usually more accurate than the results
for the verification attempts. This can be counter-intuitive at first sight. From a human perspective, it
seems to be harder to determine the speaker’s identity than to confirm or refute the identity. However,
given a limited amount of possible speakers, it is actually easier to look for the person whose voice is
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most similar to a given utterance. For verification, the system has to be almost certain that the speaker is
indeed the right one. This test set should therefore be more varied than the test set for identification.

Although MFCCs and LPCCs are used most often, the papers of Alpert and Allen [13] and
Kinnunen et al. [28] are worth mentioning. Alpert and Allen only use the intensity of the sound signal
for gait recognition on staircases. In the sound signals, the peaks are determined. Using these peaks,
the typical up- and down-stairs walking patterns of inhabitants of a home are used for training a neural
network. In their experiments, they achieve up to 90% accuracy over a set of four actual household
inhabitants. Interestingly, there are differences in recognition rates between inhabitants going up the
stairs and inhabitants going down. The down-going gait appears to be more consistent than the up-going
gait. Kinnunen et al. compare the usage of frequency spectrograms with MFCCs. For the frequency
approach, they developed a dimension reduction technique that resulted in a verification success rate of
83%. The same task, when performed using MFCCs, resulted in an accuracy of 93%.

Four papers focus on identification of persons: Nishimura [29], Alpert and Allen [13],
Hasan et al. [30] and Kim et al. [31]. We see, that the accuracy of these experiments is a bit higher on
average than the other experiments that focus on speaker verification. The work of Kim et al. uses a
high number of speakers for their experiments (195); the others have a more limited amount of people to
identify (up to 24).

The other authors focus on speaker verification. The number of speakers in these experiments is rather
high for most papers (over 100), with the exception of Tiwari et al. [32] and Reynolds et al. [33], who
only have a small dataset of persons to be verified.

Figure 9. Relative execution time for person recognition.

From the results of Figure 9, we may conclude that the safest option for person recognition
(whether identification or verification) is to use MFCC features. Another good choice, or even better
if only looking at the necessary processing power, is to use Haar-like features. As we already saw in
Section 3.1.1, Haar-like features are in fact representatives of certain frequency components.
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4.6. Emotion

Emotion recognition is another widely surveyed subject (see Figure 10). The number of emotions
that authors are attempting to identify varies highly. The table data show that it is hard to identify an
emotion if the amount of emotions is higher than three. Projects that attempt to classify three emotions
(e.g., <happy, sad, neutral>, Nishimura [29], Neiberg et al. [34]) or that perform stress detection
(He et al. [35]) are usually able to do so with high accuracy. Attempts to classify more than three
emotions see the accuracy rate drop. Higher-order algorithms for the extraction of features do not raise
the performance of recognition significantly. As an example, both Nwe et al. [36] and Pao et al. [37]
aim to classify emotions in one of six classes and have results that are, on average, equally good. The
latter extracts MFCC features from the sound signal; Nwe et al. use the log frequency power coefficients
that are derived from the Fourier analysis. Other authors successfully use simple frequency features, as
well. Busso et al. [38] and Nogueiras et al. [39] rely on pitch aspects of the sound signal.

Figure 10. Relative execution time for emotion recognition.

One type of learning technique for emotion recognition is similarity-based (Gaussian mixture model,
artificial neural network). Another technique that is often used is the hidden Markov model (HMM). The
latter can be a logical choice, as the HMM takes into account the history and order of a sound signal.
Many emotions can be characterized by order. As an example, both crying and laughing consist of a
number of short bursts of sound, often followed by a brief pause.

4.7. Environment

Although the application of indoor and outdoor environment recognition is quite different, the features
that are being used for both and the applied learning techniques are often similar (see Figures 11
and 12). This could be expected, as both indoor and outdoor environment sounds are noisy in nature.
For this category, the amount of sounds to be recognized varies highly between authors. Both authors
that use Haar-like features (Nishimura [29] and Zhan [40]) manage to achieve high accuracies (95%+)
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for recognition of 20+ office sounds. This is better by far than other experiments. Łopatka et al. [18]
achieve a similar accuracy on the recognition of only five sounds. These sounds are all from the domain
of danger sounds.

