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Compound sophorae decoction (CSD), a traditional Chinese medicine (TCM) formula, has been voluminously used in China to
deal with ulcerative colitis and gained significant therapeutic effect. Tremendous explorations have unraveled a contributory role
of inflammatory bowel disease (IBD) like ulcerative colitis (UC) and Crohn’s disease (CD) at the onset of colorectal cancer, scilicet,
and colitis-related cancer (CRC). In light of the anti-inflammatory properties of CSD in UC, we appraised its chemoprevention
capacity and underlying mechanism in ulcerative colitis-related colorectal cancer (UCRCC), employing a model of azoxymethane
(AOM) plus dextran sulfate sodium- (DSS-) induced colorectal cancer (CRC) in C57BL/6 mice. Rapturously, our results il-
luminated the ameliorative effect of CSD against UCRCC in mice portrayed by lesser polyps or adenomas, attenuated colonic
xenograft tumor growth in company with the preferable well-being of mice in contrast to the Model Group. We examined
significant downregulation of proinflammatory cytokines such as TNF-α, NF-κB, IL-6, STAT3, and IL-17 after exposure to CSD,
with the concomitant repression of inflammation-associated proteins, including COX-2 and iNOS. Independent of this, treatment
with CSD declined the proportion of T helper 17 cells (117) and protein level of matrix metallopeptidase 9 (MMP-9). Moreover,
transmission electron microscopy (TEM) detected observably suppressed mitophagy in mice administered with CSD and that was
paralleled by the pro-apoptotic effect as indicated by upregulating caspase-3 together with caspase-9 and deregulating B-cell
lymphoma 2 (Bcl-2). In closing, these findings suggest CSD executes the UCRCC-inhibitory activity through counteracting
inflammatory responses and rescuing detuning of apoptosis as well as neutralizing overactive mitophagy, concurring to build up
an oncosuppressive microenvironment.

1. Introduction

Ulcerative colitis (UC) is a long-lasting and relapsing in-
flammatory intestinal disturbance, whose etiology and
pathogenesis is still elusive, with a growing body of com-
pelling evidence defining its promoting role in the initiation
of colorectal cancer [1–3]. It has been well-acknowledged

that long-standing proinflammatory cytokines comprising
tumor necrosis factor (TNF-α), interleukin- (IL-) 17, and
NF-κB/IL-6/STAT3 cascade in colon harbor a close re-
lationship between UC and colon cancer and simultaneously
behave as pivotal mediators in the onset and deterioration of
UC and colorectal cancer [4–9]. Accordingly, these data
underscore a crucial role of proinflammatory responses in
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the context of UCRCC and confer the urgency to address the
related concrete mechanism.

Mitochondria are cardinal double membrane-bound
organelles and cellular stress sensors involved in multifac-
eted cellular activities containing energy production, se-
nescence, apoptosis, oxidative stress regulation, and
metabolism in addition to signaling. Hence, these cellular
properties of mitochondria denote a highly-associated link
connecting cellular dysfunction in the context of cancer or
noncancer and abnormalities in mitochondrial status along
with activity and meanwhile, authenticate the magnitude of
the timely elimination of damaged and aged mitochondria
which is called mitophagy for maintaining the cellular in-
tegrity [10–17]. To our knowledge, cancer is a disturbance in
the homeostatic balance between cell growth and cell death,
which is featured by metabolic reprogramming, un-
controlled cellular proliferation, and enhanced resistance to
apoptosis of tumor cell. Massive reports [10–12, 16, 17] have
identified that mitophagy is activated under conditions of
stimuli such as nutrient depletion, hypoxia, and activated
oncogenes, imparting considerable flexibility for tumor cell
growth and survival. In addition, mitochondria-targeted
drugs and targeting apoptosis pathways open up the op-
portunity for the development of novel therapeutic strategies
for cancer abrogation [10, 11]. 1erefore, it is anticipated
that a broad understanding of mitophagy and apoptosis in
UCRCC may shed light on investigating the tumor-pro-
moting mechanisms to the next level.

Compound sophorae decoction (CSD) is a classical
traditional Chinese medicine (TCM) preparation developed
from qingre zaoshi liangxue fang (QRZSLXF) [18] has been
widely applied in China to medicate UC patients and is
clinically efficient [19, 20]. Kushen, videlicet, Sophora fla-
vescens Ait., is the sovereign drug of CSD and is used ex-
tensively to treat fibrosis, asthma, inflammatory disorders,
ulcers, and solid tumor [19–26]. However, definitive
mechanisms that demonstrate the role of CSD in UCRCC
are still obscure. 1ereby, further studies analyzing the
contribution of CSD to the amelioration of UCRCC and
identifying its active ingredients via mass spectrometry (MS)
appear warranted.

