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Abstract

Although any genotype–phenotype relationships are a result of evolution, little is known about how natural selection
and neutral drift, two distinct driving forces of evolution, operate to shape the relationships. By analyzing �500 yeast
quantitative traits, we reveal a basic “supervisor–worker” gene architecture underlying a trait. Supervisors are often
identified by “perturbational” approaches (such as gene deletion), whereas workers, which usually show small and
statistically insignificant deletion effects, are tracked primarily by “observational” approaches that examine the corre-
lation between gene activity and trait value across a number of conditions. Accordingly, supervisors provide most of the
genetic understandings of the trait whereas workers provide rich mechanistic understandings. Further analyses suggest
that most observed supervisor–worker interactions may evolve largely neutrally, resulting in pervasive between-worker
epistasis that suppresses the tractability of workers. In contrast, a fraction of supervisors are recruited/maintained by
natural selection to build worker co-expression, boosting the tractability of workers. Thus, by revealing a supervisor–
worker gene architecture underlying complex traits, the opposite roles of natural selection versus neutral drift in shaping
the gene architecture, and the complementary strengths of the perturbational and observational research strategies in
characterizing the gene architecture, this study may lay a new conceptual foundation for understanding the molecular
basis of complex traits.
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Introduction
Characterization of genotype–phenotype relationships relies
on two basic strategies (Parnas et al. 2015): The first one,
which we here term “perturbational” strategy (P-strategy
for short), relates a gene to a trait by considering the effect
of a direct perturbation of the gene on the trait (e.g., knock-
out, knockdown, overexpression, or base-specific mutagene-
sis); with this strategy the causal relationships from genes to
traits are clearly defined. The second one, which we here term
“observational” strategy or O-strategy, relates a gene to a trait
by considering the statistical correlation between the gene
activity and the trait value across a number of different ge-
netic or environmental backgrounds; because gene activity
could affect trait and vice versa, the causality of the gene–trait
associations defined by this strategy is not readily available.
Despite the widespread usage of the two research strategies
(Griffiths 1993; Chen et al. 2008; Emilsson et al. 2008; Visscher
et al. 2012; Civelek and Lusis 2014; Mok et al. 2015; Ritchie
et al. 2015), it is unclear under what circumstances they can
be most successful and when they are doomed to fail.

Recent technical advances enabled the profiling of various
types of gene activity (e.g., mRNA level, protein abundance,
protein phosphorylation, protein location, protein–protein

interactions [PPIs], and protein–DNA/RNA interactions;
Ritchie et al. 2015), greatly facilitating O-strategy for inferring
gene–trait relationships. As for P-strategy, it has been dem-
onstrated that genome-wide association study, a forward ge-
netic analysis, is powerful in associating DNA mutations/
variants with a trait (Visscher et al. 2012). Meanwhile,
genome-wide reverse genetic screenings based on homolo-
gous recombination (Giaever et al. 2002), RNAi (Kamath et al.
2003), or CRISPR-Cas9 (Shalem et al. 2014) have been applied
to several model organisms to reveal the whole set of genes
whose loss-of-function mutations alter specific traits. It is thus
increasingly clear that data acquisition is no longer a major
hurdle to understanding genotype–phenotype relationships.
However, three key challenges to the field remain. First, the
performance of O-strategy is often compromised by intergene
epistasis, which appears to be pervasive (Costanzo et al. 2010).
Second, because all genes within a cell are connected and
work in conjunction to influence traits, mutating a random
gene could, in principle, cause cellular-wide changes that af-
fect every trait to some extent (Fisher 1999; Paaby and
Rockman 2013). For example, mutating the gene encoding
beta-actin would likely alter all cellular processes as well as all
traits. Because no functional insights could be gained from
claims of a gene affecting all traits or a trait affected by all
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genes, it is unclear what P-strategy could and could not pro-
vide. Third, and perhaps more importantly, there is no work-
ing framework to integrate genes revealed by O-strategy with
genes revealed by P-strategy (Mackay et al. 2009; Ritchie et al.
2015).

These challenges partly reflect the limitation of the current
framework of genetics that considers the relationships be-
tween variations in genes and variations in traits only
(Schwartz 2000). Because genetic variants affect a trait
through modulating the biochemical construction of the
trait, understanding the making of a trait (Orgogozo et al.
2015), rather than just the variation of a trait, would help
address the above challenges. A previous study analyzed the
microscopic images of triple-stained cells of the yeast
Saccharomyces cerevisiae and quantitatively characterized
501 morphological traits for each of 4,718 yeast mutants,
each lacking a different nonessential genes (Ohya et al.
2005). Despite correlated traits, the 501 traits represent a
comprehensive characterization of the yeast cell morphology,
including cell size, cell roundness, nucleus position, bud neck
position angle, bud growth direction, and so on. Additionally,
whole transcriptomes have been measured for�1,300 out of
the 4,718 yeast mutants (Kemmeren et al. 2014). The avail-
ability of both expression and trait information upon gene
deletions at such a large scale provides a unique opportunity
to study the gene–expression–trait relationships.

This study can be read as two parts. In Part I, we show that
P-strategy and O-strategy tend to identify, respectively, two
nonoverlapping gene sets (supervisors and workers) that are
organized hierarchically in the gene regulatory network to
control a trait. In Part II, we show the distinct roles natural
selection and neutral drift could have played in shaping the
supervisor–worker gene architecture, profoundly influencing
the genotype–phenotype relationships as well as their
tractability.

Results

O-Strategy and P-Strategy Reveal Two
Nonoverlapping Gene Sets That Affect a Trait
For O-strategy we examined the correlation between all 6,123
yeast genes and the 501 morphological traits, using mRNA
level as the representative gene activity (fig. 1A). Under a
stringent statistical threshold we identified genes whose
mRNA level is significantly correlated to a trait across the
large number of yeast mutants with available expression pro-
files (see Materials and Methods). These genes were termed
O-strategy identified genes or OIGs. The number of OIGs
found for each trait ranged from 0 to �1,000, with the
mean of 138 and the median of 12, and the proportion of
trait variance explained by an OIG was 3.4 6 2.1%
(mean 6 SD) (supplementary table S1, Supplementary
Material online). A total of 2,541 nonredundant yeast genes
were identified as OIGs of at least one trait.

Gene deletion is a widely used P-strategy. Following the
statistical threshold of a previous study (Ho and Zhang 2014),
we defined the genes with significantly strong deletion effect
on a trait as P-strategy identified genes (or PIGs) of the trait.

Notably, only the 4,718 nonessential yeast genes and 216
morphological traits were examined (fig. 1A). This is because
the deletion mutants of other yeast genes have not been
available/characterized and because the intramutant error
of a trait is not available for the rest morphological traits
such that the statistical test of P-strategy cannot be done.
The 4,718� 216 gene–trait pairs tested by the P-strategy is a
full subset of the 6,123� 501 gene–trait pairs tested by the
above O-strategy; this data heterogeneity has been carefully
controlled in the following analyses to avoid bias. The number
of PIGs found for each of the 216 traits ranged from 0 to
�1,000, with the mean of 301 and the median of 212
(supplementary table S2, Supplementary Material online). A
total of 4,554 nonredundant yeast genes were defined as PIGs
of at least one trait.