Figure 11. Relative execution time for indoor environment recognition.

Figure 12. Relative execution time for outdoor environment recognition.

Just as with emotion recognition, we see similar results for using frequency features and MFCCs.
Although for some sounds, it seems enough to recognize the particular sound features, for some

events, performance is higher when applying an HMM for learning. Apparently, the order of the sound
events carries some essential information.
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5. Sound Features for Wireless Sensor Nodes

Now that we have gained insight into the methods of context inference using sound, we will assess
these methods with respect to the feasibility of their application on a resource-constrained platform, such
as a wireless sensor node. In particular, we aim for algorithms that have low CPU time and high accuracy
for this particular task.

An overview of the cost and effectiveness of the different types of feature extraction algorithms for
the task of context recognition is presented in Figure 13. The features are grouped by category and are
ordered from low to high RET within each group. Multiple horizontal lines in a bar indicate that different
authors have found different accuracies using this feature. As an example, we found three authors that
use MFCCs for gender recognition. We see that gender recognition, emotion recognition and person
recognition are popular subjects of research. Gender recognition and person recognition especially yield
high accuracies, although for each category, accuracies higher than 90% are achieved.

Figure 13. Overview of feature comparisons, grouped by category.

The results can also be grouped by feature. Figure 14 shows the results of this effort. In this figure, we
see for which applications a certain combination of features is appropriate. What draws attention is that
Haar-like features and MFCCs are widely applied and yield high accuracies for a number of applications.

One conclusion that can be drawn is that there is no silver bullet for this task. The results in
Section 4 show that many types of context can be equally well identified with different sets of features.
That is of great interest if we want to apply these features on wireless sensor nodes. For this particular
platform, we want to use algorithms that have a low calculation cost in order to accommodate the
restricted resources available and the limited battery-life of these devices.
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Figure 14. Overview of feature comparisons, grouped by feature.

Although the experiments that are described in the papers that we reviewed are generally performed
on hardware platforms that have ample resources, we learned through our benchmark tests that these
results can be replicated on resource-constricted hardware, such as wireless sensor nodes; that is, taking
into consideration that the feature-extraction algorithms and learning algorithms can be executed within
acceptable time. A good example of a resource-friendly training method is given by Marin-Perianu
et al. [41]. The work of Nishimura [29] and Zhan [40], who employ Haar-like feature extraction, is
promising in particular for feature extraction, as they execute their algorithms on wearable devices.
The achieved high accuracies and low calculation costs make this a good candidate for this type
of application. Surprisingly, it is not widely in use yet. This may be due to the fact that many
research projects do not focus on wireless sensor nodes and, therefore, do not have this limitation in
processing power.

In Section 2, we considered a number of categories for gaining context awareness. When we restrict
ourselves to an indoor setting based on wireless sensor nodes, not all of these categories are equally
feasible. Person identification or recognition has constraints that reach beyond what can be done on
resource-constrained nodes, not only because of the cost of feature extraction, but also because of the
large amount of data that has to be used for training and deployment. Given the low-cost nature of the
sensors that we want to deploy, it is not possible to achieve a high accuracy of person recognition. For
the same reasons, emotion recognition falls out of scope.

What remains of interest are global recognition, gender and age recognition and indoor environment
recognition. As the calculation of the MFCC features takes too much processing power in comparison
to the other features, we will consider alternative approaches as outlined below.

