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Abstract

The Arctic is experiencing rapid changes in sea-ice seasonality and extent, with significant

consequences for primary production. With the importance of accurate monitoring of spring

phytoplankton dynamics in a changing Arctic, this study further examines the previously

established critical relationship between spring phytoplankton bloom types and timing of the

sea-ice retreat for broader temporal and spatial coverages, with a particular focus on the

Pacific Arctic for 2003–2019. To this end, time-series of satellite-retrieved phytoplankton

biomass were modeled using a parametric Gaussian function, as an effective approach to

capture the development and decay of phytoplankton blooms. Our sensitivity analysis dem-

onstrated accurate estimates of timing and presence/absence of peaks in phytoplankton

biomass even with some missing values, suggesting the parametric Gaussian function is a

powerful tool for capturing the development and decay of phytoplankton blooms. Based on

the timing and presence/absence of a peak in phytoplankton biomass and following the clas-

sification developed by the previous exploratory work, spring bloom types are classified into

three groups (under-ice blooms, probable under-ice blooms, and marginal ice zone blooms).

Our results showed that the proportion of under-ice blooms was higher in the Chukchi Sea

than in the Bering Sea. The probable under-ice blooms registered as the dominant bloom

types in a wide area of the Pacific Arctic, whereas the marginal ice zone bloom was a rela-

tively minor bloom type across the Pacific Arctic. Associated with a shift of sea-ice retreat

timing toward earlier dates, we confirmed previous findings from the Chukchi Sea of recent

shifts in phytoplankton bloom types from under-ice blooms to marginal ice zone blooms and

demonstrated that this pattern holds for the broader Pacific Arctic sector for the time period

2003–2019. Overall, the present study provided additional evidence of the changing sea-ice

retreat timing that can drive variations in phytoplankton bloom dynamics, which contributes

to addressing the detection and consistent monitoring of the biophysical responses to the

changing environments in the Pacific Arctic.
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Introduction

Phytoplankton blooms in the Arctic have typically been defined as enhanced growth of phyto-

plankton populations that occur along the seasonally retreating ice edge, with water column

stratification from sea-ice melt providing sufficient light for photosynthesis [1]. Such marginal

ice zone (MIZ) blooms are viewed as ubiquitous features throughout the Arctic [2]. In con-

trast, phytoplankton production beneath sea ice has been deemed negligible because of strong

light attenuation by snow and sea-ice cover. However, the discovery in 2011 of a phytoplank-

ton bloom beneath sea ice (under-ice bloom; UI bloom) calls for a revision of our understand-

ing of phytoplankton phenology in the Arctic and primary production beneath sea ice [3].

Further field surveys revealed under-ice blooms across the Arctic, indicating that under-ice

blooms are a ubiquitous phenomenon in the Arctic [4–6].

Arctic annual surface air temperatures in 2014–2018 were higher than in any prior years

since observational records began in 1900 [7]. The most conspicuous sign associated with this

warming is a drastic loss of summer sea-ice extent [8], as well as a replacement of thicker

multi-year ice by thinner first-year ice [9] with a significantly higher melt pond fraction [10].

Because melt-pond covered ice transmits three to ten times more light than bare ice of the

same thickness [11], the presence of more first-year ice with a higher melt pond fraction leads

to an increase in the illumination of the water column beneath the sea ice [12]. These key

changes in sea-ice type drive an increase in irradiance in the water column beneath sea ice,

resulting in favorable under-ice light fields for the development of under-ice blooms [5].

Based on satellite-retrieved time-series of chlorophyll-a (chla) concentration, which is a

proxy of phytoplankton biomass at the sea surface, Lowry et al. [13] explored spatial patterns

in spring phytoplankton bloom types in the Chukchi Sea. They classified spring bloom types

into three groups, namely, UI blooms, probable under-ice (PUI) blooms, and MIZ blooms

(Fig 1). UI blooms were defined as high chla concentrations at the same time of the sea-ice

retreat, indicating that there had occurred phytoplankton growth under the ice, whereas PUI

blooms were defined as low chla concentrations for the first several weeks of the ice-free

period because UI blooms assumed to be matured and depleted nutrients before the ice retreat.

MIZ blooms were characterized as low chla concentrations at the time of sea-ice retreat and

those chla concentrations increased with time to have blooms days to weeks after the ice

retreat. Using a simple bloom classification approach based on the timing when the satellite-

derived chla reached a bloom threshold of 2.5 mg m−3 following the retreating sea-ice edge,

Lowry et al. [13] reported that earlier and later ice retreat will favor development of MIZ and

UI blooms, respectively. In consequence, they established the critical relationship between the

spring phytoplankton bloom types and timing of sea-ice retreat in the Chukchi Sea for the

time period 1998–2012.

The Pacific Arctic, specifically the region extending from the northern Bering Sea to the

southern Chukchi Sea (Fig 2), is one of the most biologically productive regions in the world’s

ocean and is currently experiencing drastic loss of seasonal sea ice [14, 15]. For example, the

lowest winter sea-ice coverage on record (1980–2019) in the northern Bering Sea was observed

in the winter of 2017–2018 [16]. The lack of ice in spring affected the temperatures and struc-

ture of the water column and, in turn, the timing of the spring bloom that can have cascading

effects on the distribution of fish and the reproduction and survival of marine birds and mam-

mals [17]. Recent work suggests that extreme events like those observed in 2018 may well

become the norm as the Arctic and sub-Arctic warm [18]. In fact, anomalously warmer seawa-

ter temperatures were observed in the northern Bering Sea for 2017–2019 [19]. Additionally,

the northern Bering Sea is of particular importance for economically valuable species such as

salmon, crab, and groundfish [20]. Consequently, confirming the previously established
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critical relationship between the spring phytoplankton bloom types and timing of sea-ice

retreat in the Chukchi Sea for 1998–2012 in the expanded time frame and study area contrib-

utes to a better prediction of how future changes in the Arctic would impact ice-associated

phytoplankton blooms.