Surprisingly, the OIG number of a trait was a poor predic-
tor of its PIG number (Spearman’s q¼ 0.21, n¼ 216,
P¼ 0.002; fig. 1B). For example, many traits had several hun-
dred OIGs but no PIGs whereas many others had several
hundred PIGs but no OIGs. The pattern held when exemplar
traits that are less related with each other were considered
(Spearman’s q¼ 0.30, n¼ 23, P¼ 0.16; , supplementary fig.
S1, Supplementary Material online; see Materials and
Methods). To further demonstrate this counterintuitive find-
ing, we analyzed the overlaps between OIGs and PIGs for each
of the 108 traits with� 10 OIGs and� 10 PIGs. The number
of PIG–OIG overlaps was even slightly smaller than the
expected number, which was derived by reshuffling the
OIGs and PIGs, respectively, among the 108 traits (fig. 1C;
see Materials and Methods). Because the overlapping rate
expected by chance is very low (at the level of 1%), the lack
of substantial overrepresentation of the overlaps means that
the vast majority of OIGs were not recognized by P-strategy
and the vast majority of PIGs were not recognized by O-strat-
egy. A close examination of the sparse PIG–OIG overlaps in
their deletion effect as PIG or their explained trait variance as
OIG found a �1.5-fold overrepresentation of the overlaps as
top PIGs and OIGs (fig. 1D). Strikingly, this overrepresentation
was entirely due to three genes, YIL040W, YGR092W, and
YNL148C, which are known for regulating nuclear envelope
morphology, primary septum formation and cytokinesis, and
the folding of alpha-tubulin, respectively. The three genes
were among the strongest PIGs and OIGs in dozens of the
traits. If the three “super-informative” genes were removed,
the remaining overlaps showed regular deletion effect as
other PIGs and explained similar trait variance as other
OIGs (fig. 1D). This suggested that the depletion of PIG–
OIG overlaps be insensitive to the statistical thresholds
used for defining PIGs and OIGs. Gene Ontology (GO) anal-
ysis of the 200 most pleiotropic PIGs (�5% of all nonredun-
dant PIGs) found that up to 63.5% of them had the GO term
of “Biological Regulator” (q< 1.2� 10�16), whereas no such
apparent GO enrichment was found for OIGs. Taken to-
gether, the OIGs and PIGs found for the same traits appear
to be two distinct gene sets with little overlaps.

PIGs by definition can causally affect their traits; however,
the causality of OIG–trait relationships is not readily clear.
The trait difference of an OIG deletion mutant from wild-type
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FIG. 1. The P-strategy and O-strategy reveal two nonoverlapping gene sets. (A) A schematic explanation of the data structure and the P-strategy
and O-strategy. (B) The PIG number of a trait does not predict the OIG number (Spearman’s q¼ 0.2, n¼ 216, P¼ 0.002). (C) The observed
PIG–OIG overlaps are even slightly less than expected. A total of 108 traits each with� 10 OIGs and� 10 PIGs are examined. We reshuffle OIGs
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is often small, unable to pass the given statistical threshold of
P-strategy. This may represent a type II error of the statistical
test if the mutant is truly different from the wild-type.
Alternatively, the observed trait difference may represent
measuring errors if the mutant and wild-type are actually
identical in the focal trait. Under the former circumstance,
we would expect a stronger signal by considering many OIG
mutants collectively. Under the latter circumstance, however,
there would be no such accumulated signals expected. We
thus lumped the many OIGs of a trait together to test the
causality. We explain the analysis using trait C12_2_A1B,
which measures the circumference of the bud cell, as an
example:

For this trait there are 909 OIGs, 56 of which were also
defined as PIG of the trait and thus excluded from the anal-
ysis. In figure 1E, we plotted the raw trait values of the remain-
ing 853 OIG mutants as well as 123 wild-type clones. Because
deletion of a gene could either increase or decrease the trait,
we considered the absolute trait difference from wild-type.
Specifically, the absolute difference of a mutant or wild-type
trait value (with log-transformation) from the median of the
123 wild-types was computed. The resulting absolute effect of
the 853 OIG mutants was then compared with that of the
122 nonzero wild-types. Exclusion of the median of the 123
wild-types made the comparison fair. If deletions of the OIGs
have absolutely no effects on the trait, no difference between
the OIG mutants and the 122 wild-types would be expected.
However, we found that the absolute effects were significantly
larger for the 853 OIG mutants than the 122 wild-types
(P¼ 0.0006, T test; fig. 1E). This result suggested that the
OIGs can causally influence the trait, although their deletion
effects, when tested separately, were all statistically
insignificant.

We conducted a similar analysis for the other 107 traits
each with at least 10 OIGs and PIGs. The difference of the
absolute effects between OIG mutants and wild-types tended
to be significant for traits with more OIGs (e.g., P< 0.05 for
63/69¼ 91.3% of the traits with� 100 OIGs but only 8/
38¼ 21% of the traits with< 100 OIGs), whereas the differ-
ence level was comparable between the two trait groups
(fig. 1F). Importantly, OIG mutants had a larger mean abso-
lute effect than wild-types for all but three traits (�97%)
(P< 10�16, Binomial test; fig. 1F). This dominant pattern
can hardly be explained by the null hypothesis that OIGs
mutants are same as wild-types in the focal traits. Thus, the
statistically insignificant deletion effects observed for individ-
ual OIGs likely represent weak but true signals supported by

insufficient samplings, rather than fake signals (see fig. 8 for
further discussion of this issue).

PIGs and OIGs Form a Supervisor–Worker
Hierarchical Architecture
How are the PIGs and OIGs found in a trait organized to affect
the trait? According to the data structure, here an OIG was
characterized because of its strong expression changes in
mutants of deleting the PIGs, wherein the focal trait changed
the most (fig. 2A). In other words, OIGs were generally under
the control of PIGs of the same traits in the gene regulatory
network. This is consistent with the above finding of PIGs as
“Biological Regulator.” On average a PIG regulated 53 OIGs
while the expected number was 20.4 6 3.3 (P< 0.001;
Permutation test); an OIG did not regulate more PIGs than
expected by chance (15.3 vs. 17.8 6 3.5; see Materials and
Methods). Also, on average an OIG was regulated by 20.4
PIGs while the expected number is 9.2 6 0.7 (P< 0.001;
Permutation test); a PIG was not regulated by more OIGs
than expected by chance (1.4 vs. 1.8 6 0.3; see Materials and
Methods). The relative position of the two causal gene sets in
the gene regulatory network suggested a PIG–OIG hierarchi-
cal architecture, in which the effects of PIGs are mediated
through the OIGs.

The proposed architecture, if valid, should be useful for
explaining why the identified PIGs were sensitive to P-strategy
but resistance to O-strategy, and why the OIGs showed the
opposite pattern. Analysis of the expression responses to the
gene deletions showed that a PIG generally had a far larger
number of downstream targets than an OIG (fig. 2B). A trait is
presumably a function of the many OIGs, and the gene de-
letion effects are positively correlated to the number of OIGs
with changed expression levels (supplementary fig. S2,
Supplementary Material online). We thus expected more
changed OIGs in a PIG deletion than an OIG deletion. This
prediction was well-supported by the data (supplementary
fig. S3, Supplementary Material online), explaining why PIGs
tended to show larger deletion effects (hence sensitive to P-
strategy) than OIGs. This is analogous to a manufacturing line
run by workers who are managed by supervisors, wherein a
major slowdown in productivity is often caused by removing
a supervisor as opposed to removing a worker, despite that
the workers are directly involved in the manufacturing.
Meanwhile, we also examined the expression responses of
PIGs and OIGs in all deletion mutants with available expres-
sion profiles. PIGs were found to have fewer upstream regu-
lators, less responsive to the gene deletions than OIGs
(fig. 2B); as a consequence, they were unable to account for

FIG. 1. Continued
among the 108 traits and PIGs among the traits separately, while maintaining the OIG and PIG numbers of each trait. The average of 1,000
reshufflings is used to derive the expectation. Each dot represents a trait, with 27 highlighted in yellow. (D) The percentile of a PIG–OIG overlap
among the PIGs (yellow lines) or OIGs (grey lines) of the focal trait in terms of the deletion effect or the explained trait variance. A total of 2,229
PIG–OIG overlaps found in the 108 traits are lumped to obtain the frequency distribution across the 10 percentile bins. (E) Comparison of the 123
wild-type clones and 853 OIG mutants for the trait C12_2_A1B. The difference between the two groups is significant when the absolute effects are
considered (P¼ 0.0006; T test). (F) The summary of the analyses conducted as in Panel E for the 108 traits. The x-axis shows the ranking of a trait
according to the OIG number, and the y-axis shows the difference of the mean absolute effect between OIG mutants and wild-types. Each dot
represents a trait.
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a large proportion of the trait variance across the mutants.
This explained why PIGs were insensitive to O-strategy de-
spite their large mutational effects.