5.1. Global Sound Classification

Global sound classification can be applied to our setting as the first step to gain context awareness.
Knowing that someone is speaking can trigger a module that is specifically aimed at age and gender
recognition. Detection of music gives information about the activities that the people that are present are
engaged in, and detection of environmental sounds can trigger the module that is developed for that part.
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We see that the use of Haar-like features can be suitable for this situation. One problem with Haar-like
features is the definition of the correct filters. More research is necessary in order to make a statement
about the generality of this approach. We do see that the use of time domain features, frequency domain
features and linear predictive coding leads to high accuracies. Therefore, the task of global sound
classification can be very well employed on wireless sensor nodes.

5.2. Age and Gender Recognition

Gender recognition can be achieved with high accuracies using minimal CPU power. Simple
frequency domain features are suitable, as well as employing Haar-like features. Age recognition is
less accurate using low-cost features. This may be partly due to the number of classes that the various
researchers are trying to recognize. The recognition of the <male, female, child> classes can be done
with low RET and acceptable recognition rates. The male speaking voice typically has a fundamental
frequency between 85 Hz and 155 Hz. The typical range for female speakers is between 165 Hz and
255 Hz, and a child’s voice ranges from 250 Hz–600 Hz, or even higher for very young children. Because
these frequency ranges are nearly mutually exclusive, fundamental frequency is a good indicator for these
classes. This is not 100% accurate, as there are men with high voices and women with low voices, often
due to a smoking habit.

5.3. Indoor Sound Recognition

The results of indoor sound classification indicate that these features are also highly dependent
on frequency-like features. The addition of time-domain features enhances these results. Again,
the Haar-like features achieve high results. A combination with higher-order features, such as LPCCs,
might be something to take into consideration for this type of recognition.

6. Conclusions

Using sound for the purpose of gaining context awareness is the subject of many research projects.
Even though the use of wireless sensor nodes seems logical for sound collection and processing, this
area is not widely studied. This is partly due to the currently popular algorithms for feature extraction
that are computationally intensive.

If we consider an indoor environment, we see that the classification of sounds into global
categories can be performed with very low calculation effort (see Section 4.3). For gender recognition
(Section 4.4), algorithms that use the low cost Haar-like features or frequency domain features achieve
results that are comparable or better than algorithms that uses the heavy-weight MFCCs for classification.
For specific indoor sounds (Section 4.7), the use of Haar-like features or long-term features achieves
similar results compared to the use of MFCCs. We see that for these three categories (global, gender
and indoor sound classification), the use of low-cost algorithms can be equally effective for deployment
indoors as the use of high-cost algorithms.

One factor that we did not yet take into account is the challenges of training the learning algorithms for
the recognition tasks. As we mentioned before, there are papers dedicated to these tasks. Future work
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will look into making these learning algorithms applicable for the task of context recognition based
on sound.

There are still some challenges to solve if we want to apply our knowledge on feature extraction.
A major challenge is the time it takes to extract the features from a sound signal. As an example, we
consider using the Jennic JN5148 platform that we mentioned before and use it to capture sound at
8 kHz. For this setup, the time to calculate even the least computationally-intensive features approaches
the sampling time of the signal itself. If we want to use frequency features, the processing time will be
approximately 15-times as long as the sampling time.

We see a number of possible ways to deal with this challenge:

• Accept the long processing time: In many cases, there is no need to record sound continuously.
For many events, the characteristics remain constant for a certain period of time. In these cases,
it is not problematic if not all sound is recorded. If the nodes are able to capture the ‘interesting’
frames based on some heuristic (see, for example, Le et al. [42]), the remaining time can be spent
on processing the sound waves.
• Lower the sampling rate: In the literature, a sampling rate of 8 kHz or higher is common practice,

which allows one to effectively detect frequency formants of up to 4 kHz. For some applications,
the frequency range that we are interested in is much lower than this. As an example, for gender
recognition based on the fundamental frequency, we only need frequencies up to 600 Hz.
• Delegate tasks to dedicated nodes: One strategy is to have one node record sounds and transmit