Taken together, we hypothesize that inflammatory re-
sponses along with uncontrollable homeostasis between
mitophagy and cellular apoptosis synergistically facilitate the
formation of ambience in favor of UCRCC, and CSD
overturns the tumourigenesis effect (Figure 1(a)). 1is study
may provide novel insights into the carcinogenesis of
UCRCC and open a promising therapeutic approach to
UCRCC.

2. Materials and Methods

2.1. Animals and Mouse Model of UCRCC. Male C57BL/6J
mice (6–8 weeks old) were lodged under specific pathogen-
free (SPF) conditions with free access to autoclaved food and
water in the experimental animal center of Huazhong
University of Science and Technology (HUST, Wuhan,
China). 1ey were stochastically grouped into Model Group
(AOM/DSS), CSD Group (AOM/DSS +CSD), and Normal

Group. UCRCC model was conducted based on a typical
protocol [27, 28], that is, the administration of a single
intraperitoneal injection of AOM (12mg/kg, Sigma) in
conjunction with three rounds of 2.5% DSS (36–50 kDa; MP
Biochemicals) application (Figure 1(b)). All animal care and
experimental processes were performed in accordance with
guidelines of the Animal Research Institute Committee of
HUST and National Institutes of Health guidelines and
regulations.

2.2. Composition and Preparation of CSD. CSD is a Chinese
herbal mixture composed of Sophora flavescens Ait. (15
gram), Radix Sanguisorbae (15 gram), Indigo Naturalis (3
gram), Bletilla striata (1und.) Reichb. f. (10 gram), Panax
notoginseng (Burk.) F. H. Chen (3 gram), and Glycyrrhiza
uralensis Fisch. (10 gram). All the raw herbal medicines were
purchased from Hubei Provincial Hospital of Traditional
Chinese Medicine (Wuhan, China) and then mixed
according to the weight ratio before soaking for 1 h.
Eventually, the mixture was condensed into a concentration
of 1.076 g/ml as CSD and stored at 4°C after undergoing
initial hard boil and being simmered for 1 h and incurring
succedent filter. 150 μl CSD was administrated by gavage
daily, synchronizing the procedure of DSS induction.

2.3. Behavioral and Physiological Assessment. Body weight,
stool consistency, and hemafecia ratio in addition to intake
of food and water were recorded daily throughout the whole
span of the experiment. After figuring out weight and length
of colons, the number and diameter of tumors were
calculated.

2.4. Western Blot Analysis. Proteins of each colon were
extracted in RIPA buffer supplemented with phosphatase
and protease inhibitors. 40 μg proteins were utilized for the
investigation of inflammatory responses in the colon as
described previously [29]. Antibodies recognizing the pro-
teins were as follows: anti-IL-6 (1 : 500, Bioss, Beijing,
China), anti- TNF-α (1 :1000, Abcam, Cambridge, UK),
anti-NF-κB (1 : 2000, Cell Signaling Technology, USA), and
anti-IL-17 (1 :1000, Abcam, Cambridge, UK).

2.5. Histological Evaluation and Immunohistochemistry.
Fresh colon sections were embedded in paraffin after being
fixed in 4% paraformaldehyde and then were cut into 4 μm
slides that would be stained with haematoxylin-eosin (H&E)
hereafter. An expert pathologist carried out histopatho-
logical examinations blindly. For immunohistochemical
assessment, the paraffin-embedded colonic slides were
subjected to immunohistochemical staining and incubated
with primary antibodies for cyclooxygenase-2 (COX-2; 1 :
100, Cell Signaling Technology, USA), inducible nitric oxide
synthase (iNOS; 1 :100, Boster, Wuhan, China), matrix
metallopeptidase 9 (MMP-9; 1 :100, Ruiying Biological,
Suzhou, China), TNF-α (1 : 50, Santa, Dallas, TX, USA),
B-cell lymphoma 2 (Bcl-21 : 100, Boster, Wuhan, China),
caspase-3 (1 : 100; PTG, Wuhan, China), and caspase-9
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(1 : 100; Boster, Wuhan, China) complying with the
manufactures’ protocols.

