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The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum
(TsPYK) has previously been used in metabolic engineering for improved ethanol
production. This isozyme belongs to a subclass of PYK isozymes that include an extra
C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is
activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs
generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than
activators) of TsPYK. We believe this to be the first report of any PYK isozyme being
inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also
inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that
have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset
of those isozymes.
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INTRODUCTION

Thermoanaerobacterium saccharolyticum is a thermophilic bacterium that has been engineered
to produce ethanol from hemicellulose at high yield (∼90% of theoretical) and titer (70 g/L),
but is poor at using cellulose for that production (Herring et al., 2016). In contrast, Clostridium
thermocellum has a strong native ability to consume cellulose, but its ability to produce ethanol is
relatively modest (Olson et al., 2012, 2015). To address if the lack of pyruvate kinase expression
in C. thermocellum is a limit in the cellulose-to-ethanol metabolism, heterologous expression of
pyruvate kinase (PYK) from T. saccharolyticum (TsPYK) in C. thermocellum increased ethanol
yield slightly (12% improvement). A further 21% improvement was realized when the competing
“malate shunt” pathway was disrupted, forcing carbon flux through the PYK reaction (Deng
et al., 2013; Olson et al., 2017). Given the success of this design, it is interesting to note
that the regulatory features of TsPYK have not previously been studied and addressing that
knowledge gap was the goal of the current study. The sequence of TsPYK places this enzyme in
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a subfamily of PYK isozymes that includes an extra-C
domain (Munoz and Ponce, 2003). Munoz and Ponce
(2003) identified strains of Lactococcus, Lactobacillus and
Bacillus with the extra-C domain. Other organisms whose
PYK enzyme contains the extra-C domain include the
mesophilic organisms Clostridium cellulolyticum, Staphylococcus
aureus and Synechocystis sp. PCC6803 and the thermophilic
organisms T. saccharolyticum, Thermoanaerobacterium
thermosaccharolyticum, Caldicellulosiruptor bescii, and
Clostridium clariflavum. This domain in the “extra-C domain”
subfamily is in addition to the three domains (A, B, and C)
common to all known PYK isozymes (Figure 1).

A function for the extra-C domain has yet to be elucidated,
however, deletion studies have been performed in two organisms:
Geobacillus stearothermophilus and S. aureus. When this domain
was removed from the G. stearothermophilus PYK, the affinities
for PEP and ribose-5-phosphate (R5P; the allosteric effector) were
decreased, as was thermostability (Sakai, 2004). In S. aureus,
deletion of the extra-C domain decreased enzyme efficiency
(kcat/S0.5) toward PEP and ADP to about 5% of the wild type level
(Zoraghi et al., 2010).

In this study, our efforts to characterize the regulation of
TsPYK combine two approaches: (1) the use of sugar-phosphate
analogs was included to evaluate which chemical moieties of the
effector are required to elicit allosteric activation (i.e., increased
binding of the substrate phosphoenolpyruvate, PEP) and (2)
the allosteric functions were evaluated in TsPYK truncated to
remove the extra-C domain to determine if allosteric regulations
are dependent on that extra-C domain. Activation by R5P and
AMP are similar suggesting that it is the ribose moiety of AMP
that serves as the allosteric activator. However, this approach

FIGURE 1 | A model of the TsPYK homotetramer built by SwissModel (Biasini
et al., 2014). The two subunits in the background are rendered as gray sticks.
The two subunits in the foreground are rendered as ribbons: the top subunit is
gray; the bottom is colored by domain. The A domain is in black, the B in red,
the C in blue, and the extra-C in green.

identified the first example of a PYK isozyme that is inhibited
by IMP and GMP. IMP inhibition is specific to only a subset of
isozymes surveyed.