With the importance of accurate monitoring spring phytoplankton dynamics in a changing

Arctic, this study examines the previously established critical relationship between the spring

phytoplankton bloom types and timing of the sea-ice retreat for broader temporal and spatial

coverages, with a particular focus on the Pacific Arctic for 2003–2019. To this end, time-series

of satellite-retrieved phytoplankton biomass during the period of seasonal ice edge retreat

were fit to an expected growth curve to identify the phase of the bloom using a parametric

Gaussian function, as an effective approach to capture the development and decay of phyto-

plankton blooms [21–23]. The parametric Gaussian function has several advantages to retrieve

information about phytoplankton bloom features, such as timing, amplitude, duration, and

number of blooms within a given year [21–23]. Additionally, the parametric Gaussian function

allows us to conduct sensitivity analyses examining the number of satellite-retrieved chla
required to distinguish accurately between spring phytoplankton bloom types [22]. Moreover,

we can assess the statistical significance of the fitted parametric Gaussian function as a measure

of errors and uncertainties. In the Arctic, a presence of extensive cloudiness obstructs satellite

monitoring of the phytoplankton community [23]. Therefore, compared with the previous

exploratory work drawing on a simple bloom type classification based on a chla threshold

[13], our approach offers the advantage of tracking the certainty/uncertainty of the fitted func-

tion as an uncertainty measure in capturing the development and decay of phytoplankton

blooms.

The current study is a contribution to a special issue on the Distributed Biological Observa-

tory (DBO), specifically to highlight the potential for satellite remote sensing in supporting

point and transect-based measurements in a complex environment. The DBO is a change

detection array for select ecosystem variables along eight sampling transects in the Pacific Arc-

tic [24]. The overarching goal of the observatory is to provide for the detection and consistent

monitoring of the biophysical responses to major reductions in seasonal sea ice and

Fig 1. Conceptual diagram for three phytoplankton bloom types. Solid line, dashed line, and dotted line represent

under-ice (UI) bloom, probable under-ice (PUI) bloom, and marginal ice zone (MIZ) bloom following the date of sea

ice retreat (DSR), respectively. This conceptual diagram was modified from Lowry et al. [13].

https://doi.org/10.1371/journal.pone.0261418.g001
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concomitant increases in seawater temperatures observed across the region. The standardized

shipboard measurements made along the DBO transects focus on both lower and higher tro-

phic levels. Classical methods relying on ship-based observations have been very successful to

date in understanding local and snapshot of ocean [25] although these have difficulty to cover

longer time-series and/or broader areas that requires a lot of costs, such as time, research

funds, and efforts. This is where satellite techniques, such as those drawn on in the present

study, offer extensive, sustained, and cost-effective observations. As a single cell of phytoplank-

ton only lives for a few days and thus population and composition of phytoplankton commu-

nity fluctuate strongly in a matter of days to weeks [26], satellite-based approaches provide a

valuable asset for monitoring spatiotemporal dynamics of phytoplankton communities with

appropriate spatial and time scales [27].

Data and methods

Satellite data

Level-3 daily standard mapped images of remote-sensing reflectance (Rrs(λ)) at 9-km resolu-

tion at four wavelengths (λ = 412, 443, 488, and 555 nm), obtained by the Moderate Resolution

Fig 2. Bathymetry map of the Pacific Arctic. Abbreviations: SLI, St. Lawrence Island; BS, Bering Strait; NS, Norton Sound; KS, Kotzebue Sound.

https://doi.org/10.1371/journal.pone.0261418.g002
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Imaging Spectroradiometer (MODIS) sensor onboard the Aqua satellite, were downloaded

from NASA’s Ocean Color website (https://oceandata.sci.gsfc.nasa.gov), for the period of

2003–2019. In addition, the Advanced Microwave Scanning Radiometer (AMSR) Unified

daily sea-ice concentrations gridded at a 12.5-km resolution for the period of 2003–2019 were

downloaded from the National Snow and Ice Data Center website (https://nsidc.org/). AMSR

Unified sea-ice concentrations were created by reprocessing the Advanced Microwave Scan-

ning Radiometer-Earth Observing System (AMSR-E) sensor onboard the Aqua satellite during

2003–2011 and Advanced Microwave Scanning Radiometer 2 (AMSR-2) sensor onboard the

Global Change Observation Mission 1st-Water (GCOM-W1) during 2013–2019. To align the

spatial resolution of satellite data used in this study, daily sea-ice concentrations were resam-

pled onto the 9-km grid using nearest-neighbor interpolation [2]. Note that in 2012 there was

a gap in temporal coverage during the transition from the AMSR-E to the AMSR-2 sensors.

While this period of missing data could be filled in with data from other sensors, we exclude

the year of 2012 from our analysis to minimize biases and uncertainties due to sensor-specific

characteristics such as spatial resolution and algorithm.

Chlorophyll-a retrieval

Chlorophyll-a (chla) concentration was computed from Rrs(λ) using the Arctic-OC3L algo-

rithm developed and validated in the Chukchi Sea [28]. The Arctic-OC3L is a linear equation

of the form below:

chla ¼ 10 aþbRð Þ ð1Þ

where the coefficients a and b are empirically derived values of 0.3364 and −3.4388, respec-

tively, and R is the base-10 logarithm of the maximum band ratio of Rrs(λ) among the three

potential blue wavelengths (i.e., 412, 443, and 488 nm) and the green wavelength (i.e., 555

nm).