2.6. Transmission Electron Microscopy Observation. For the
transmission electron microscopic (TEM) analysis of mi-
tochondria, pretreated colon tissues underwent a series of
procedures reported as previously [10] and the stained ul-
trathin colonic sections (60–80 nm) were detected using a
Hitachi-HT7700 electron microscope (Tokyo, Japan).

2.7. Flow Cytometry. After being stimulated with phorbol
myristate acetate (PMA; Abcam, Cambridge, UK), ion-
omycin, and GolgiPlug protein transport inhibition (BD
Biosciences, San Diego, USA) in a humidified 37°C and 5%
CO2 incubator for 7 h, single-cell suspension of splenocytes
and mesenteric lymph nodes (MLNs) were stained with
FITC-labeled antimouse CD4 and PE-labeled antimouse IL-
17A antibodies (BD Biosciences, MD, USA). Isotype

antibody was adopted as the negative control. 1encefor-
ward, the stained cells were washed and analyzed by using a
FACSCalibur flow cytometer (BD Biosciences, San Diego,
CA).

2.8. High-Resolution Metabolomics. 100 μl CSD liquid
samples underwent methanol extraction by adding 900 μl
methanol or pure water extraction by adding 900 μl pure
water, following the procedures listed as follows: vortexing
for 1min; centrifuging for 10min, 12000 r/min, 4°C; filtering
the supernatant through a 2 μm filter; and analyzing the
filtrate on the machine. Untargeted metabolic profiling of
CSD was performed employing high-resolution mass spec-
trometry (HRMS; Q-Exactive High-Resolution Mass Spec-
trometer, 1ermo Fisher Scientific). Analyte separation was
accomplished with the aid of liquid chromatography (Ulti-
Mate 3000 RS, 1ermo Fisher Scientific) fitted with chro-
matographic column (1ermo Hypersil GOLD 100× 2.1mm,
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Figure 1: A schematic diagram of the workflow of CSD in UCRCC (a) and experimental protocol for UCRCC model and validation for
investigation of the mechanisms of CSD (b).
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1.9μm)manoeuvred at 0.3mL/min with aqueous phase (0.1%
aqueous formic acid) and organic phase (0.1% formic acid
acetonitrile). 1e operating gradient came as follows: 0–2min
(aqueous phase: 95%⟶ 80%, organic phase: 5%⟶ 20%);
2–6min (aqueous phase: 80%⟶ 25%, organic phase:
20%⟶ 75%); 6–8.5min (aqueous phase: 25%⟶ 5%, or-
ganic phase: 75%⟶ 95%); 8.5–12.5min (aqueous phase: 5%,
organic phase: 95%); 12.5–13min (aqueous phase: 5%⟶
95%, organic phase: 95%⟶ 5%); and 13–16min (aqueous
phase: 95%, organic phase: 5%).

1e electrospray ionization source was performed in
positive ion mode with a spray voltage of 3.8 kV, capillary
temperature of 300°C, sheath gas (nitrogen, purity
≥99.999%) flow of 40 arbitrary units (Arb), and auxiliary gas
(nitrogen, purity ≥99.999%) temperature of 350°C. 1e
resolution was set to 70000 (full mass), 17500 (dd-MS2), and
the scan range was 70–1000m/z. Data acquisition time was
16min.

Mass spectral features represented by accurate massm/z,
retention time, and intensity were detected by high-reso-
lution FTMS and sorted using CD2.1 software (1ermo
Fisher) and then identified, aligned, and quantified
according to databases such as Mzcloud, MzVault, and
ChemSpider with the value of mzCloud Best Match ≥80%.

2.9. StatisticalAnalysis. All experimental data obtained from
this study were presented as mean± standard deviation
(SD). Statistical significance between the data from different
groups was calculated by one-way analysis of variance
(ANOVA) or Student’s t-test using SPSS software (version
19.0). A p value <0.05 was deemed as statistically significant.

3. Results

3.1. CSD Upgrades Clinical Symptoms in Mice Treated with
AOM/DSS and Allays AOM/DSS-Induced Malignancy. As
shown in Figure 2(a), significant body weight loss during the
experimental period in mice from Model Group compared
with Normal Group was alleviated by CSD administration,
particularly after the third DSS cycle. In agreement with this,
CSD treatment posed a decrement in the incidence ratio of
hematochezia accompanied by postponed occurrence of
diarrhea and blood in feces, as evaluated (Figure 2(b)). 1e
shortening of colons, signifying the aggravation of colonic
damage, was observed in mice exposed to AOM/DSS in
comparison with mice in the CSD Group (p< 0.05)
(Figures 2(c) and 2(d)). Furthermore, our data manifested
higher polyp/adenoma multiplicity escorted by higher grade
of epithelial dysplasia in the Model Group (Figures 2(e) and
2(f)).