Collectively, these analyses suggest a roughly two-layer
gene architecture underlying the formation of a trait
(fig. 2C). It comprises many “worker” genes that are
more directly responsible for the trait, and “supervisor”
genes that control the expression/activity of the workers.
In the current study, supervisors were identified primarily
by deletion analysis, a P-strategy, as PIGs. For convenience,
hereafter, PIGs will be referred to as observed supervisors.
Workers were identified by O-strategy as OIGs. For conve-
nience, hereafter, OIGs will be referred to as observed
workers. The key difference of the supervisor–worker
gene architecture from previously proposed models,
such as QTL–QTT (Mackay et al. 2009), input–output
genes (Davidson et al. 2002), and bow–tie structure

(Friedlander et al. 2015), is that it explicitly specifies the
research strategies by which the supervisors and workers
are each identifiable and, even more importantly,
unidentifiable.

Rich Mechanistic Understandings Provided by
Workers
Identification of the genetic mutations/variants that alter
a given trait is now rather straightforward, but under-
standing the mechanistic steps that bridge mutations/
variants and trait is challenging (Civelek and Lusis 2014).
The proposed architecture suggests that P-strategy and
O-strategy would reveal complementary understandings
of a trait. Specifically, supervisors would provide most of
the genetic understandings of the trait because of their
larger mutational effects; meanwhile, workers would pro-
vide rich mechanistic understandings that concern the

FIG. 2. Characteristics of PIGs and OIGs suggest a supervisor–worker gene architecture. (A) A schematic diagram shows how OIGs are charac-
terized because of their strong expression changes in mutants lacking a PIG, explaining why OIGs are overall regulated by PIGs of the same trait. (B)
Distinct properties of PIGs and OIGs in the gene regulatory network. The numbers of downstream targets and upstream regulator per OIG (or PIG)
are shown. Each dot represents a trait, and the average of all OIGs (or PIGs) of a trait is presented. The same 108 traits as in figure 1 are examined.
Gene A is called the downstream target of gene B and B the upstream regulator of A if gene A shows a significant expression change (P< 0.0001) in
the mutant lacking gene B. (C) The proposed supervisor–worker gene architecture.
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bridging functional modules/pathways, as suggested by
their more direct connection with trait as well as the better
performance in explaining trait variance.

The capacity of supervisors in providing genetic under-
standings has been demonstrated. To assess how workers
could provide mechanistic understandings, we dissected the
14 exemplar traits each with over 300 observed workers. We
relied on PPIs to assemble the observed workers into PPI
modules, which facilitates the characterization of the workers’
functions (see Materials and Methods). There were 1–9 mod-
ules found for each of the traits, resulting in 66 worker mod-
ules in total. Annotation of the modules was in general quite
straightforward because of the strong enrichment of func-
tionally similar proteins within each module (supplementary
table S3, Supplementary Material online). For example, a
worker module found for trait DCV14_2_C, which measures
the area of nucleus region in daughter cell, comprised 22
proteins. Thirteen out of the 22 were involved in ATP syn-
thesis related electron transportation, which is >100-fold
higher than expected by chance. Notably, such a strong func-
tional enrichment was just typical to the 66 worker modules
(supplementary fig. S4, Supplementary Material online).
Regrettably, the potential functional insights revealed for
the yeast morphological traits cannot be compared with
known understandings, because these traits have seldom
been studied before.

We thus conducted the same functional dissection for cell
growth rate, a well-studied complex trait of the yeast. We
identified �900 observed workers for cell growth rate and
obtained six worker modules with clear functional annota-
tions (supplementary table S4, Supplementary Material on-
line; see Materials and Methods). The six modules (M1–M6)
were all involved in critical biogenesis processes (fig. 3A). To
check how the six modules could be used to understand cell
growth reduction, we examined 87 slow-growth mutants
each with a growth rate <80% of the wild-type and also
with available expression profile. We computed the expres-
sion distance (ED) between mutant and wild-type for each of
the six modules (see Materials and Methods). Although the
functions of the deleted genes of the 87 mutants are highly
diverged (supplementary table S5, Supplementary Material
online), convergent understandings were obtained from the
worker modules. With a few exceptions all mutants coalesced
into five clusters each corresponding to a different expression
pattern of the modules (fig. 3B). The diverse pattern cannot
be explained by the expression responses to growth reduc-
tion, because such expression responses should lead to qual-
itatively the same pattern in the different mutants. Thus,
there appeared to be five basic means of regulation for the
yeast cell growth from the perspective of workers. The inde-
pendence among the six major biogenesis modules explained
a previous observation that the growth rate variation of dif-
ferent yeast strains found in nature was primarily related to
amino acid biosynthesis genes (here M2) but not ribosomal
genes (here M5), the latter were regarded as the general lead-
ing player of cell growth regulation according to studies on
laboratory strains (Tamari et al. 2014). In addition, the cell
growth rate was well explained by the ED of individual

modules, with Pearson’s R ranging from about -0.4 to -0.6
(fig. 3C; see Materials and Methods). To test the effect of a
single module independent from the other five modules we
conducted partial correlation analysis. The Pearson’s R be-
tween cell growth rate and the ED of M5 changed from -
0.4 to 0.3 after controlling for the other five modules. This
seems intriguing. M5 represents ribosomal biogenesis, a pro-
cess consuming up to 80% of the total cell energy (Schmidt
1999), and the ED of M5 for the mutants is primarily due to
expression down-regulation. Thus, it is likely that the down-
regulation of M5 could actually promote cell growth by sav-
ing energy as long as the alteration of the other modules has
reduced the growth rate below a certain level. This notion
may revise the conventional belief that down-regulation of
ribosomal genes always suppresses cell growth (Airoldi et al.
2009).

The results aimed to demonstrate the potential strengths
of workers in providing mechanistic understandings. It should
be pointed out that using such expression analysis (or O-
strategy) to define genes to study biological phenomena/
traits has been common; however, the expression analysis
in previous studies was often auxiliary, suggesting candidate
genes that await further tests by P-strategy (Aitman et al.
1999; Sandberg et al. 2000; Gagneur et al. 2013).
Unfortunately, the finding that workers are generally insensi-
tive to P-strategy compromises the rationales for this working
practice, although occasional successes have been achieved in
the field particularly when “super-informative” genes are in-
volved. Instead of being auxiliary, O-strategy reveals essential
understandings of a trait that are hardly accessible by P-strat-
egy. Thus, the supervisor–worker gene architecture appears
to form a new framework to integrate the two basic research
strategies in molecular biology. Interestingly, a long-standing
puzzle of the field, that genes up-regulated in a new environ-
ment often show negligible deletion effects in the environ-
ment (Giaever et al. 2002; Gibney et al. 2013), is readily
understood with this framework.