these sounds to several other nodes that are responsible for a particular part of the feature extraction
and training. Sensor fusion techniques, such as proposed by Bahrepour et al. [43], can be useful
for this approach. Another possibility is to synchronize a group of nodes. One node records
sound for a limited time. After this period, another node starts recording while the first node is
processing the sound. In this way, the lag between consecutive frames that can be processed is
lowered proportional to the number of nodes for this task.
• Switch to more powerful hardware: If none of the above solutions is satisfactory, this might be the

only option. There are a number of small and powerful devices commercially available currently,
such as the Raspberry Pi, the BeagleBone Black and the Intel Edison. The downside of using this
type of device is that they are less energy efficient. If we want to deploy these devices in a home,
they are best deployed near electrical outlets.

In this article, we have not considered the payload of learning algorithms that use the features to infer
context knowledge. It is not required that these algorithms have low payload during the training phase, as
long as they are efficient during the production phase. These aspects will have to be carefully considered
in future work.
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Appendix

A. Feature Algorithm Details

Here, we present in more detail how the different features that have been discussed in Section 3 are
calculated. In our formulas, we use s(n) to indicate the values of the original sound signal, N for for the
number of sound samples, p(f) to indicate the power spectrum value for a certain frequency and F for
the number of Fourier values.

A.1. Time Domain

• ZCR:

ZCR =
1

2(N − 1)

N−1∑
n=1

|sgn(s[n])− sgn(s[n− 1])| (A1)

sgn is the signum function.
• STE:

STE =
N−1∑
n=0

s(n)2 (A2)

• Sound amplitude:
SA = max |s(n)| (A3)

• Peak detection/peak location:
PL = argmax

n
|s(n)| (A4)

A.2. Frequency Domain

Frequency analysis depends on the Fourier transform, which is calculated using the discrete
Fourier transform:

Hf ≡
N−1∑
k=0

s(k)e−i2πf/N (A5)

The calculation of the discrete cosine transform (DCT) is done using a fast Fourier transform
algorithm. The power spectrum p(f) is calculated as follows:

p(f) =
√
Re(Hf )2 + Im(Hf )2 (A6)
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• F0:
F0 = min

f
{f | p(f) > θ ∧ p(f − 1) < p(f) < p(f + 1)}, (A7)

where θ is a threshold value. Typically, θ = 0.1
∑

f p(f).
• The spectral centroid for a frame can be defined as:

SC =

∑
f p(f) ∗ f∑
f p(f)

(A8)

• The spectral roll-off for a frame can be defined as:

RO = argmax
n

n∑
f=1

p(f) ≤ α ·
F∑
f=1

p(f), (A9)

where α is a constant with a typical value of 0.97.
• The bandwidth is defined as:

BW =

√∑
f (f − SC)2 ∗ p(f)2∑

f p(f)
2

(A10)

• The weighted phase deviation is defined as:

WPD =
∑
f

p(f) ∗ φ′′(f) (A11)

where φ(f) is the phase of the Fourier value for frequency f

A.3. MFCC

The MFCCs are calculated using the following steps:

1. Framing the signal: the signal is segmented into overlapping frames. The width of the frame is
generally about 30 ms with an overlap of about 20 ms.

2. Windowing: A window function is used to smooth the signal for the computation of the DFT so as
to minimize the signal discontinuities at the beginning and end of each frame. A typical window
is the Hamming window, which has the form:

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
(A12)

The windowing is calculated using:

s̃(n) = s(n)w(n) (A13)

3. FFT: The power spectrum p(f) of the windowed function s̃(n) is calculated as described in
Equations (A5) and (A6).

4. The mel filter banks (see Figure 3) are applied to the power spectrum. The filter banks are evenly
distributed over the frequencies with respect to the Mel scale, which is defined as:

Mel(f) = 2, 595 log10

(
1 +

f

700

)
(A14)

The number of filters is 20–40; 26 is standard. This leaves us with 26 numbers that indicate the
energy in each filter bank.
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5. Take the log of the energies from the previous step.
6. Take the DCT of the 26 log filter bank energies. This is calculated by the following,

cd =
1

M

M−1∑
m=0

Cm cos

(
π(2d+ 1)m

2M

)
, (A15)

where cd is the d-th cepstral coefficient, M is the total number of filter banks and Cm denotes the
log energy for filter bank m. Typically, c1 – c12 constitute the MFCCs.