MATERIALS AND METHODS

Protein Purification
A 6XHis-tag was added on the N-terminus of TsPYK in the
pTrcHisb plasmid and the tagged protein was expressed in E. coli
FF50 cells (in which both native E. coli pyk genes have been
deleted) (Fenton and Hutchinson, 2009) using the ampicillin
selection marker. Frozen cell pellets were resuspended in 50 mM
HEPES pH 7.2, 5 mM MgCl2, 300 mM KCl, 10 mM imidazole,
and 10 mM TCEP (added fresh). Samples were sonicated on
ice water using the same on/off pulse sequence. Sonication
included 5 s “on” pulses separated by 45 s “off” pulses for a
total “on” time of 4 min. The insoluble fraction was removed
via centrifugation. Samples were incubated at 55◦C for 1 h
(Supplementary Material) and the insoluble fraction, including
heat precipitated proteins, was removed via centrifugation. The
supernatant was added to an agarose Ni2+ column (Biorad
Profinity Ni2+ resin). The column was washed with two bed
volumes of the HEPES buffer (the same as used for sonication)
and the TsPYK protein was eluted with a gradient of 10–500 mM
imidazole in the same HEPES-based buffer. Fractions with PYK
activity were pooled and the pool was dialyzed into the sonication
buffer with 10 mM imidazole. The 6XHis tag was not removed;
we acknowledge that the purification tag can alter the magnitude
of allosteric responses, but the regulatory features characterized
with the tagged protein are likely to be qualitatively present on
the untagged protein. Purified TsPYK were frozen via aliquoting
small quantities into thin walled PCR tubes and plunge freezing
into liquid nitrogen (Deng et al., 2004). Long term storage was at
−80◦C (activity recovered over 2 months as tested here).

Over the course of the study, we identified the need for higher
levels of protein expression and more consistent expression,
both of which can be gained by using BL21 E. coli expression
systems. To improve expression levels and the consistency
of expression, a new strain of E. coli was generated from
the parent BL21 strain. The two deletion cassettes used in
the construction of FF50 (KanR gene flanked by homology
regions for the respective gene and recognition sites for the
FLP recombinase (FRT) (Fenton and Hutchinson, 2009) were
transferred to BL21 (DE3) using P1 lysates (Miller, 1992).
After each cassette transfer, the kanamycin selection marker
was removed using a temperature-sensitive plasmid-encoded
FLP recombinase (pCP20) as previously reported (Cherepanov
and Wackernagel, 1995; Lovingshimer et al., 2006). Deletion
of the two genes caused loss of PYK activity as expected
(Supplementary Material). To express the TsPYK protein in the
newly created BL21 E. coli strain, now named QTF60, TsPYK
gene was cloned with an N-terminal tag consisting of 6XHis-
MBP-SUMO- (MBP: maltose binding protein) in the pCDF
(Novagen) expression plasmid and transformed into QTF60.
Purification was initiated with a frozen pellet harvested from a
1.5 L cultures grown with 50µg/ml spectinomycin and induced
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with 1.8 g/L lactose. The 6XHis-MBP-SUMO-TsPYK protein was
purified very similar to that presented above for the 6XHis-
TsPYK protein. The buffer used for sonication included 50
mM imidazole instead of the 10 mM listed above. After the
centrifugation step of the 55◦C-treated sample, the supernatant
from that sample was ammonium sulfate (AS) fractionated with
two sequential additions of AS. The first addition was 0.2 g
AS/ml sample, followed by centrifugation. To the supernatant,
an additional 0.12 g AS/ml sample was added, followed by
centrifugation. The pelleted protein was resuspended in a small
volume (∼0.5 ml) of sonication buffer. The dialyzed sample was
then purified with a Ni2+ column using a 50–500 mM imidazole
gradient to elute protein. Purified TsPYK were frozen via plunge
freezing. Long term storage was at −80◦C. Other bacterial PYK
proteins included in the screen were also cloned with the 6XHis-
MBP-SUMO- tag in pCDF, expressed in the QTF60 cells, and
purified and stored as described for TsPYK (with the exception
that the heat step and ammonium sulfate steps were excluded).