Bloom-type classification

Time-series of daily chla over a 20-day of MIZ retreat period following the date of sea-ice

retreat (DSR) were fit to an expected growth curve to identify the phase of the bloom, i.e., UI,

PUI, or MIZ bloom. It is noteworthy that the 20-day of MIZ retreat period was widely used in

previous studies [2, 29, 30]. Here, DSR was defined as the first date in any year when sea-ice

concentration fell below 50% [31], which is the best approximated ice edge visible in MODIS/

Aqua quasi-true color images [3]. Additionally, sea-ice breakup was defined to occur some

time during the period March 15–September 15 [14]. All pixels with a sea-ice concentration

below 50% on March 15 were excluded from the subsequent analysis. To ensure that temporal

variation in chla was captured at a given location, phytoplankton blooms in spring were classi-

fied only as such if the pixel contained a minimum of one chla value per week and at least one

chla concentrations within two days after onset of ice retreat [13]. The chla time-series during

the MIZ period was modeled as a Gaussian function using MATLAB lsqnonlin (R2020b, Opti-

mization Toolbox) on a pixel-per-pixel basis as follows:

chla tð Þ ¼ chla0 þ chlame
t� tmð Þ2

2s2

� �

ð2Þ

where t represents the date, chla0 is the background chla, chlam is the amplitude of the chla
peak observed on the date tm, and σ corresponds to the number of days chla(t) exceeded half

of chlam (Fig 3). Initial values, and lower and upper bounds of each variable in Eq (2) are

shown in Table 1. These values were compared to in situ measured values of UI blooms in the
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Arctic [5, 6]. Note that MATLAB lsqnonlin with lower and upper bounds requires at least as

many input data as the number of variables in these bounds such that the minimum number

of chla concentrations during the MIZ retreat period is five data points.

Then, the chla time-series was assigned into any of three bloom types (Fig 1) based on fol-

lowing processes. The statistical significance of the fitted parametric Gaussian function was

tested to the significance level of 5%. When the model was statistically significant (p< 0.05),

the chla time-series was classified into either an UI bloom or MIZ bloom. The distinction

between UI and MIZ blooms is based on the model parameter tm: a chla time series was classi-

fied as an UI blooms if tm was observed before DSR (tm< DSR); in contrast if tm was equal to

or after DSR (tm� DSR) the bloom was classified as a MIZ bloom. In the case that the models

were statistically insignificant (p� 0.05), chla time-series is expressed as a constant at chla0 as

follows:

chla tð Þ ¼ chla0 ð3Þ

Modeled chla time-series as a single term of chla0 were classified as PUI blooms. This is

based on the assumption that the pixels had already experienced a bloom before DSR, and

thus the chla retrievals during the MIZ retreat period were remnants of the UI bloom [13].

The classification was based on the assumption that pre-bloom surface nutrient concentra-

tions are high throughout the Pacific Arctic, such that a phytoplankton bloom would be

expected in waters with sufficient light availability. This assumption is reasonable because the

vertical turbulent mixing of nutrient-rich Anadyr Water and Bering Shelf Water provide

Fig 3. Description of the parametric Gaussian model. Abbreviations: chla0, background chla; chlam, amplitude of

chla peak; tm, date of chla peak; σ, days for which chla exceeded half of chla peak.

https://doi.org/10.1371/journal.pone.0261418.g003

Table 1. Settings for the parametric Gaussian function.

Model parameter Initial value Lower bound Upper bound

Background chla (chla0) 0.5 × chlaMIZ 0.0 1.0 × chlaMIZ

Amplitude of chla peak (chlam) 2.0 × chlaMIZ 2.5 30.0

Date of chla peak (tm) 0.0 −30.0 30.0

Days exceeded the half of chla peak (σ) 20.0 5.0 40.0

https://doi.org/10.1371/journal.pone.0261418.t001
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sufficient nutrients throughout the water column for phytoplankton growth in spring [32] and

such nutrients would be depleted in cases phytoplankton blooms occur prior to ice retreat

[33], suppressing the development of MIZ blooms and thus identified as PUI blooms [13].

Sensitivity analysis

In the Arctic Ocean, the extensive cloud cover limits ocean-color data availability, and in turn

may hamper parametric modeling of time-series variations in satellite-derived chla. To ensure

the robustness of our approach, we conducted a sensitivity analysis using the minimum

required number (i.e., five) of chla concentrations during the MIZ retreat period. First, a sam-

ple chla time-series during the MIZ retreat period was generated by averaging daily chla time-

series during the MIZ retreat period for all pixels classified as UI blooms over the entire study

period from 2003 through 2019. Then, five chla concentrations were randomly selected from

the sample chla time-series as input data, and were modeled using the Eq (2). We repeated this

treatment for 1000 trials, and then compared the resulting bloom type. Other sample chla
time-series during the MIZ retreat period for PUI and MIZ blooms were also generated to

examine the consistency of the resulting bloom type.

Initial value, and lower and upper bounds of model parameters apply to Eqs (2) and (3).

These values were determined on a pixel-by-pixel basis. ChlaMIZ denotes averaged chla during

the MIZ retreat period for 2003–2019 on a pixel-by-pixel basis (see Fig 5B).