Natural Selection by Building Worker Co-Expression
Promotes Worker Tractability
The above analyses constitute the Part I of this study, offering
a general demonstration of the supervisor–worker gene ar-
chitecture. We next aim to know how natural selection and
neutral drift would each be involved in shaping the gene
architecture (Part II).

We start by asking why the same O-strategy revealed up to
�1,000 observed workers for some traits but zero for many
others. On the one hand, it is a bit unusual to observe for a
single trait as many as �1,000 workers each accounting for
�3.4% of the trait variance. Rules of statistics predict that, for
an output determined by 1,000 input factors, the average
output variance explained by an input factor will be 0.1% if
the input factors are all independent from each other. If the
1,000 input factors form, say, 10 modules that are of equal size
and have perfect intramodule coordination, the average out-
put variance explained by a single factor will be same as that
explained by a module, both being 10%. Thus, it is likely that
the large number of observed workers are not independent;
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instead, they co-express. In support of this, we found strong
co-expression among the observed workers of each trait
(fig. 4A).

On the other hand, many traits had virtually no observed
workers, although they had as many observed supervisors as
the other traits (fig. 1B). If the worker number of the traits is
indeed small, each worker should explain a large proportion
of the trait variance and be readily observed. We examined 54
traits that each had 1–3 observed workers and found that the
trait variance explained by the observed workers was invari-
ably small, comparable to or even slightly lower than the
average number 3.4% of all traits (fig. 4B). Thus, these traits
should have many workers; our O-strategy failed to observe
them because they did not co-express such that the trait
variance explained by each individual worker is too small to
be detected. The idea of no worker co-expression, however,
cannot be directly tested for these traits because the workers

were not observed. We reasoned that the workers of a trait
should in general explain more trait variance than non-
workers. We thus, to make a fair comparison between traits,
selected for every trait the top 100 genes with the strongest
expression–trait correlations. We called these genes the
“most probable” workers and calculated their pairwise co-
expression levels (see Materials and Methods). In line with
our prediction, the observed worker number of a trait was
well explained by the co-expression level of the most probable
workers found for the trait (Spearman’s q¼ 0.76, n¼ 501,
P< 10�16; fig. 4C). The result was essentially the same
when the top 50 or top 200 most probable workers were
analyzed (supplementary fig. S5, Supplementary Material
online).

Because gene co-expression is unlikely to evolve/remain
without selective constraints, such worker co-expression
can only be strong for traits that are subject to strong

FIG. 3. Unique mechanistic insights provided by observed workers. (A) Details of the six worker modules underlying the yeast cell growth. (B) Five
major types of cell growth reduction, marked by different colors in the dendrogram, are revealed by examining the activity of the worker modules.
Each row represents a slow-growth mutant, and the expression distance (ED) of a module is normalized by subtracting the average ED of the six
modules in the mutant. (C) The Pearson’s R between cell growth rate and the ED of each individual module, in comparison to that of the partial
correlation that controls for the other five modules.
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selection. If worker co-expression underlies worker tractabil-
ity, the likelihood that workers are identifiable by O-strategy,
we would expect more observed workers for traits more re-
lated to fitness. We used cell growth rate as a proxy for fitness,
which is reasonable for the single-celled yeast (Giaever et al.
2002), and calculated the relatedness to fitness for each of the
traits (supplementary table S6, Supplementary Material on-
line; see Materials and Methods). Traits that are strongly cou-
pled with fitness have a large absolute value of the calculated
relatedness. Remarkably, the number of observed workers of a

trait was largely explained by the trait’s relatedness to fitness
(Spearman’s q¼ 0.89, n¼ 501, P< 10�16). There were typi-
cally several hundred observed workers for a trait tightly cou-
pled to fitness but virtually zero for traits with no significant
correlation to fitness (fig. 4D). This pattern remained when
only exemplar traits were considered (supplementary fig. S6,
Supplementary Material online). The result was not due to
the different within-mutant variation (measuring noise) or
across-mutant variation of the traits (supplementary figs. S7
and S8, Supplementary Material online). In addition, the

FIG. 4. Natural selection builds worker co-expression to boost worker tractability. (A) The observed workers of a trait tend to co-express. The
average absolute Pearson’s R of all worker pairs is shown for each of the 257 traits with at least 10 observed workers. The expectation is estimated by
reshuffling the observed workers of all 257 traits while maintaining the worker number of each trait. Box-plots marking 50% of the data points near
the median within the box and 90% of the data points near the median between the two horizontal lines are presented, with an inset showing the
frequency distribution of the co-expression level of all worker pairs of the median trait C-124C. (B) The trait variance explained by each observed
worker is small even for traits with only one, two, or three observed workers. (C) The number of observed workers is strongly correlated with the co-
expression level of the 100 most probable workers (Spearman’s q¼ 0.76, n¼ 501, P< 10�16). (D) Fitness coupling underlies worker tractability.
The relatedness to fitness of a trait is the Pearson’s R between trait value and cell growth rate. A larger absolute R means stronger fitness coupling,
with -0.096< R< 0.096 corresponding to a statistically insignificant range after controlling for multiple testing. Each dot represents a trait, and a
total of 501 traits are included.
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nearly three orders of magnitude differences in the worker
number cannot be explained by the potential false positives
in the identification of workers, because the false positive rate
is unlikely to be �100%. Again, one may argue that the ob-
servation might be simply due to the common expression
responses to growth reduction, which affect fitness-coupled
traits but not fitness-uncoupled traits. This is, however, not
true because fitness-coupled traits have quite different ob-
served workers (supplementary fig. S9A, Supplementary
Material online). To avoid the potential effects of unknown
common confounding factors, we excluded from the analysis
all genes that are observed workers of more than one exem-
plar trait. This conservative analysis resulted in a qualitatively
unchanged pattern (supplementary fig. S9B, Supplementary
Material online). We noted that the large number of observed
workers is somewhat expected for fitness-coupled traits since
many genes are known for controlling the yeast fitness
(Castrillo et al. 2007; Levy and Barkai 2009). Hence, the
most striking signal here is the absence of observed workers
for nearly all fitness-uncoupled traits. Although some traits
may happen to have few workers because of unidentified
factors, it is unlikely that such factors affect all fitness-
uncoupled traits that represent a diverse profile of the yeast
morphology (Ohya et al. 2005). Therefore, the selection-
dependent co-expression hypothesis seems to be the most
reasonable explanation. Specifically, for a trait with a large
number of workers, the workers are tractable by O-strategy
only when they are organized by natural selection into a small
number of co-expression modules. The lack of selective con-
straints results in poor worker co-expression such that indi-
vidual workers cannot account for a tractable proportion of
the trait variance, leading to the failure of O-strategy. Note
that for simplicity, throughout the manuscript, fitness-
coupled or fitness-uncoupled traits refer to those that are
strongly or weakly coupled with cell growth rate. We are fully
aware that all traits are fitness-coupled to some extent.

Worker Co-Expression Is Managed by Coordinating
Supervisors
Mechanistically, worker co-expression should be managed in
trans by supervisors. For a given trait some of the supervisors
may contribute to worker co-expression (coordinating super-
visors), whereas the others do not (noncoordinating super-
visors). To achieve worker co-expression, coordinating
supervisors should have congruent regulation profiles to build
an “expression linkage” for the workers; noncoordinating
supervisors with incongruent regulation profiles would nec-
essarily undermine the expression linkage (fig. 5A).
Coordinating supervisors are supposed to be recruited/main-
tained by strong selection, because their congruent regulation
profiles for managing worker co-expression are unlikely to
evolve/remain without selective constraints. However, the
interaction between noncoordinating supervisors and work-
ers may evolve passively with little selective constraints
(Wagner 2003; Lynch 2007), which is plausible considering
the dense transcription factor binding sites on promoters
(Harbison et al. 2004).