Kinetic Assays and Data Analysis
All methods used for collecting initial velocity data and to
evaluate allosteric properties are identical to those used to
in the characterization of human LPYK (Ishwar et al., 2015),
with the exception of Mg2+, ADP, and final K+ and Na+
concentrations. Briefly, activity measurements were performed
at 30◦C, in an assay containing 50 mM HEPES, 15 mM MgCl2,
10 mM (K)ADP, 0.1 mM EDTA, 0.18 mM NADH, 10 mM
DTT, and 19.6 U/mL lactate dehydrogenase. PEP and effector
concentrations were varied. The rate of NADH utilization was
monitored at A340 for each concentration of PEP and these
initial velocity rates as a function of PEP concentration were
used to evaluate Kapp−PEP at any one effector concentration. In
turn, Kapp−PEP evaluated over a concentration range of effector
was used to evaluate allosteric parameters. To prevent a large
percent change in K+ or Na+ concentrations, KCl and NaCl were
added for final concentrations of 195 mM K+ and 80 mM Na+
(Fenton and Alontaga, 2009).

Kapp−PEP values were obtained by fitting initial rates obtained
from kinetic assay to:

v =
Vmax[PEP]nH

(Kapp−PEP)nH + [PEP]nH
, (1)

where Vmax is the maximum velocity, Kapp−PEP is the
concentration of substrate that yields a rate equal to one-half
the Vmax, and nH is the Hill coefficient. The allosteric coupling
constant is defined as (Reinhart, 2004):

Qax = Kia/Kia/x = Kix/Kix/a. (2)
Qax was determined by fitting a plot of the Kapp−PEP values as

a function of effector concentration to Eq. 3 (Reinhart, 2004):

Kapp−PEP = Ka

(
Kix + [Effector]

Kix + Qax[Effector]

)
(2)

where Ka = Kapp−PEP when [Effector] = 0; Kix = the dissociation
constant for effector (X) binding to the protein in the absence of
substrate (A). For this second level of data fitting, error estimates
from the initial fit to Eq. 1 were used as weighting factors in the

fit to Eq. 3, thus error was propagated to the final fit values. An
aid for visualizing fit parameters included in Eq. 3 in the figures
can be found in Supplementary Material.

RESULTS AND DISCUSSION

Consistent with other PYK isozymes, the allosteric response of
TsPYK was a change in the apparent affinity of the enzyme for
the PEP substrate with no change in Vmax activity. Throughout
the PYK family, ADP affinity is also not responsive to effectors.
Because the allosteric response causes a change in PEP affinity, all
results are shown as the response of the Kapp−PEP value (i.e., the
kinetic derived “affinity” value) over the concentration range of
effector evaluated. Fit parameters are included in Table 1.

Ribose-5-phosphate is also known to activate several PYK
isozymes (Wilke and Schlegel, 1975; Mort and Sanwal, 1978;
Mertens et al., 1992; Le Bras and Garel, 1993; Valentini et al., 1993;
Suzuki et al., 2008; Snasel and Pichova, 2019). AMP includes
a ribose-5-phosphate moiety in its total structure. Furthermore,
ribose-5-phosphate shares the ribose ring with the fructose-
1,6-bisphosphate (Fru-1,6-BP) activator of mammalian PYK
isozymes (Hall and Cottam, 1978; Blair, 1980; Ishwar et al., 2015).
Considered together, one possibility is that AMP regulates TsPYK
via the ribose-5-phosphate interacting with the site on TsPYK
that is equivalent to the Fru-1,6-BP binding site of mammalian
PYK isozymes. Consistent with that idea, ribose-5-phosphate
elicits an allosteric response (in Figure 2, the difference between
the plateaus at low and high effector concentrations) that is very
similar to that caused by AMP. If these two effectors bind to the
same site on the protein, then it seems reasonable to interpret that
the adenine ring of AMP must contribute additional interactions
that increased effector affinity (Figure 2). The binding site of
these effectors is believed to be equivalent to the location at which
Fru-1,6-BP binds in mammalian PYK isozymes (Jurica et al.,
1998; Valentini et al., 2002; Holyoak et al., 2013).

To initiate a study to identify the minimum chemical
substructure from AMP/ribose-5-phosphate effector that is
required for allosteric regulation, we employed additional
analogs. 2-deoxyadenonsine-5′MP generated a response very
similar to AMP (slightly reduced binding), therefore, the
2′hydroxide contributes little to the allosteric mechanism
(Supplementary Material). Kapp−PEP did not change upon the
addition of Fru-1,6-BP, 3-phosphoglycerate or ribose (data not
shown); the lack of response does not distinguish between
a ligand failing to bind or binding without eliciting an
allosteric response.