Results

Climatology of satellite-derived variables

Fig 4A shows the climatological average of DSR for 2003–2019. A clear latitudinal gradient is

apparent with sea-ice retreat initiated in the south and advancing to the north between March

and July. Although the DSR varied greatly throughout the Pacific Arctic during the study

period, these south-north and east-west gradients in DSR were observed consistently across all

years from 2003–2019. Furthermore, we found a statistically significant interannual trend in

DSR (p< 0.05) for 43% of the grid cells in the study area (Fig 4B). The majority of these

Fig 4. Spatial patterns in sea-ice climatology. (A) Average date of sea-ice retreat (DSR) and (B) interannual trend (Mann-Kendall test, p< 0.05) in

DSR for 2003–2019. White represents areas with insignificant (Mann-Kendall test, p� 0.05) temporal trend during the period.

https://doi.org/10.1371/journal.pone.0261418.g004
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locations (99.7%) exhibited a significant negative trend, suggesting that the timing of sea-ice

retreat shifts toward earlier dates over the time period 2003–2019.

The satellite-derived chla time-series throughout the year was averaged for 2003–2019 (Fig

5). High chla values were found on the western side of Bering Strait which is highly influenced

by nutrient-rich Anadyr Water; the eastern side of Bering Strait and south of St. Lawrence

Island, where nutrient-poor Alaskan Coastal Waters dominate, exhibited lower chla concen-

trations (Fig 5A). These spatial patterns were also found in average chla fields during the MIZ

retreat period (Fig 5B). However, higher chla concentrations were observed during the MIZ

retreat period across larger stretches of the Pacific Arctic than those found in the annually

averaged chla fields. Note that localized extreme concentrations of chla associated with river

deltas, estuaries and coastal lagoons, particularly in Norton Sound and Kotzebue Sound, are

not necessarily indicative of biological production but may be artifacts due to high input of

terrestrial organic matter and sediments.

Chla time-series for each bloom type

Chla time-series during the MIZ retreat period were classified into one of the three specific

types of blooms defined above by fitting the parametric model (Eqs 2 and 3). From this data,

climatological chla concentrations during the MIZ retreat period were derived for each bloom

type by collating all pixels associated with one particular bloom for each progressive day after

the DSR for 2003–2019. The collated chla time series vary substantially between the three

bloom types. UI blooms exhibited the highest chla values within the few days after the DSR,

subsequently decreasing over time (Fig 6A) probably because the UI blooms had already

matured before the DSR. Chla time series associated with PUI blooms maintained low values

throughout the MIZ retreat period without significant fluctuations (Fig 6B). MIZ blooms

exhibited chla concentrations that increased from low to high values over the course of 4–5

days, maintaining high levels for a week or more (Fig 6C).

Robustness of chla time series parametric model

The results of our sensitivity analysis are shown in Fig 7. Fitting the Gaussian function to five

randomly-selected chla concentrations out of 21 chla concentrations (black circles in Fig 7)

Fig 5. Spatial variations in average chlorophyll-a (chla) concentrations for 2003–2019. (A) Entire open-water period (sea-ice concentration below 50%)

and (B) marginal ice zone (MIZ) retreat period.

https://doi.org/10.1371/journal.pone.0261418.g005
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over the MIZ retreat period resulted in correct identification of UI (Fig 7A), PUI (Fig 7B), and

MIZ blooms (Fig 7C) with accuracies of higher than 95% for each bloom type, indicating that

our parametric modeling approach distinguished the timing of bloom correctly. However,

other model parameters (i.e., bloom amplitudes and durations, and background chla) for UI

and MIZ blooms varied substantially, suggesting this parametric modeling approach induces

substantial uncertainties in estimating these bloom characteristics. In contrast, temporal varia-

tions in chla for PUI blooms were accurately fitted by the parametric approach, because this

bloom type can be expressed by a single model parameter (i.e., background chla).

Spatial patterns in spring bloom types

Proportions of each bloom type in individual years are summarized in Table 2. The most

favorable bloom type in the study area was the PUI bloom (58.7 ± 7.0%), followed by UI

(24.5 ± 10.5%) and MIZ blooms (16.9 ± 8.5%). It is important to note that there was no signifi-

cant relationship between the proportions of pixels satisfying the parametric model criteria

and the bloom types at those pixels (UI bloom, p = 0.14; PUI bloom, p = 0.05; MIZ bloom,

p = 0.75). Fig 8A shows the spatial distribution of the dominant bloom type for the time period

2003–2019. When we generated maps representing the total number of years with a specific

Fig 6. Frequency plots of collated chla time-series during the MIZ retreat period. (A) UI blooms, (B) PUI blooms, and (C) MIZ blooms.

https://doi.org/10.1371/journal.pone.0261418.g006
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bloom type (Fig 8B–8C), the resulting maps show that each bloom type occurred across the

entire Pacific Arctic sector. Particularly, the number of years with UI blooms was dispropor-

tionately higher in the Chukchi Sea than in other areas (Fig 8B). Indeed, the UI bloom was the

dominant bloom type in a substantial portion of the Chukchi Sea (Fig 8A). PUI blooms regis-

tered as the dominant bloom types in a wide area of the Pacific Arctic (Fig 8A), whereas the

MIZ bloom was the relatively minor bloom type across the Pacific Arctic.

Spring bloom types and timing of sea-ice retreat

As we found specific spatial patterns both in the bloom types and DSR, the potential influence

of DSR on the bloom type were examined. We found clear linkages between bloom type and

DSR (Fig 9): later and earlier DSR support UI and MIZ blooms, respectively, whereas occur-

rences of PUI blooms did not appear to correlate with DSR. This finding suggests that the

trend towards earlier DSR can drive interannual shifts in the bloom type. In fact, we found sig-

nificant (p< 0.05) decreasing and increasing trends in the proportions of UI blooms and MIZ

blooms for 2003–2019 (Fig 10). In addition, DSR exhibited significant (p< 0.05) positive and

Fig 7. Results of the sensitivity analysis for the bloom type classification. (A) UI, and (B) PUI, and MIZ blooms. Modeled chla time-series from 30

days prior to DSR until 30 days after DSR using five randomly-selected chla concentrations during the MIZ retreat period are shown as gray lines. Black

circles represent sample chla time-series during the MIZ retreat period. The accuracy indicates the rate of correct identification for each bloom type.

https://doi.org/10.1371/journal.pone.0261418.g007
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negative correlations with the proportions of UI and MIZ blooms, respectively. These findings

demonstrate the influence of interannual variations in DSR on bloom typology in the Pacific

Arctic. Note that the mean proportion of pixels satisfying the parametric model criteria for

2003–2019 was 7.7 ± 4.1% of ocean surface in the Pacific Arctic (Table 2), suggesting the

relative proportions of bloom types and their interannual trends might have substantial

uncertainties.