Because no worker co-expression was observed, no coor-
dinating supervisors were expected for fitness-uncoupled
traits. For a fitness-coupled trait, we expected some dispro-
portionately large deletion effects from coordinating super-
visors. This is because trait as a function of workers’
expression could be affected by the workers in two directions
(increase or decrease). Selection may have shaped the regu-
lation profile of coordinating supervisors such that, when a
coordinating supervisor is perturbed, the affected workers
would all push the focal trait coherently in the same direction
to generate large effects. Such coherent effects from various
workers would be unlikely when a noncoordinating supervi-
sor is perturbed.

To search for such disproportionately large deletion effects,
we modeled for each trait the density distribution of the
effect sizes of the 4,718 gene deletions, using a Gaussian func-
tion that is commonly used to model quantitative traits
(Turelli 1985; see Materials and Methods). We used quan-
tile–quantile plots to compare the Gaussian approximation
with the true distribution and found that the two distribu-
tions often fit each other reasonably well (fig. 5B). For some
traits, however, disproportionately large effects far beyond the
Gaussian approximation were observed (fig. 5C). For each
trait, we defined outlier effects as those with an absolute Z-
score> 5.06, which corresponds to P¼ 2.12� 10�7 in the
standard Gaussian distribution or q¼ 0.001 after Bonferroni
correction for multiple testing (q¼ P� 4,718). The number
of outliers found for each trait ranged from 0 to�50 (supple
mentary table S7, Supplementary Material online).
Interestingly, outliers were found primarily for traits tightly
coupled with fitness (Spearman’s q¼ 0.85, n¼ 483,
P< 10�16; fig. 5D). The pattern remained when the Z-score
cut-off used for defining outliers was changed to 4.56
(q< 0.005) or 4.06 (q< 0.01) (supplementary fig. S10,
Supplementary Material online), and when only exemplar
traits were analyzed (supplementary fig. S11, Supplementary
Material online). Because this pattern could be possibly
explained by a scenario that the presence of outliers caused
strong fitness coupling, we recalculated each trait’s related-
ness to fitness after excluding the outlier mutants (see
Materials and Methods). The recalculated values were highly
correlated to the original values (supplementary fig. S12,
Supplementary Material online), a result in support of the
opposite scenario that strong fitness coupling or selective
constraint accounts for the presence of outliers. Thus, the
genes with outlier deletion effects appeared to be good can-
didates for coordinating supervisors.

To further demonstrate the role of selection in maintain-
ing the candidate coordinating supervisors/outliers we
checked the sequence conservation of the binding motifs of
some transcript factors (TFs) on the target genes (see
Materials and Methods). We focused on the motifs where
the TF is an observed supervisor of a trait assessed here and
the target gene is an observed worker of the same trait. A
motif was designated as “coordinating motif” if the TF is an
observed supervisor with outlier deletion effect as defined
above and the target gene is an observed worker of the
same trait. Those that satisfied the criteria in none of the
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traits we assessed were designated as “noncoordinating
motif.” A total of 229 nonredundant coordinating motifs
and 3,027 nonredundant noncoordinating motifs were
obtained (supplementary table S8, Supplementary Material
online). We found that the coordinating motifs are overall
much more conserved than the noncoordinating motifs as
well as random noncoding sequences (fig. 5E and supplemen
tary fig. S13, Supplementary Material online).

Because coordinating supervisors were defined by their
congruent regulation profiles, we expected congruent expres-
sion responses upon deleting different candidate coordinat-
ing supervisors of a trait. Since only �30% of the yeast
mutants have expression profiles available, for a trait the
maximal number of candidate coordinating supervisors
that can be analyzed here was 17. We thus selected for every
trait 20 observed supervisors that have the largest deletion
effects in one direction and also have corresponding

expression profiles (see Materials and Methods). The propor-
tions of candidate coordinating supervisors out of the 20
selected supervisors ranged from 0% to �90%, depending
on the trait’s relatedness to fitness (fig. 6A). For each trait,
we identified those genes with congruently changed expres-
sion across the deletion mutants of the 20 supervisors, with a
statistical threshold under which the expected number of
such genes is slightly smaller than one (0.6). We obtained
typically dozens of congruently responsive genes when the
20 selected supervisors are mostly candidate coordinating
supervisors, but very few for traits without candidate coordi-
nating supervisors (Spearman’s q¼ 0.74, n¼ 129, P< 10�16;
fig. 6B). The difference was unrelated to the overall expression
changes in the mutants because for each trait the total num-
ber of responsive genes in the 20 selected mutants was similar
(supplementary fig. S14, Supplementary Material online). As
expected, �60% of the congruently responsive genes were

FIG. 5. Genes showing outlier effects are found primarily for fitness-coupled traits. (A) A cartoon shows the proposed feature of coordinating versus
noncoordinating supervisors. Coordinating supervisors with congruent regulation profiles are able to build an “expression linkage” of the workers
to ensure worker co-expression, whereas noncoordinating supervisors with incongruent regulation profiles would break such expression linkage.
(B) Frequency distribution of the effect sizes and a Q–Q plot comparing this distribution with the Gaussian approximation for trait DCV196_C. (C)
The same parameters are shown as in Panel B, except for trait C104_A in which some outlier effects (highlighted in red) are found. (D) Fitness
coupling determines outlier number. Each dot represents a trait, and a total of 483 trait are included. (E) Coordinating motifs are more conserved
than noncoordinating motifs. Box plots of the conservation scores of coordinating motifs, noncoordinating motifs, 10-mer random sequences
picked from coding regions of Saccharomyces cerevisiae, and 10-mer random sequences picked from noncoding regions of S. cerevisiae, respec-
tively. Box-plots are presented with the horizontal bold line showing the median. Mann–Whitney U test was used to compute the P-value.
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also previously observed workers of the corresponding traits
(P< 0.001; Permutation test; fig. 6C). Thus, the genes with
outlier deletion effects are indeed enriched with coordinating
supervisors that can regulate workers congruently.

It is possible to find some coordinating supervisors with
smaller deletion effects. We examined the 17 exemplar traits
with the absolute relatedness to fitness>0.3. For each trait,
we started from the mutants of the largest effects and used a
sliding-window analysis to track the number of congruently
responsive genes as a function of the proportion of candidate
coordinating supervisors in each window (see Materials and
Methods). There was a rapid decay of the number of congru-
ently responsive genes with the reduction of the proportion
of candidate coordinating supervisors, suggesting no appar-
ent clustering of coordinating supervisors in the mutant win-
dows of smaller deletion effects (fig. 6D).

A chain of logics helps summarize the Part II analyses
(fig. 6E): For a typical complex trait controlled by many work-
ers, the extent to which the workers are tractable by O-strat-
egy is determined by worker co-expression, which is managed
by coordinating supervisors that are recruited and/or main-
tained by natural selection, a process that is only effective
when the trait is tightly coupled with fitness.