3.2. CSD Moderates the Malignant Inflammatory Features in
AOM/DSS-Induced UCRCC. Incremental expression of
proinflammatory cytokines such as NF-κB and TNF-α and
overactivation of IL-6/STAT3 passage have been well de-
termined to exercise definitive implication in the patho-
genesis of UC and colon cancer. In line with this, mice
received AOM/DSS exhibited a rise in intestinal production

of these parameters and IL-17 concentration in comparison
with Normal Group, whereas intake of CSD significantly
reversed the reaction expectably as illustrated by western
blot and immunohistochemistry (Figures 3(a)–3(c)). Given
the traditional role of 117 cells in binding UC and UCRCC
together, we explored the disparities in the proportion of
117 cells isolated from spleens and MLNs of mice via flow
cytometry (Figure 3(d)). Not surprisingly, the analysis
revealed that 117 cells may prompt the incipience of
UCRCC and can be partially overthrown by CSD
(Figure 3(e)). Regarding intestinal iNOS and COX-2 ex-
pression profiles, they were incremental in colon tissues
from mice treated with AOM/DSS compared with the un-
treated mice, being diminished by treatment with CSD
(Figure 3(f )).

3.3. CSDModulates Ultrastructural Changes andApoptosis in
AOM/DSS-InducedMice. Apoptosis and mitophagy are two
representative procedures that act in synergy to regulate cell
survival and death in numerous types of cancer. To gain
further insight into the pattern of CSD on apoptosis and
mitophagy, we determined the changes in the levels of
apoptosis regulatory proteins and mitochondrial morphol-
ogy in the colons with the aid of immunohistochemical
staining and TEM, respectively. 1e data came out with
significant up-regulation of mitochondrial cleaved-caspase-
3, caspase-9 and down-regulation of Bcl-2 in colons after
implementing CSD therapy, evincing the apoptosis-en-
couraging efficacy of CSD (Figure 4(a)). We extended our
attempts to probe mitochondrial structure from TEM im-
ages (Figure 4(b)), as demonstrated by the phenomenon that
there was a pronounced increase in vacuolization (black
asterisk panels), massive mitochondrial fission and loss of
cristae as well as highly electron-condensation (arrowheads),
and even lysosomes engulfing damaged mitochondria (ar-
rows) in Model Group. To the contrary, the conspicuous
mitochondrial morphological alternations brought on by
AOM/DSS were perceptibly absent following CSD admin-
istration (Figure 4(b)), establishing mitophagy as an etio-
logical factor in UCRCC tumorigenesis. 1e expression
profile of MMP-9, whose well-appreciated pathologies is the
relationship to cancer owing to its role in extracellular
matrix remodeling and angiogenesis, was depicted to ex-
perience a slight diminution inflicted by CSD (Figure 3(f )).