Discussion

Impacts of DSR on spring phytoplankton bloom dynamics

The present study examined the spatiotemporal variations in spring phytoplankton bloom

types and their relationship with the progression of sea-ice retreat in the Pacific Arctic for the

time period 2003–2019. We confirmed that the critical relationship between the spring bloom

types and timing of the sea-ice retreat previously established by Lowry et al. [13] for the Chuk-

chi Sea for 1998–2012 extend across the entire Pacific Arctic, i.e., including in particular the

Bering Sea, for the time period 2003–2019 (Fig 9). Our results, derived through use of a

parametric model (as opposed to a fixed chla threshold) with broader temporal and spatial

coverage strengthen and expand their findings of recent shifts in phytoplankton bloom types

in the Chukchi Sea [13]. Overall, this study provided additional evidence about impacts of a

shift in sea-ice retreat timing on spring phytoplankton blooms.

Over the western Chukchi shelf, which experiences a longer duration of ice cover (Fig 5A),

high shortwave fluxes during the melt season and the presence of melt ponds which increases

the illumination of the water column beneath the sea ice [12, 34] likely fostered a favorable

under-ice light regime. Indeed, UI blooms were frequently observed across this area (Fig 8B).

Conversely, MIZ blooms were the predominant bloom type in some portions of the other

Table 2. Summary statistics for proportions of each bloom type in the Pacific Arctic.

Year DSR Observable area UI bloom PUI bloom MIZ bloom

(day of year) (% ocean surface) (% area) (% area) (% area)

2003 146.6 ± 33.5 12.6 49.4 42.9 7.7

2004 152.0 ± 38.6 4.5 35.4 58.7 5.9

2005 153.1 ± 36.6 12.3 37.5 54.0 8.5

2006 165.0 ± 40.3 8.4 23.8 67.4 8.8

2007 146.6 ± 31.8 5.5 25.8 64.2 10.1

2008 160.3 ± 31.7 2.8 21.3 63.5 15.2

2009 156.3 ± 26.6 7.7 23.1 48.9 28.0

2010 157.6 ± 33.7 2.5 11.4 62.0 26.6

2011 144.6 ± 35.3 7.4 16.6 69.9 13.5

2013 159.2 ± 30.7 1.3 12.0 60.3 27.7

2014 151.4 ± 37.7 5.1 32.4 57.4 10.3

2015 144.3 ± 33.7 13.8 28.4 51.4 20.2

2016 149.4 ± 38.8 14.6 23.3 55.6 21.1

2017 136.1 ± 35.8 9.6 21.0 59.8 19.2

2018 130.5 ± 44.9 8.2 8.5 58.3 33.2

2019 125.2 ± 40.7 6.4 21.4 64.4 14.1

2003–2019 148.6 ± 35.6 7.7 ± 4.1 24.5 ± 10.5 58.7 ± 7.0 16.9 ± 8.5

Date of sea-ice retreat (DSR), observable area, and proportions of under-ice (UI) bloom, probable under-ice (PUI) bloom, and marginal ice zone (MIZ) bloom;

average ± standard deviation.

https://doi.org/10.1371/journal.pone.0261418.t002
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areas (Fig 8D). A reasonable explanation for the predominance of MIZ blooms is the trend

towards earlier sea-ice retreat [13], because earlier sea-ice retreat not only promotes light pene-

tration into the water column but also convective overturning driven by refreezing of surface

waters in sea-ice leads [35]. As convective mixing is active during springtime and then gradu-

ally subsides towards summer [36], the earlier sea-ice retreat could promote convective mixing

to deeper depths that reduces the light phytoplankton receive [35]. Likewise, if the sea-ice

retreats before the last of the winter storms, strong wind mixing delays the start of the spring

blooms until insolation warms the upper water column sufficiently to prevent mixing by strati-

fication [37, 38]. These two processes would result in the delayed development of the spring

phytoplankton blooms (i.e., MIZ blooms). Overall, this study demonstrated the critical rela-

tionship between the spring boom types and timing of the sea-ice retreat as reported by Lowry

et al. [13].

Regarding the influence of timing of sea-ice retreat on spring phytoplankton dynamics,

several studies have partially examined this relationship using satellite-based approaches. For

example, Brown and Arrigo [30] reported that ice-edge blooms during late sea-ice retreat

years were less productive while open water blooms were observed in early sea-ice retreat

Fig 8. Spatial distribution of spring phytoplankton bloom types. (A) Dominant bloom type, and number of years from 2003 through 2019 with

observations of (B) UI, (C) PUI, and (D) MIZ blooms. White represents areas where none of the years 2003–2019 satisfied our criteria.

https://doi.org/10.1371/journal.pone.0261418.g008
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Fig 9. Proportion of each bloom type and number of observable pixels within ten-day DSR range steps. Blue, yellow and red bars represent proportions

of UI, PUI, and MIZ blooms, respectively. White dots indicate number of observable pixels.

https://doi.org/10.1371/journal.pone.0261418.g009

Fig 10. Interannual variations in proportions of each bloom type for 2003–2019. Solid and dashed lines represent statistically significant (p< 0.05) and

insignificant trends, respectively.