Discussion
This study suggests a selection-dependent supervisor–worker
gene architecture underlying the “making” of a complex trait
(fig. 7). Specifically, a trait is often controlled directly by a large
number of workers, the expression of which is controlled by
supervisors of two types: Coordinating supervisors help orga-
nize the large number of workers into a small number of co-
expression modules such that each individual worker has a
strong correlation with the trait (hence identifiable by O-
strategy); in contrast, noncoordinating supervisors each
with a unique regulation profile lead to no worker co-
expression such that individual workers would show no trac-
table correlation with the trait (hence resistant to O-strategy).
A critical issue here is that coordinating supervisors must be
recruited and/or maintained by natural selection, whereas
noncoordinating supervisors may evolve neutrally without
selective constraints.

A few issues need to be clarified. First, because of data
availability, we used mRNA level to represent gene activity
and studied only morphological traits of the single-celled or-
ganism yeast. Further efforts are necessary to test the gener-
ality of our findings in other systems. In addition, although the
gene architecture is for describing the making of a complex
trait, it is not readily clear how it could be applied to natural
populations affected by standing genetic variations. Second,
the supervisor–worker gene architecture is an oversimplifica-
tion of the regulatory structure underlying a complex trait: A
supervisor regulates only some of the workers and a worker is
regulated only by some of the supervisors; also, interactions
among supervisors and among workers are ignored. In addi-
tion, we note that asking if an individual gene is supervisor or
worker is not meaningful; supervisors and workers as two
gene groups are most meaningful in the context of the

P-strategy and O-strategy by which they each are identified.
The dichotomy between the observed supervisors and work-
ers in the current study relied on the stringent statistical
thresholds used in both research strategies. Nevertheless, al-
though the mutual exclusion of supervisors and workers is
emphasized here, we do not deny the fact that some genes,
like the three super-informative genes found in figure 1D, can
be sensitive to both P-strategy and O-strategy. This also partly
explains the occasional successes in studies without consider-
ing the proposed gene architecture. These being said, we
draw two robust major conclusions: 1) for a trait controlled
by a large number of workers, the individual workers are trac-
table via O-strategy only when they are organized into a
limited number of co-expression modules; 2) the worker
co-expression/coordination requires trans-factors (coordinat-
ing supervisors) that must be recruited and/or maintained by
natural selection. The first conclusion, as we explained before,
represents a rule of statistics. The second conclusion represents
a rule of evolution, because, without selective constraints, any
coordination in a living system would degenerate.

The supervisor–worker gene architecture for describing
the making of a trait directly addresses the third challenge
raised at the beginning of the article. For the remaining two
challenges we start from the second one with two angles: The
first angle is about the negative genes produced by P-strategy.
P-strategy must rely on statistics to test the null hypothesis
that the gene mutated/perturbed has absolutely no effects on
the focal trait. This null hypothesis, however, doesn’t appear
to be appropriate for a cellular system in which all genes are
connected with each other to influence all traits (Fisher 1999).
Consistently, the continuous and bell-shape distribution of
the gene deletion effects, as in figure 5B and C, for the vast
majority of the yeast traits suggests that the deletion effects
are quantitatively rather than qualitatively different. Thus, the
working practice of P-strategy is not to separate genes with
effects from those without effects, but to separate genes of
large effects from those of small effects. Whereas genes of
large mutational effects could be of more practical value,
genes of small mutational effects, like the workers, could ex-
plain more trait variance and provide direct mechanistic
understandings. As the “gold standard” in genetic studies P-
strategy reflects the classical reductionism view on a living
system, with a belief that the whole is the sum of all broken
parts. It is time to adopt a systems view by including all genes’
activity to understand the total variance.

To further demonstrate the false negatives of P-strategy we
took advantage of the huge number of gene–trait relation-
ships available in this study. As what a typical P-strategy
would do, we compared a certain number (50) of individual
cells of a given gene deletion mutant with the same number
of wild-type cells. We detected a large number of both sig-
nificant and insignificant deletion effects under the statistical
cutoff of P< 0.001 (see Materials and Methods). As expected,
with the increasing deletion effect size the frequency of sig-
nificant signals increased substantially (fig. 8A). To gauge the
extent to which the insignificant signals are false negatives we
designed a simulation. Specifically, we modified the trait val-
ues of all wild-type cells (up to �16,000) by adding a given

Chen et al. . doi:10.1093/molbev/msx288 MBE

536



effect size to form pseudomutants, and then compared 50
randomly chosen pseudomutant cells with a set of 50 ran-
domly chosen wild-type cells under the same statistical set-
ting (see Materials and Methods). For the various traits
examined we detected both significant and insignificant dif-
ferences, which represent the variation of samplings from
pseudomutants that by definition have true differences
from the wild-types. In other words, the insignificant signals
between the pseudomutants and wild-types represent false
negatives of the P-strategy. Interestingly, the ratio of signifi-
cant signals to insignificant signals observed for the pseudo-
mutants was highly similar to that of the real gene deletion
mutants (fig. 8B), suggesting that the insignificant signals of
the real mutants be well explained by false negatives.

The other angle is about the positive genes produced by P-
strategy. These genes tend to be supervisors of a trait.
Whereas coordinating supervisors are recruited/maintained
by selection, noncoordinating ones may often be of passive
origin and evolve under little selective constraints. It is unclear
how a noncoordinating supervisor revealed in laboratory
would function in nature. The answer to this question would
be critical for understanding why often a very limited number
genes are used to drive the evolution of a given phenotype in

nature even when the phenotype can be affected by a large
number of genes (Stern and Orgogozo 2009). Thus, the field
of molecular genetics, which has long been dominated by
mechanistic perspectives, would make more sense in the light
of evolution. This notion reminds us of a recently proposed
idea that the genetic effects of a gene could be attributed to
either the native functions that are built/maintained by nat-
ural selection or the “spurious” functions that are created by
the given genetic manipulation (He 2016).

The last to-be-discussed challenge is about the O-strategy.
As we have demonstrated, O-strategy will perform well only
for fitness-coupled traits in which the workers are coordi-
nated. In other words, for a trait determined by many work-
ers, the effect of individual workers on the trait will appear
stable only when the workers are coordinated to form func-
tional modules/pathways. Suppose there is a trait controlled
by ten workers that each have two functional statuses, on or
off. The absence of coordination across the ten workers would
lead to a total of 210¼ 1,024 different functional statuses
underlying the trait, and the effect of an individual worker
would be always epistatic to the other workers. Thus, context-
dependent findings, a major confounding factor in current
molecular cell biology (Freedman et al. 2015), appear to be an

FIG. 7. The selection-dependent supervisor–worker gene architecture underlying the making of a trait. With natural selection, coordinating
supervisors are recruited/maintained to organize the �50 workers into four co-expression modules, such that each individual worker shows a
strong correlation with the trait. When selection is absent, the�50 workers are controlled exclusively by noncoordinating supervisors and thus
express independently. As a result, all workers show a weak correlation with the trait.
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unavoidable outcome of the lack of selective constraints,
which leads to the lack of coordination.

In summary, we studied the gene–expression–trait rela-
tionships from the perspective of trait making, and showed
that the genes found for a trait are often decoupled from the
expressions underlying the trait, and that the expressions
underlying a trait are tractable only if they are coordinated
by natural selection. The second issue reminds biologists of a
simple fact: The order of a living system relies on natural
selection and the lack of selection inevitably leads to disorder,
and the internal order and disorder determine the success of
the external research efforts. This notion has special implica-
tions to human biology because selection is inefficient in
humans due to the small effective population size (Lynch
and Conery 2003) and because aging-associated diseases or
traits are often of little fitness relevance but of high interest to
researchers (Finch 2010; Lopez-Otin et al. 2013). One may
argue that the disorder is exactly the challenges we need to
address, but the lack of selective constraints predicts that it
might be ad hoc phenomena sensitive to genetic back-
grounds (Mackay 2014). A robust discussion of both the
necessity and the strategy for studying such phenomena is
needed.