A.4. LPCC

The LPCC are calculated using the following steps:

1. Pre-emphasis: The speech signal is spectrally flattened to make it less susceptible to finite
precision effects:

s̃(n) = s(n)− ãs(n− 1), (A16)

where the filter coefficient ã is a constant with a typical value of 0.97.
2. Framing and windowing the signal: this is analogous to Steps 1 and 2 of MFCC calculation.
3. Autocorrelation analysis: this can be performed efficiently by calculating the inverse Fourier

transform of the signal’s power spectrum.
4. LPC analysis: Each frame r(q) of Q + 1 autocorrelations (with Q the order of the LPC analysis)

is converted into an LPC parameter set using the Levinson–Durbin method:

E(0) = r(0), α(0) = 1 (A17)

for (q = 1 to Q),

(a)

kq =
r(q)−

∑q−1
j=1 α

(q−1)
j r(q − j)

E(q−1) (A18)

(b)
α(q)
q = kq (A19)

(c) for (j = 1 to Q):
α
(q)
j = α

(q−1)
j − kqα(q−1)

q−j (A20)

endfor:
E(q) = (1− k2q)E(q−1) (A21)

endfor.
Once the above recursion is completed, the LPC parameters are extracted as follows,

aq = α(Q)
q (A22)

5. LPC parameter conversion to cepstral coefficients: The cepstral coefficients are derived
as follows:

cm =

am +
∑m−1

k=1

{
k
m

}
· ck · am−k (1 ≤ m ≤ Q)∑m−1

k=m−Q
{
k
m

}
· ck · am−k (m > Q)

(A23)
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A.5. Long-Term Features

• Jitter is defined as:

Jitter =
1

M−1
∑M−1

i=1 |Ti − Ti+1|
1
M

∑M
i=i Ti

(A24)

where Ti is the estimated F0 value for frame i and M is the number of frames used for the
calculation of Jitter.
• Shimmer is defined as:

Shimmer =
1

M−1
∑M−1

i=1 |Ai − Ai+1|
1
M

∑M
i=iAi

(A25)

where Ai is the amplitude of frame i and M is the number of frames used for the calculation
of shimmer.

B. Surveyed Articles

In this overview, the following abbreviations are used for training methods:

• Gaussian mixture model (GMM)
• hidden Markov model (HMM)
• k-nearest neighbor (KNN)
• Linde-Buzo-Gray (LBG)
• Linde-Buzo-Gray-vector quantization (LBG-VQ)
• linear spectral pairs-vector quantization (LSP-VQ)
• neural networks (NN)
• support vector machine (SVM)
• vector quantization (VQ)
• weighted modified k-nearest neighbor (weighted D-KNN)

B.1. Global Sound Recognition

Article Lu et al. (2002) [23]
Features simple time, frequency, LPCC
Experiment, accuracy speech: 97.00%, music: 93.00%,

environment: 84.00%
Training method KNN/LSP-VQ

Article Nishimura and Kuroda (2008) [20]
Features Haar-like
Experiment, accuracy speech/non-speech: 96.93%
Training method LBG-VQ
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B.2. Age and Gender Recognition

Article Nishimura (2012) [29]
Features Haar-like
Experiment, accuracy gender: 97.50%
Training method LBG

Article Ting et al. (2006) [44]
Features frequency, MFCC
Experiment, accuracy gender: 96.70%
Training method GMM

Article Zourmand et al. (2013) [45]
Features frequency
Experiment, accuracy gender: 97.50%
Training method NN