https://doi.org/10.1371/journal.pone.0261418.g010

PLOS ONE Spring phytoplankton dynamics in the Pacific Arctic

PLOS ONE | https://doi.org/10.1371/journal.pone.0261418 December 16, 2021 13 / 21

https://doi.org/10.1371/journal.pone.0261418.g009
https://doi.org/10.1371/journal.pone.0261418.g010
https://doi.org/10.1371/journal.pone.0261418


years. They also reported that open water blooms were approximately 26% more productive

than ice-edge blooms. Additionally, Fujiwara et al. [39] reported that phytoplankton commu-

nities during the MIZ period were associated with the dominance of larger and smaller phyto-

plankton in earlier and later sea-ice retreat years, respectively. While the dominance of spring

phytoplankton blooms in the Arctic had been attributed previously to increased light availabil-

ity and water column stratification following sea-ice retreat, the discovery in 2011 of a massive

phytoplankton bloom underneath first-year sea ice in the Chukchi Sea shows current under-

standing of Arctic marine ecosystems may need to be revised in parts [3]. In this context, pre-

vious findings of the impacts of the timing of sea-ice retreat on phytoplankton dynamics

during the MIZ period may have to take the presence of UI blooms into account; i.e., the ice-

edge blooms likely to be remnants of UI blooms that consume surface nutrient concentrations

prior to sea-ice retreat and thereby large-celled phytoplankton cannot thrive in nutrient-

limited waters in the MIZ period.

Long term trend in spring phytoplankton bloom types

Long-term analysis of the sea-ice concentration revealed that a substantial portion of the

Pacific Arctic has been experiencing a shift in the timing of sea-ice retreat toward earlier dates

(Fig 5B), as has been reported in a previous study [8]. Considering that the timing of sea-ice

retreat was shown here to potentially alter the type of the spring phytoplankton blooms in the

study area (Fig 9), interannual variations in the timing of sea-ice retreat would have influenced

spring phytoplankton bloom typology [13]. In fact, associated with a clear linkage between the

timing of sea-ice retreat and spring phytoplankton bloom types (Fig 9), we found significant

decreasing and increasing trends (p< 0.05) in the proportions of UI and MIZ blooms accom-

panied by the changing timing of sea-ice retreat for the period 2003–2019 (Fig 10; Table 2). As

the recent trend in the timing of sea-ice retreat is expected to continue in the future, the pro-

portions of UI and MIZ blooms are likely to exhibit continued decreasing and increasing

trends in the Pacific Arctic. It is noteworthy that the proportion of MIZ blooms in the Pacific

Arctic has increased from 2003 through 2019, still approximately 50% of the study region

would support UI and PUI blooms. These facts indicate that primary production underneath

sea ice still plays a vital role in marine ecosystems in the recent Pacific Arctic. Therefore, the

contribution of primary production underneath the ice must be included in estimates of total

primary production [4, 40].

Lowry et al. [13] have reported a statistically increasing trend in the proportion of MIZ

blooms from 1998 to 2012 in the Chukchi Sea, whereas there was no significant trend in UI

blooms during this time period in the area. These results are partly consistent with the present

study, which demonstrated significant increasing and decreasing trends in the proportion

of MIZ and UI blooms, respectively, in the Pacific Arctic for 2003–2019. In 2017, thermal

regimes in the Pacific Arctic showed signs of a sudden and dramatic shift relative to historical

means and even to other recent unusually warm years [41]. In fact, average DSR over the

Pacific Arctic showed exceptionally small values in the extreme years of 2017–2019 (Table 2).

During these extreme years, particularly in 2018, we found smaller and larger proportions of

UI and MIZ blooms, respectively, presumably associated with the critical relationship between

the spring boom types and timing of the sea-ice retreat [13]. When comparing the study peri-

ods between the present (2003–2019) and previous studies (1998–2012), our study covering

the extreme thermal phase in 2017–2019 is likely to yield significant results in trend analysis

because a relatively short time series is prone to endpoint bias. Since extreme events may well

become the norm as the Arctic warms [18], our trend analysis would have reflected reasonable

shifts in spring phytoplankton bloom typology in the changing Pacific Arctic. It is important
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to recall that the mean proportion of pixels satisfying the parametric model criteria for 2003–

2019 was 7.7 ± 4.1% of the ocean surface in the Pacific Arctic (Table 2). The relative propor-

tions of bloom types and their interannual trends might have uncertainties because spatial

biases in the observable areas for each year disturbed an accurate comparison.

Phytoplankton blooms in the Arctic have typically been tied to the retreating ice edge as

enhanced growth of phytoplankton populations occurs along the seasonally retreating ice edge

[1]. However, this paradigm may not be appropriate for a rapidly changing Pacific Arctic and

neither for other Arctic regions experiencing such change. Horvat et al. [42] demonstrated

that the recent transition from thick multiyear ice to thin ponded first-year ice permits more

light penetration beneath the ice in the Arctic Ocean. In addition, Ardyna et al. [5] highlighted

increasing light availability beneath sea ice associated with diminished regions of compact

pack ice, defined as the area with ice concentration greater than 80%; this more favorable light

regime allows for net phytoplankton growth and biomass increases on a pan-Arctic scale.

These studies clearly suggest that phytoplankton phenology in the pan-Arctic is now

experiencing a shift from MIZ blooms to UI blooms. Interestingly, phytoplankton blooms

appear to exhibit opposing trends in the Pacific Arctic (Fig 10), including the Chukchi Sea

[13], and pan-Arctic region [5, 42]. One potential explanation is that the timing of ice retreat

in the Pacific Arctic has shifted to dates that are too early in the year to support phytoplankton

growth even under highly ponded thin ice. Accompanying a sustained shift of sea-ice retreat

timing toward earlier dates across the pan-Arctic, the current shift from MIZ blooms to UI

blooms at high Arctic latitudes could eventually result in an opposite shift from UI blooms to

MIZ blooms, as observed in the Pacific Arctic for 2003–2019.