Materials and Methods

Data
A single-gene deletion stock of yeast S. cerevisiae with 4,718
mutant strains that each lacked a nonessential gene was gen-
erated by Giaever et al. (2002). To measure the cell growth
rates of the 4,718 mutants in the rich medium YPD (yeast
extract, peptone, and dextrose), Bar-seq-based data produced
by Qian et al. (2012) were used. The 501 morphological traits

of the mutants were characterized by Ohya et al. (2005)
(SCMD). The PIGs were defined by Ho and Zhang (2014)
under a stringent statistical cut-off for 220 out of the 501
traits; the remaining 281 traits contain no information nec-
essary for statistics. We reproduced the analysis and obtained
the same set of supervisors in 216 out of the 220 traits using
the updated data in SCMD. Only these 216 traits were con-
sidered when defining PIGs. The microarray-based expression
profiles of 1,484 of the single-gene deletion mutants were
generated by Kemmeren et al. (2014).

Define OIGs
For nearly all of the examined morphological traits, a bell-
shaped frequency distribution of the trait values among the
4,718 mutants was found, with the median trait value close to
that of wild-type (supplementary fig. S15, Supplementary
Material online). There was a total of 1,327 mutants, each
with the expression profile generated by Kemmeren et al.
(2014) as well as the information of cell growth rate. We
randomly divided the 1,327 yeast mutants into two sets, plac-
ing two thirds of the mutants (884) in Set #1 and one third
(443) in Set #2 (supplementary table S9, Supplementary
Material online). There are 6,123 yeast genes on the microar-
ray chip used by Kemmeren et al. (2014). We first generated
500 artificial data sets, each containing 443 strains picked
randomly from the 884 Set #1 strains with replacements.
We calculated Pearson’s R between the expression level and
the trait value for each of the 6,123 genes in each of the 501
traits using each the 500 artificial data sets. The R-values were
then transformed into P-values using a t-test, resulting in 500
P-values for each gene in a trait. We defined the correlation
robustness (r-value) of a gene as the harmonic mean of its P-

FIG. 8. Statistically insignificant signals can be well explained by false negatives of P-strategy. (A) The proportion of observing significant differences
between 50 mutant cells and 50 wild-type cells is a function of the effect sizes of mutants. (B) The proportion of significant signals of real gene
deletion mutants is similar to that of the simulated pseudomutants that have genuine differences from the wild-type, suggesting that the
remaining insignificant signals be well explained by false negatives of the P-strategy. We considered only the effect sizes of Z¼ 0–0.77, which
cover 50% of the data with Z> 0 in a standard Gaussian distribution. The box and error bar encompass 50% and 90% of the data derived from 100
replicates, respectively.
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values after dropping both the highest and the lowest 5%
of its 500 P-values, which was then multiplied by 6,123
for multiple testing correction. Genes with corrected
r-values< 0.01 were considered putative O-strategy identified
genes (pOIGs). To further reduce false positives, the pOIGs
with a significant (P< 0.01) expression–trait correlation
(Pearson’s R) in the independent Set #2 mutants were then
defined as OIGs. The Pearson’s R in Set #2 mutants was used
to derive the trait variance explained by an OIG (R2). The
co-expression level between two OIGs or two the most prob-
able OIGs (the absolute Pearson’s R) was also based on the
443 Set #2 mutants.

Morphological traits are not independent; for instance, the
size and the diameter of a cell are correlated. To reduce cor-
related traits, we used an unsupervised affinity propagation
strategy proposed by Frey and Dueck (2007) to cluster the
501 traits based on the r-values of the 6,123 yeast genes
computed for a trait, resulting in a total of 57 clusters each
with an exemplar trait. Twenty-three exemplars have both
OIG and PIG information.

The frequency distribution of the cell growth rates of the
yeast mutants was highly biased, with the majority close to
the rate of wild-type. We thus computed the expression-
growth rate correlation using a univariate Cox regression
model that emphasizes differences between two categories,
with growth rate serving as the parameter “time.” In this
mode, strains with a growth rate<0.9 were weighted as
“event¼ 1,” and all others were weighted as “event¼ 0.”
Specifically, we performed Cox regression analysis using the
500 artificial data sets described above and obtained 500
P-values for every yeast gene. The corrected r-value was
computed as described above. A total of 911 genes each
with a corrected r-value< 0.001 were defined as OIGs of
cell growth rate.

Define Gene Regulatory Relationships
Although there could be various definitions for gene regula-
tory relationships, we here considered a simple one based
solely on the differential expression upon gene deletion.
Specifically, gene A is called the downstream target of gene
B and B the upstream regulator of A if gene A shows a sig-
nificant expression change (P< 0.0001 as provided in the
original data) in the mutant lacking gene B. The cutoff of
P< 0.0001 holds throughout this study for assigning gene
regulatory relationships. The average feature of a trait’s all
PIGs (or OIGs) was used to represent the PIGs (or OIGs) of
the trait.

To assess the PIG–OIG regulatory architecture we focused
on the 108 traits with� 10 OIGs and� 10 PIGs. The 1,327
mutants with expression profiles were considered and the
mean of the 108 traits were computed. On average a PIG
regulated 53 OIGs and 36.8 PIGs, and an OIG regulated 17.7
OIGs and 15.3 PIGs; the expected numbers were 20.4 6 2,
17.8 6 1.3, 20.4 6 3.3, and 17.8 6 3.5 (mean 6 SD of 1,000
simulations), respectively. On average an OIG was regulated
by 20.4 PIGs and 3.0 OIGs, and a PIG was regulated by 10.3
PIGs and 1.4 OIGs; the expected numbers were 9.2 6 0.7,
3.4 6 0.6, 5.0 6 0.3, and 1.8 6 0.3 (mean 6 SD of 1,000

simulations), respectively. The expected numbers were
obtained by reshuffling the 1,327 mutants’ expression profiles
while maintaining the identity of the deleted genes. The sim-
ulation was repeated one thousand times to obtain the mean
and standard deviation.

Gain Mechanistic Understandings Using Worker
Modules
Yeast PPIs were downloaded from BioGrid (http://thebiogrid.
org/). For each trait, the PPIs among observed workers were
examined, and protein modules were separated using an or-
der statistics local optimization method (OSLOM) proposed
by Lancichinetti et al. (2011) with default settings. To anno-
tate the modules, we performed GO enrichment analysis us-
ing BinGO (Maere et al. 2005) and Cytoscape (Shannon et al.
2003).

A total of seven modules were identified for cell growth
rate from the PPI network comprising the 911 observed work-
ers. Six modules appeared to be highly enriched with func-
tionally similar proteins under a false discovery rate of 0.001,
all of which are related to a critical biogenesis process. The ED
of a worker module between mutant and wild-type was de-
fined as the normalized Euclidian distance:

ED ¼ 1

n

Xn

i¼1
log2

MIi
WIi

� �2� �1=2

;

where MIi is the expression level of gene i in the mutant, WIi is
the expression level of gene i in wild-type, and n is the number
of genes in the module. The Pearson correlation analysis be-
tween cell growth rate and module activity (i.e., ED) was
conducted using the 443 Set #2 mutants.