Interestingly, glyceraldehyde 3-phosphate, fructose-6-
phosphate, IMP or GMP all caused reduced affinity for

TABLE 1 | Fit parameters.

Kapp−PEP [mM] 0.63 ± 0.03

Kix−AMP [mM] 0.09 ± 0.06 Qax−AMP 2.0 ± 0.2

Kix−R5P [mM] 11 ± 10 Qax−AMP 3.0 ± 0.7

Kix−GMP [mM] 1 ± 1 Qax−GMP 0.26 ± 0.09

Kix− IMP [mM] 3 ± 1 Qax− IMP 0.29 ± 0.04
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FIGURE 2 | The allosteric response of TsPYK to various effectors (A–C). R5P is ribose-5-phosphate. F6P is fructose-6-phosphate. G3P is glyceraldehyde
3-phosphate. Error bars represent the estimated parameter error provided by the fitting program from the fitting of the primary data to Eq. 1.

FIGURE 3 | A comparison of responses to IMP and AMP for the full length
TsPYK (filled symbols/solid lines) and the truncated form that lacks the extra-C
domain (open symbols/dashed lines); both include the MBP tag. Responses
to AMP are circles and to IMP are squares.

PEP, rather than increasing that affinity (Figure 2). Other
phosphorylated 3-carbon sugars (e.g., 3-phosphoglycerate
and glyceraldehyde-3-phosphate) have already been shown to
regulate PYK isozymes (Solomons et al., 2013; Ishwar et al.,
2015), but the outcomes are routinely increased PEP affinity,
rather than the reduced PEP affinity identified in this study.
Also, ribose-5-phosphate has also been listed as an inhibitor
of at least one PYK isozyme (Lin et al., 1989). In this study,
within the working concentrations of IMP (up to 50 mM), the
shift in Kapp−PEP reaches a plateau, indicating saturation of the
effector binding site. However, a plateau at high concentrations
of GMP, fructose-6-phosphate, or glyceraldhehyde-3-phosphate
was not apparent.

The newly discovered inhibition by IMP and GMP was
particularly interesting to us. Therefore, we next addressed if
the extra-C domain might be responsible for this previously
uncharacterized type of regulation. We also questioned if the
newly discovered inhibition was common in the subfamily of
proteins that include the extra-C domain and/or other PYK
isozymes from microbe sources. To address these two questions
using purified protein, we designed an expression system that
added a 6XHis-MPB-SUMO- tag onto the N-terminus of each
protein screened. To improve protein expression, this new
expression design was included in a pET vector and expressed
in a BL21 (DE3) cell line in which the two E. coli PYK
genes have been deleted (QTF60, developed in this study, see
Supplementary Material). The screen of the influence of IMP
on various PYK isozymes was completed with the 6XHis-MBP-
SUMO- tag remaining on the PYK enzymes. In addition to
the TsPYK full length and TsPYK extra-C domain truncated
proteins, the PYK isozymes included in the screen were E. coli
Type F (Gene ID 946179; protein ID YP003054274.1) (Mattevi
et al., 1996), E. coli Type A (Gene ID 946527; protein ID
AAA24473.1) (Malcovati et al., 1973; Somani et al., 1977;
Malcovati and Valentini, 1982), C. bescii (Gene ID 31772614;
protein ID WP_015907751.1), C. cellulolyticum (protein ID
WP_015925984.1), C. clariflavum (protein ID WP_014254383.1),
S. aureus (Gene ID 59700435, protein ID WP_001232648.1)
(Zoraghi et al., 2010), T. thermosaccharolyticum (protein
ID ADL68325.1), G. stearothermophilus (Gene ID 58572631;
protein ID BAA02406.1) (Sakai et al., 1986; Sakai and
Ohta, 1987, 1993; Walker et al., 1992; Nguyen and Saier,
1995; Lovell et al., 1998; Sakai, 2004, 2005; Suzuki et al.,
2008; Ueda and Sakasegawa, 2019), Synechocystis (protein
ID BAA17574.1) (Knowles et al., 2001), and L. delbrueckii
(Gene ID 57117943; protein ID CAA50527.1). All but the
truncated TsPYK and the two E. coli enzymes include the extra-
C domain.