Relevance with the exploratory work

The foundation of this study has been built by Lowry et al. [13], who explored variations in

spring phytoplankton bloom types in the Chukchi Sea for 1998–2012. One methodological dif-

ference from Lowry et al. [13] is our use of a parametric Gaussian function for capturing time-

series variations in satellite-derived chla at a given pixel [21–23]. The parametric Gaussian

function has often been used for monitoring phytoplankton community dynamics as an effec-

tive approach to capture the development and decay of phytoplankton blooms. For example,

Ardyna et al. [21] reported the shifts from a single spring bloom to double phytoplankton

blooms (both spring and fall) in the pan-Arctic accompanied by an increasing trend in the

number of stormy days over the open-water area. In addition, Marchese et al. [23] investigated

interannual changes in spring-bloom characteristics in the North Water polynya in northern

Baffin Bay. Furthermore, Waga and Hirawake [22] explored interannual variations in occur-

rences of evident fall blooms in the Pacific Arctic. Our sensitivity analysis demonstrated accu-

rate estimates of timing and presence/absence of chla peak even with some missing values,

whereas other bloom features such as amplitude and duration likely contain large uncertainties

(Fig 7A and 7C). Overall, the parametric Gaussian function is a powerful tool for examining

the timing and presence/absence of phytoplankton blooms based on satellite-retrieved chla
time series in the Pacific Arctic and other Arctic seas.

Based on the presence/absence and the timing of chla peaks captured by the parametric

Gaussian function, the chla time-series was classified into any of three spring bloom types

originally proposed by Lowry et al. [13]. In the Pacific Arctic, convective wintertime mixing

due to brine rejection [43] as well as northward advection of nutrient-rich waters from the

Bering Sea [44] sustain very high nutrient concentrations in early spring [32]. Such nutrients

would have been depleted if phytoplankton blooms had occurred prior to ice retreat [33], sup-

pressing the development of MIZ blooms and thus leading to a classification as PUI blooms.
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In fact, UI blooms showed the highest chla concentrations just after onset of sea-ice retreat

which subsequently decreased monotonically with time (Fig 6A). This pattern is likely the

result of surface nutrient depletion by mature phytoplankton blooms beneath the ice prior to

ice retreat. In addition, vertical nutrient supply would have been suppressed by increased

water column stratification associated with melting snow and sea ice, resulting in insufficient

nutrients for phytoplankton growth during the MIZ retreat period. On the other hand, chla
time-series for MIZ blooms exhibited an evident peak as a result of rapid increase in phyto-

plankton population after the onset of ice retreat (Fig 6C). Areas without an evident chla peak

during the ice retreat period were considered to have experienced nutrient consumption and

depletion prior to ice retreat by mature UI blooms (Fig 6B). According to Perrette et al. [2],

~90% of spring phytoplankton blooms occur within 20 days after onset of ice retreat in the

Arctic. In addition, spring chla peaks were observed within 20 days after the sea-ice retreat in a

substantial portion of the Pacific Arctic [39]. Thus, this study extended the MIZ retreat period

to a total of 20 days subsequent to the DSR, in contrast with a MIZ retreat period defined by

the 14 days subsequent to the DSR as defined by Lowry et al. [13]. This extended time period

should have captured PUI blooms in a realistic fashion; however, PUI blooms might include

areas that experienced open-water blooms without UI or MIZ blooms.

Moreover, the present study expanded both the study region and included more recent

data compared to Lowry et al. [13], who addressed interannual variations in spring bloom

types using a satellite-based approach in the Chukchi Sea for 1998–2012. The Pacific Arctic,

including not only the Chukchi but also the Bering Sea, has been facing the drastic changes in

sea-ice fields, particularly in the recent several years [45–47]. Furthermore, the Bering Sea sup-

ports one of the largest and most profitable commercial fisheries, such as salmon, crab, and

groundfish [20]. With the expanded time frame and study area, we find that the relationship

between spring boom types and timing of sea-ice retreat previously established by Lowry et al.

[13] holds over a larger region. Such further evidence of the how changing sea-ice retreat tim-

ing can drive variations in phytoplankton bloom dynamics can help contribute to better pre-

diction of marine ecosystem shifts in the Arctic in the future.

Potential uncertainties of a satellite-based approach

Both our study and Lowry et al. [13] do not take into accout the potential impacts of lateral

advection because time series of satellite-retrieved chla concentrations at each pixel were

assumed to reflect variations of phytoplankton biomass within the same water body. Average

flow speed over the Bering and Chukchi shelves is ~5 cm s−1 [48, 49], corresponding to an

advection distance of ~86 km over the MIZ retreat period. Considering that the spatial correla-

tion lengths in the phytoplankton community are at least more than 100 km in the global

ocean [50], the water advected into a pixel during the MIZ retreat period is likely of a similar

chla concentration as the water that is being replaced. Thus, the potential impacts of lateral

advection would likely not invalidate the classification of spring phytoplankton blooms based

on our approach [13].