Article Pronobis and Magimai-Doss (2009) [24]
Features frequency
Experiment, accuracy gender: 100.00%
Training method SVM

Article Pronobis and Magimai-Doss (2009) [24]
Features MFCC
Experiment, accuracy gender: 97.90%
Training method SVM

Article Pronobis and Magimai-Doss (2009) [24]
Features LPCC
Experiment, accuracy gender: 97.20%
Training method SVM

Article Kim et al. (2007) [26]
Features MFCC
Experiment, accuracy age: 94.60%
Training method GMM

Article Kim et al. (2007) [26]
Features MFCC
Experiment, Accuracy gender: 94.90%
Training Method GMM

Article Kim et al. (2007) [26]
Features MFCC
Experiment, accuracy age + gender average: 88.90%
Training method GMM
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Article Chen et al. (2011) [12]
Features simple time, frequency, long-term
Experiment, accuracy age + gender average: 51.40%
Training method NN

Article Chen et al. (2011) [12]
Features simple time, frequency, long-term
Experiment, accuracy male: 91.40%, female: 81.20%
Training method NN

Article van Heerden et al. (2010) [27]
Features MFCC, long-term
Experiment, accuracy age + gender average: 50.70%
Training Method SVM

Article Sadeghi Naini and Homayounpour
(2006) [25]

Features MFCC, long-term
Experiment, accuracy gender: 86.50%
Training method NN

Article Sadeghi Naini and Homayounpour
(2006) [25]

Features MFCC, long-term
Experiment, accuracy 2 age classes: 72.00%, 3 age classes:

60.70%
Training method NN

Article Li et al. (2013) [46]
Features simple time, frequency
Experiment, accuracy 4 age groups: 52.00%
Training method GMM + SVM

Article Li et al. (2013) [46]
Features simple time, frequency
Experiment, accuracy gender: 88.40%
Training method GMM + SVM

B.3. Emotion Recognition

Article Nogueiras et al. (2001) [39]
Features simple time, frequency
Experiment, accuracy 7 emotions: 80.00%
Training method HMM
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Article Nishimura (2012) [29]
Features Haar-like
Experiment, accuracy 3 emotions: 84.60%
Training method LBG

Article Nwe et al. (2003) [36]
Features Frequency
Experiment, accuracy 6 emotions: 78.10%
Training method HMM

Article Busso et al. (2009) [38]
Features frequency
Experiment, accuracy 15 emotions: 77.00%
Training method GMM

Article He et al. (2009) [35]
Features frequency
Experiment, accuracy stress detection: 81.00%
Training method GMM

Article Bou-Ghazale and Hansen (2000) [47]
Features MFCC
Experiment, accuracy stress detection, 4 levels: 83.66%
Training method

Article Neiberg et al. (2006) [34]
Features frequency, MFCC
Experiment, accuracy 3 emotions: 90.00%
Training method GMM

Article Pao et al. (2006) [37]
Features MFCC, LPCC
Experiment, accuracy 6 emotions: 79.55%
Training method weighted D-KNN

Article Tosa and Nakatsu (1996) [48]
Features LPCC
Experiment, accuracy 7 emotions: 60.00%
Training method ANN

Article Ooi et al. (2014) [49]
Features simple time, MFCC
Experiment, accuracy 6 emotions: 75.90%
Training method NN
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Article Giannoulis and Potamianos (2012) [50]
Features simple time, frequency, MFCC
Experiment, accuracy 6 emotions: 85.18%
Training method SVM based

B.4. Person Recognition

Article Alpert and Allen (2010) [13]
Features simple time
Experiment, accuracy upstairs: 82.87%, downstairs: 87.59%
Training method NN

Article Nishimura (2012) [29]
Features Haar-like
Experiment, accuracy identification, 12 speakers: 93.00%
Training method LBG

Article Kinnunen et al. (2008) [28]
Features Frequency
Experiment, accuracy verification, 170 target speakers: 82.60%
Training method