3.4. Identification of Chemical Ingredients in CSD by Mass
Spectrographic Analysis. We attempted to identify the active
constituents in CSD using high-resolution mass spec-
trometry (HRMS) and part of a summary of the various
abundant constituents detected and identified by the
channel of methanol extraction (Figure 5(a)) and pure water
extraction (Figure 5(b)) was given, respectively. HRMS
confirmed oxymatrine as the most abundant ingredient in
the CSD liquid (Figures 5(a) and 5(b)). 1e active com-
pounds from CSD extraction through methanol extraction
were as follows: oxymatrine, isoliquiritigenin, (− )-maack-
iain, DL-stachydrine, cytisine, indirubin, 18-β-glycyr-
rhetinic acid, ginsenoside Rg3, licochalcone A,
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Figure 2: CSD overcomes AOM/DSS-inducedmalignancy of colon. (a) Body weight per mousemeasured per day during all the experiment.
∗p< 0.05, ∗∗p< 0.01, significantly different from the Normal Group. (b) Effect of CSD on the incidence ratio of hematochezia. ∗p< 0.05 vs.
Model Group. (c) Colonic length of mice from the three groups. (d) Comparison of colon length among the three groups, ∗p< 0.05,
∗∗p< 0.01 vs. Normal Group. (e) Effect of CSD on multiplicity of polyp/adenoma on colons. (f ) Colon sections stained with H&E (×200)
from each group.
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Figure 3: AOM/DSS-induced inflammatory response is impeded by CSD. (a) Western blot analysis of classical inflammatory proteins
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significantly different from theModel Group. (c) Immunohistochemical staining analysis of TNF-α expression in colons. (d) Representative
flow cytometry dot plot of the percentages of CD4+IL-17+117 cells in CD4+ cells in the spleen andMLNs of each group. (e) Trends of117
cells in mice, ∗p< 0.05, #p> 0.05 vs. Model Group. (f ) Effect of CSD on COX-2, iNOS, and MMP-9 expression in colon tissues in C57BL/6
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Figure 4: (a) CSD attunes apoptosis-related proteins expression language illustrated by immunohistochemistry. (b) Electron micrographs
of mitochondrial morphology colonic tissues in mice. Arrowheads indicate the disrupted mitochondria undergoing mitochondrial fission,
absence of cristae or electron-condensation; Arrows symbolize lysosomes engulfing damaged mitochondria. M means mitochondrion.
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xanthohumol, 7,8-dihydroxy-4-methylcoumarin, and nar-
ingenin. Meanwhile, quantitative monitoring of part of the
components was illustrated in Figures 6 and 7. Simulta-
neously, the active ingredients by pure water extraction were
as follows: oxymatrine, isoliquiritigenin, DL-stachydrine,
cytisine, (+)-maackiain, 18-β-glycyrrhetinic acid, ginseno-
side Rg3, 7,8-dihydroxy-4-methylcoumarin, and naringenin.
Quantitative monitoring of part of the components was
delineated in Figure 8.

4. Discussion

UCRCC is a malignant colonic disease and a multistep
process with high mortality for which the accurate patho-
genesis is inconclusive and well-appreciated effective ther-
apy is limited. Recent advances have subscribed to the belief
that continual inflammatory excitation structures a
favourable background for UCRCC formation, providing
proof that pivotal inflammatory mediators encompassing
IL-6, TNF-α, NF-κB, and IL-17 (also called IL-17A) coupled

with 117 cells are enriched in UC and colorectal cancer
[8, 30–34]. Given its remarkable therapeutic capacity of CSD
in UC [19, 20], the concept has fueled our hypothesis that
CSD may mitigate the progression of UCRCC to a certain
degree. Delightedly, in our study, CSD demonstrates an
inhibitory effect on the release of these inflammation-related
cytokines and secretion of 117 cells coinciding with re-
duced occurrence of polyp/tumor and preferable well-being.
1ereupon, the outcomes may help to develop a mind map
for the investigation of mechanism and therapy with respect
to UCRCC.

Apoptosis conducted in the intrinsic pathway, mainly by
the mitochondrial apoptosis-induced channel, is an essential
practice of programmed cell death characterized by cellular
morphological changes and death [35, 36]. Bcl-2 is localized
to the outer membrane of mitochondria, where it exerts a
significant role in promoting cellular survival and opposing
the actions of pro-apoptotic proteins such as mitochondria-
cleaved caspase-3 and caspase-9. Mitophagy is the selective
degradation of malfunctioning or damaged mitochondria

(b)

Figure 5: Detection of CSD by high-resolution FTMS analysis. Illustration of part of a summary of the various abundant constituents
detected and identified in CSD by channel of (a) methanol extraction and (b) pure water extraction.

Evidence-Based Complementary and Alternative Medicine 11



via autophagy to retain the mitochondrial quality, thus
making cells adapted to various types of stress. Accumu-
lating evidence has delineated a fundamental role of mi-
tochondrial energy production and apoptotic mechanism in

the tumor initiation [12, 16, 37]. 1e lipid composition of
mitochondrial membrane has been reckoned capable of
regulating mitochondrial membrane permeability and
thence, cell death [11, 12, 38]. Considering the multifaceted
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ingredients listed were indirubin (a) and ginsenoside Rg3 (b).
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Figure 8: Continued.
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roles of mitochondria and intricate functions of mitophagy
in tumorigenesis, care is exercised in the present study to
decipher the role of the network comprising apoptosis,
mitophagy, and inflammation responses in UCRCC and
then to highlight innovative curative perception about
UCRCC in support of the possibility that CSD can fine-tune
the network.

Ultimately, our result that mitophagy and inflammation
are positively joined to tumor progression in contrary to the
fashion of apoptosis and CSD capsizes the trend remarkably
may develop a new roadmap for the development of anti-
tumor drugs for UCRCC.
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