Calculate Trait’s Relatedness to Fitness
Because in this study all cellular traits were measured in YPD,
we used cell growth rate in YPD as a proxy of fitness. Given
the bell-shaped distribution of a morphological trait, where
the wild-type trait value is almost always located in the mid-
dle, both an increase and a decrease of a trait value relative to
wild-type could reduce fitness. Thus, for each trait, we divided
the 4,718 mutants into two equal halves according to their
trait values and calculated Pearson’s R between the trait value
and the fitness of each half of the mutants separately, result-
ing in two Rs for each trait. The half showing the larger R
(absolute value) was designated the fitness-more-coupled
side of the trait, and the other half was designated the
fitness-less-coupled side of the trait. We used the R of the
fitness-more-coupled side to represent the relatedness of a
trait to fitness. To exclude the potential effects of outlier trait
values on the estimation of fitness coupling, for each trait, we
also removed the top 50 trait values from each side and
recalculated the trait’s relatedness to fitness.

Assess Data Noise in the 501 Traits As Well As Its
Potential Consequences
To characterize yeast morphological traits, Ohya et al. exam-
ined an average of 400 individual cells for each mutant. The
trait value of a given mutant is the mean trait value of all
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examined cells. Despite the generally large number of exam-
ined cells, for some traits, there were only a few tens of in-
formative cells, which may have affected the reliability of the
measurements. To address this issue, we randomly divided
the examined cells for each mutant into two equal halves and
computed the morphological traits of each mutant in each
half separately. We then compared the trait values obtained
from the two halves. The level of consistency between the
two halves varied substantially among traits but was not de-
pendent on a trait’s relatedness to fitness.

Characterize Coordinating and Noncoordinating
Supervisors
We excluded 18 traits whose effect size distribution is not
unimodal (P< 0.05, Hartigan’s Dip-test), leaving 483 traits for
further analyses. We normalized the raw trait value Xij of
mutant j in trait i to Z-score effect size using:

Zi;j ¼
Xi;j �Mi

� �
ri

i 2 1 . . . 483ð Þ; j 2 1 . . . 4718ð Þ½ �;

where Mi and ri are the mean and standard deviation of the
raw trait values in trait i among the 4,718 mutants. The outlier
effects are defined based on an absolute Z-score> 5.06, which
corresponds to P< 0.001� 1/4,718 or q< 0.001 according to
a standard Gaussian distribution. Accordingly, the supervisors
with an absolute Z-score> 5.06 are considered as outlier
supervisors, and the remainder are considered as nonoutlier
supervisors.

Congruent expression responses are expected upon delet-
ing different outlier supervisors of the same traits if the out-
liers are coordinating supervisors. For the 216 traits with
supervisor information, we excluded 20 traits that each had
outlier supervisors in both the fitness-more-coupled and fit-
ness-less-coupled sides, just to make the analysis simple (there
is one outlier supervisor observed in the fitness-less-coupled
side for all the 20 traits). For each trait, we selected the top 20
supervisors from the fitness-more-coupled side; they have the
largest effect sizes and also available expression profiles. We
excluded 67 traits that have<20 such supervisors, remaining
216 – 20 – 67¼ 129 traits. For each trait, the genes with
higher or lower expression level in the mutants of the 20
selected supervisors than the remaining 1,307 mutants
were identified as congruently responsive genes of the trait
under the statistical threshold P< 0.0001 (T test). A total of
1,060 nonredundant yeast genes were identified as congru-
ently responsive genes in at least one of the 129 traits, with
the mean and median numbers of traits for an involved gene
being 2.97 and 2, respectively.

In the sliding window analysis, for each trait the 1,327
mutants were sorted decreasingly according the focal trait.
The 20 mutants in the defined window were compared with
all mutants with smaller trait values to obtain the congruently
responsive genes under the same statistical threshold. A total
of 133 windows were tested, so it was a 20 versus 1,307
comparison at the beginning but a 20 versus 1,175 compar-
ison in the end. Although this treatment would cause bias,

the bias should be small and unable to overturn the
conclusion.

Analyze the Conservation of the DNA Motifs That
Mediate Supervisor–Worker Interactions
The PFM files describing the typically 5–15 bp binding motif
sequences of 256 S. cerevisiae proteins or protein complexes
were downloaded from the Yeast Transcription Factor
Specificity Compendium (YeTFaSCo; http://yetfasco.ccbr.utor
onto.ca/). For each of the 6,123 yeast genes the 500 base pairs
upstream of the transcription starting site of the gene were
considered as promoter of the gene. Overlapping promoters
were excluded from further analysis. TF binding motifs on
each promoter were annotated according to the Track files
of YeTFaSco and were used to define TF-target gene inter-
actions. We excluded from further analysis the TF-target gene
interactions if the target genes show no significant expression
changes (P< 0.0001) in the TF deletion mutants.

We considered those TF-target gene interactions when the
TF is an observed supervisor of a trait examined in the current
study and the target gene is an observed worker of the same
trait. A motif mediating the corresponding TF-target gene
interaction was designated as coordinating motif if the TF
is a coordinating supervisor (i.e., outlier) of a trait and the
target gene is an observed worker of the same trait. The
remaining motifs that were not designated as a coordinating
motif are termed noncoordinating motifs, where the TFs act
invariably as a noncoordinating supervisor of the target gene
for all traits examined in the current study.

The conservation score of a motif is the mean conservation
levels of all positions of the motif. The conservation level of a
genomic position of the yeast is annotated in the multiple
alignment tracks of the UCSC genome browser (https://
genome.ucsc.edu/), and is the Adam S’s phylogenetic HMM
score (Siepel and Haussler 2004) that can be extracted from
the UCSC conservation track.

Evaluation of the False Negatives of P-Strategy
There are�400 individual cells for each mutant and a pool of
�16,000 wild-type cells examined by Ohya et al. (2005), and
the trait information of individual cells is available for 216
traits. The trait value of a mutant or the wild-type is the
mean trait value of all individual cells of the strain. Because
the trait value of wild-type is often slightly different from the
mean trait value of the 4,718 mutants, all Z-score effect sizes
of a trait were first added (or subtracted) a number to ensure
that the wild-type’s Z¼ 0. For a mutant with a given adjusted
effect size Z on a trait, we compared the raw trait values
between its 50 randomly selected cells and 50 random
wild-type cells, and used P< 0.001 (Mann–Whitney U test)
to define statistically significant signals. This comparison was
conducted for all 4,718� 216 mutant-trait combinations,
and the proportion of significant signals was calculated for
all Zs within a given Z-score interval (for simplicity the abso-
lute Z was used for assigning Z-score intervals: 0–0.05, 0.05–
0.1, 0.1–0.15, 0.15–0.2, 0.2–0.25, 0.25–0.3, 0.3–0.35, 0.35–0.4,
0.4–0.45, 0.45–0.5, 0.5–0.55, 0.55–0.6, 0.6–0.65, 0.65–0.7, 0.7–
0.77). To estimate the expected proportion of significant
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signals when the effect size is Z (¼ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.77, respectively), for a
given trait we compared the raw trait values between 50
random wild-type cells and another set of 50 random wild-
type cells each being added an effect size of Zri (i.e., pseudo-
mutants), where Z is the focal effect size, and ri is the stan-
dard deviation of the 4,718 mutants of the focal trait. The
same statistical cutoff was applied to define significant signals,
and the proportion of significant signals was calculated based
on all signals of the 216 traits. This simulation was repeated
100 times to get the confidence intervals for each Z. Because
the variance was difficult to model for the pseudomutants
with a given effect size, we assumed the same variance be-
tween the pseudomutants and the wild-type population,
which may cause strong bias when the given effect size is
large. Thus, we limited our analysis for Z¼ 0–0.77, which
covers 50% of the data with Z> 0 in a standard Gaussian
distribution.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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