Article Kinnunen et al. (2008) [28]
Features MFCC
Experiment, accuracy verification, 170 target speakers: 92.70%
Training method

Article Hasan et al. (2004) [30]
Features MFCC
Experiment, accuracy identification, 24 speakers: 100.00%
Training method VQ

Article Tiwari (2010) [32]
Features MFCC
Experiment, accuracy verification, 5 speakers: 85.00%
Training method VQ

Article Reynolds et al. (2000) [33]
Features MFCC
Experiment, accuracy verification, 11 speakers: 90.00%
Training method GMM
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Article Murty and Yegnanarayana (2006) [51]
Features MFCC
Experiment, accuracy verification, 149 male speakers: 86.00%
Training method NN

Article Murty & Yegnanarayana (2006) [51]
Features LPCC
Experiment, accuracy verification, 149 male speakers: 78.00%
Training method NN

Article Murty & Yegnanarayana (2006) [51]
Features MFCC, LPCC
Experiment, accuracy verification, 149 male speakers: 89.50%
Training method NN

Article Kim et al. (2004) [31]
Features MFCC
Experiment, accuracy identification, 195 speakers: 95.45%
Training method GMM

B.5. Indoor and Outdoor Environment Recognition

Article Stäger et al. (2004) [17]
Features simple time, frequency
Experiment, accuracy 5 kitchen sounds: 85.00%, 5 workshop

sounds: 67.00%
Training method C4.5 decision tree/3NN

Article Nishimura (2012) [29]
Features Haar-like
Experiment, accuracy 21 sounds: 97.30%
Training method LBG

Article Zhan (2012) [40]
Features Haar-like
Experiment, accuracy 20 sounds: 96.00%
Training method HMM

Article Chen et al. (2005) [16]
Features MFCC
Experiment, accuracy 6 bathroom sounds: 83.50%
Training method HMM
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Article Sehili et al. (2012) [52]
Features MFCC
Experiment, accuracy 18 indoor sounds: 75.00%
Training method SVM

Article Guo et al. (2012) [53]
Features long-term
Experiment, accuracy 10 indoor sounds: 92.00%
Training method NN

Article Park et al. (2014) [54]
Features MFCC
Experiment, accuracy 9 events: 91.00%
Training method GMM

Article Rabaoui et al. (2009) [55]
Features simple time, frequency, MFCC
Experiment, accuracy 9 surveillance sounds: 93.00%
Training method HMM

Article Łopatka et al. (2010) [18]
Features simple time, frequency
Experiment, accuracy 5 danger sounds: 97.07%
Training method SVM

Article Peltonen et al. (2002) [19]
Features frequency
Experiment, accuracy 17 environment sounds: 63.40%
Training method 1NN

Article Peltonen et al. (2002) [19]
Features MFCC
Experiment, accuracy 17 environment sounds: 63.40%
Training method GMM

Article Krijnders et al. (2010) [56]
Features frequency
Experiment, accuracy 21 sounds: 42.00%
Training method knowledge network

Article Couvreur et al. (1998) [57]
Features LPCC
Experiment, accuracy 5 noise events: 90.00%
Training method HMM
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Article Heittola et al. (2013) [58]
Features MFCC
Experiment, accuracy 10 outdoor contexts: 91.00%
Training method GMM

References

1. Cook, D.; Crandall, A.; Singla, G.; Thomas, B. Detection of social interaction in smart spaces.
Cybernet. Syst. 2010, 41, 90–104.

2. Kientz, J.A.; Patel, S.N.; Jones, B.; Price, E.; Mynatt, E.D.; Abowd, G.D. The Georgia Tech
Aware Home. In CHI’08 Extended Abstracts on Human Factors in Computing Systems; ACM:
New York, NY, USA, 2008; pp. 3675–3680.

3. Rashidi, P.; Cook, D. Keeping the Resident in the Loop: Adapting the Smart Home to the User.
IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 2009, 39, 949–959.