The deletion of the extra-C domain may influence the
magnitude of the response to IMP, however, it is clear that
when the extra-C domain was deleted from TsPYK, the truncated
protein continued to be inhibited by IMP (Figure 3). Activation

Frontiers in Microbiology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 628308

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-628308 February 11, 2021 Time: 17:59 # 5

Fenton et al. IMP Inhibition of Pyruvate Kinase

FIGURE 4 | The response of three bacterial PYK isozymes to AMP and IMP. Additional data for other bacterial PYK isozymes are included in Supplementary
Material.

by AMP was not influenced by the removal of the extra-
C domain.

The E. coli type F isozyme and the isozyme from C. bescii
were inhibited by IMP and activated by AMP similar to TsPYK
(Figure 4). However, the E. coli type A isozyme was activated by
both AMP and IMP. The PYK isozymes from C. cellulolyticum,
C. cariflavum, G. stearothermophilus, S. aureus, Synechocystis,
and T. thermosaccharolyticum had little or no response to the
concentration ranges of IMP and AMP used in this study
(Supplementary Materials). Clearly, the response to IMP is not
common across the microbial PYK isozymes included in this
study and therefore, the response to that effector is not dependent
on the extra-C domain.

To the best of our knowledge, this is the first report that IMP
and GMP act as inhibitors of any PYK isozyme. Both E. coli Type
F enzyme (which lacks the extra-C domain) and TsPYK with the
extra-C domain truncated are inhibition by IMP. Therefore, the
IMP inhibition does not appear to be a function of the extra-C
domain. A more recently discovered second phosphate binding
site (Zhong et al., 2017) is not conserved in these isozymes and is
not likely a binding site for IMP. That leaves the possibility for the
inhibiting IMP and the activating AMP to compete for binding
to the same allosteric site. Certainly, there are other allosteric
systems in which allosteric inhibitors and allosteric activators
bind to the same binding site (Shirakihara and Evans, 1988; Zorba
et al., 2019). In the case of these bacterial PYK examples, total
PYK activity may be influenced by competitive binding of the
inhibitor and activator to the same site, a scenario that would
be very sensitive to changing cellular concentrations of these two
effector ligands.

CONCLUSION

In this work, we have demonstrated several important regulatory
characteristics of the TsPYK enzyme, namely that it is activated
by AMP and R5P and that it is inhibited by IMP and GMP.
In our effort to consider how TsPYK contributes to metabolism
when expressed in C. thermocellum, we can first point out

that C. thermocellum has a number of glycolytic reactions with
atypical cofactor specificity (Zhou et al., 2013). As a result,
one possible explanation for the low levels of carbon flux
through the TsPYK-catalyzed reaction in C. thermocellum is that
TsPYK is inhibited due to high levels of GMP. As a contrasting
example that extrapolates beyond the current study, it may
be that cyclic-GMP is the relevant regulator: cyclic-GMP has
been identified as a critical signaling molecule in some bacteria
(Amikam and Benziman, 1989; Morgan et al., 2014). However,
the possibility that GMP (or cyclic-GMP) inhibits TsPYK in the
engineered C. thermocellum also depends on concentrations of
other nucleotide monophosphates (e.g., AMP), that will bind to
TsPYK competitively with GMP and activate instead of inhibiting
the enzyme. Clearly, whether inhibition will result from the
collective influence of GMP and IMP or activation will result
from the collective influence of multiple activating nucleotide
monophosphates will be determined by small changes in the
concentration of each molecule. In addition, because AMP binds
tighter than GMP, GMP concentrations must be higher than
those of AMP for the GMP inhibition to have a physiological
implication. Nonetheless, the inhibition by GMP remains a
possible explanation for lower than expected influences of TsPYK
on C. thermocellum metabolism. The reduced influence in the
previous metabolic engineering studies may be less likely if
thermophilic PYK enzymes that lack inhibition by GMP are
expressed in C. thermocellum.
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