Sea-ice related error impacts on satellite-retrieved chla concentrations are other potential

weaknesses of satellite-based approach as discussed in Lowry et al. [13]. The sea-ice impacts

are grouped into two components [51]: the adjacency effect that occurs along the boundary

between sea ice and open water, and the sub-pixel contamination caused by the presence of

sea ice within an ocean pixel. Regarding the satellite-retrieved chla concentrations, the adja-

cency effect can lead to an over- and under-estimation at low concentrations (<0.05 mg m−3)

and at high concentrations (>0.5 mg m−3) within a distance of ~10–20 km from the ice edge,

respectively, whereas the sub-pixel contamination results in overestimation at moderate to
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high concentrations (>0.05 mg m−3). Therefore, the adjacency effect could lead to an underes-

timation of UI blooms, whereas the sub-pixel contamination could lead to an overestimation

of UI blooms. By comparing the resulting proportions of three bloom types using a more con-

servative ice retreat threshold, Lowry et al. [13] demonstrated that the proportion of UI blooms

increased from 11.6% to 14.3% when the ice threshold was lowered to 10% from 50%. Like-

wise, we also found slight increases in the proportions of UI blooms from 24.5 ± 10.5% to

28.6 ± 10.6% by lowering the ice threshold to 10% from 50%. As a lower ice threshold would

have resulted in fewer mixed-ice ocean pixels and a greater distance between observable pixels

and the adjacent ice edge, these results clearly suggest that the UI blooms are not subject to

overestimation due to the sub-pixel contamination resulting from the 50% ice threshold [13].

Although the influence of the adjacency effect has not been completely ruled out by these anal-

yses, we found a clear variation in proportions of spring bloom types in response to the timing

of sea retreat (Fig 9) that suggests that sea-ice impacts on satellite chla retrievals are less signifi-

cant in determining spring bloom types.

The magnitude of the zooplankton grazing on phytoplankton growth is primarily con-

trolled by grazer biomass which was very low in spring, when zooplankton was low [52, 53].

Indeed, Campbell et al. [53] estimated that more than half of the daily water-column primary

production is not grazed by zooplankton communities at bloom locations in the Pacific Arctic.

Driven by shifts from UI blooms to MIZ blooms, the Pacific Arctic food web is likely to

undergo a transition from pelagic-benthic to pelagic-oriented systems [54]. Yet, the grazers

are unable to control prodigious phytoplankton population growth that was observed during

spring blooms [55], suggesting that zooplankton grazing is unlikely to significantly impact the

results of our analysis.

Our sensitivity analysis demonstrated a robust performance of the parametric approach in

identifying spring phytoplankton bloom types in the Pacific Arctic (Fig 7). However, this

study did not calibrate or validate the parametric approach with actual field data. In addition

to the aforementioned methodological uncertainties, satellite retrievals of chla concentration

may be subject to errors due to the optical complexity of the Arctic waters [56]. Moreover,

extensive cloud cover often obstructs continuous satellite monitoring of the phytoplankton

community in the Arctic [23], hampering the parametric approach which requires time series

of chla concentrations. Therefore, calibrating/validating the performance of our approach

with in situ time-series data, such as at a mooring location, would further help assess the

broader validity of these satellite-based findings. It is important to reinforce that this study

provided an important insight into satellite-based monitoring of phytoplankton communities

in the Pacific Arctic, which can contribute to developing and managing plans and strategies

for in situ observation and/or related field activities in the future.

Conclusions

Although monitoring phytoplankton communities using satellite always contain uncertainties,

the present study demonstrated robust performance of a parametric, Gaussian fitting function

for the satellite time series of phytoplankton biomass in identifying spring phytoplankton

bloom types (Fig 7). Through the satellite-based parametric approach, this study established

that the previously derived critical relationship between the spring phytoplankton bloom types

and timing of the sea-ice retreat [13] holds for the broader Pacific Arctic region. Additionally,

associated with a shift of sea-ice retreat timing toward earlier dates, this study identified shifts

towards less frequent under-ice and more frequent marginal ice zone blooms in the Pacific

Arctic (Fig 10). As the overarching goal of the DBO is to detect and monitor the biophysical

responses to major environmental variations in the Pacific Arctic, the present study
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contributes to the DBO framework by providing additional evidence of the changing sea-ice

retreat timing that can drive variations in phytoplankton bloom dynamics. Since the timing of

biomass settling out of phytoplankton blooms is a key factor in many marine organism life-

cycles [57, 58], monitoring variations in phytoplankton blooms is one of the crucial factors

required for an improved holistic understanding of marine ecosystem variability and transi-

tions. In this context, the satellite-based parametric approach provides guidance on the

phytoplankton bloom timing that contributes to determining the optimal timing of field mea-

surements in DBO transects. The resulting experimental design of ship-based observations

can maximize the complementary information obtained from field measurements along the

DBO transects and satellite data. Extensive, sustained, and cost-effective observations by satel-

lite contribute to addressing the detection and consistent monitoring of the biophysical

responses to the changing environments in the Pacific Arctic.
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23. Marchese C, Albouy C, Tremblay J-É, Dumont D, d’Ortenzio F, Vissault S, et al. Changes in phytoplank-

ton bloom phenology over the North Water (NOW) polynya: A response to changing environmental con-

ditions. Polar Biol. 2017; 40: 1721–1737. https://doi.org/10.1007/s00300-017-2095-2

24. Grebmeier JM, Moore SE, Cooper LW, Frey KE. The Distributed Biological Observatory: A change

detection array in the Pacific Arctic—An introduction. Deep-Sea Res II. 2019; 162: 1–7. https://doi.org/

10.1016/j.dsr2.2019.05.005

25. Joint I, Groom SB. Estimation of phytoplankton production from space: Current status and future poten-

tial of satellite remote sensing. J Exp Mar Biol Ecol. 2000; 250: 233–255. https://doi.org/10.1016/s0022-

0981(00)00199-4 PMID: 10969171

26. d’Ovidio F, Monte SD, Alvain S, Dandonneau Y, Lévy M. Fluid dynamical niches of phytoplankton
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