4. Wu, C.L.; Liao, C.F.; Fu, L.C. Service-Oriented Smart-Home Architecture Based on OSGi and
Mobile-Agent Technology. IEEE Trans. Syst. Man Cybernet. Part C Appl. Rev. 2007, 37,
193–205.

5. Raskar, R.; Welch, G.; Cutts, M.; Lake, A.; Stesin, L.; Fuchs, H. The office of the future: A unified
approach to image-based modeling and spatially immersive displays. In Proceedings of the 25th
annual Conference on Computer Graphics And Interactive Techniques, Orlando, FL, USA, 19–24
July 1998; pp. 179–188.

6. Petzold, J.; Bagci, F.; Trumler, W.; Ungerer, T. Next location prediction within a smart office
building. Cogn. Sci. Res. Pap.-Univ. Sussex CSRP 2005, 577, 69.

7. Salomons, E.; Teeuw, W.; van Leeuwen, H.; Havinga, P. Persona-Based Adaptation in a
Smart Green Home. In Proceedings of the 2012 8th International Conference on Intelligent
Environments (IE), Guanajuato, Mexico, 26–28 June 2012; pp. 355–358.

8. Chassin, D.P.; Kiesling, L. Decentralized Coordination through Digital Technology, Dynamic
Pricing, and Customer-Driven Control: The GridWise Testbed Demonstration Project. Electr. J.
2008, 21, 51–59.

9. Jahn, M.; Jentsch, M.; Prause, C.R.; Pramudianto, F.; Al-Akkad, A.; Reiners, R. The energy aware
smart home. In Proceedings of the IEEE 5th International Conference on Future Information
Technology (FutureTech), Busan, Korea, 21–23 May 2010; pp. 1–8.

10. Schön, P.C.; Puppe, B.; Manteuffel, G. Linear prediction coding analysis and self-organizing
feature map as tools to classify stress calls of domestic pigs (Sus scrofa). J. Acoust. S. Am. 2001,
110, 1425–1431.

11. Li, D.; Yang, Y.; Wu, Z.; Huang, T. Add prior knowledge to speaker recognition. In Multisensor,
Multisource Information Fusion: Architectures, Algorithms, and Applications; SPIE Defense and
Security Symposium: Orlando, FL, USA, 2005; Volume 5813, pp. 192–200.

12. Chen, C.C.; Lu, P.T.; Hsia, M.L.; Ke, J.Y.; Chen, O. Gender-to-Age hierarchical recognition for
speech. In Proceedings of the 2011 IEEE 54th International Midwest Symposium on Circuits and
Systems (MWSCAS), Seoul, Korea, 7–10 August 2011; pp. 1–4.



Sensors 2015, 15 7495

13. Alpert, D.; Allen, M. Acoustic gait recognition on a staircase. In Proceedings of the World
Automation Congress (WAC), Kobe, Japan, 7–10 August 2010; pp. 1–6.

14. Beigi, H. Fundamentals of Speaker Recognition; Springer Science + Business Media, LLC:
New York, NY, USA, 2011.

15. Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.;
Taylor, J.G. Emotion recognition in human-computer interaction. IEEE Signal Process. Maga.
2001, 18, 32–80.

16. Chen, J.; Kam, A.; Zhang, J.; Liu, N.; Shue, L. Bathroom activity monitoring based on sound. In
Pervasive Computing; Gellersen, H.W.; Want, R.; Schmidt, A., Eds.; Springer-Berlin: Heidelberg,
Germany, 2005; Volume 3468, pp.47–61.

17. Stäger, M.; Lukowicz, P.; Troster, G. Implementation and evaluation of a low-power sound-based
user activity recognition system. In Proceedings of the Eighth International Symposium on
Wearable Computers, ISWC 2004, Arlington, VA, USA, 31 October–3 November 2004;
Volume 1, pp. 138–141.
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