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Abstract: The main aim of this paper is to optimize the output of diagnosis of Cardiovascular
Disorders (CVD) in Photoplethysmography (PPG) signals by utilizing a fuzzy-based approach with
classification. The extracted parameters such as Energy, Variance, Approximate Entropy (ApEn),
Mean, Standard Deviation (STD), Skewness, Kurtosis, and Peak Maximum are obtained initially from
the PPG signals, and based on these extracted parameters, the fuzzy techniques are incorporated to
model the Cardiovascular Disorder(CVD) risk levels from PPG signals. Optimization algorithms such
as Differential Search (DS), Shuffled Frog Leaping Algorithm (SFLA), Wolf Search (WS), and Animal
Migration Optimization (AMO) are implemented to the fuzzy modeled levels to optimize them
further so that the PPG cardiovascular classification can be characterized well. This kind of approach
is totally new in PPG signal classification, and the results show that when fuzzy-inspired modeling is
implemented with WS optimization and classified with the Radial Basis Function (RBF) classifier,
a classification accuracy of 94.79% is obtained for normal cases. When fuzzy-inspired modeling
is implemented with AMO and classified with the Support Vector Machine–Radial Basis Function
(SVM–RBF) classifier, a classification accuracy of 95.05% is obtained for CVD cases.

Keywords: PPG; feature extraction; cardiovascular levels; optimization; classification

1. Introduction

By utilizing the infrared light at the peripheral parts of the body, cardiovascular function
can be assessed by a famous non-invasive technique known as Photoplethysmography (PPG) [1].
In PPG sensors, the source is generally a Light-Emitting Diode (LED), and the detector is generally
a Light-Dependent Resistor (LDR) that operates in the infrared range (0.8–1 µm) [2]. The fundamental
difference in the infrared light absorbance by the blood and the rest of the skin tissues determines the
sensing of the PPG [3]. Cardiovascular parameters such as cardiac output, blood pressure, heart rate,
blood oxygen saturation, respiratory rate, and vascular function can be analyzed with the help of PPG
waveform [4]. CVD is one of the serious health issues among the world population as it contributes to
a high mortality rate [5]. Various risk factors contributing to it are smoking, obesity, physical inactivity,
stress, alcoholism, high cholesterol levels, etc. [6]. To mitigate the total number of deaths due to
CVD cases, continuous evaluation by medical professionals should be done on a regular basis [7].
For monitoring the physiological conditions of a particular patient, one of the most famous technologies
utilized is PPG, as it is non-invasive in nature and is inexpensive, too. As a result of its capacity to
perform continuous readings, PPG can usually be applied to pulse oximetry readings [8]. The essential
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information about both cardiovascular and respiratory systems is provided by this signal. The PPG has
a vast viability, and it is easy to utilize the signal for research activities. The PPG signal also does not
have a complex implementation in terms of hardware when it is compared to the Electrocardiogram
(ECG) signal [9]. Even a reference signal is not required for PPG, thereby making the PPG sensors
able to be incorporated with wristbands. Thus, the application, utility, or results and their clinical
applicability is too good and can be used in various research for the analysis and diagnosis of CVD [10].

Previous works in the aspects of analysis of PPG [11], classification of PPG [12], artifact reduction
of PPG [13], cardiac arrhythmia classification of PPG [14], heart rate monitoring from PPG [15],
and development of PPG sensors [16] have been reported in the literature. The automatic Region
of Interest (ROI) for remote PPG was performed by Gallego and Haan [17]. Utilizing repeated
Gaussian filters and cross-correlation, the PPG signal quality estimation was done by Karlen et al. [18].
For PPG, an algorithm for real-time pulse waveform segmentation with artifact detection was done by
Fischer et al. [19]. Multiple regression analysis along with neural networks was utilized to estimate
the blood pressure variation with PPG signals by Cho et al. [20]. The PPG signal motion artifact
modeling for the purpose of heart rate monitoring using wearable devices was done by Cajas et al. [21].
The exposure of heart rate variability through PPG analysis was analyzed quantitively in motor bike
riders by Ramasamy et al. [22]. The automated discrimination between hypovolemia and euvolemia
was done on PPG signals using Support Vector Machine (SVM) by Reljin et al. [23]. For interpreting
Cardiovascular Disorders (CVD), a metaheuristic-based dimensionality reduction and classification
analysis of PPG signals was performed by Prabhakar et al. [24]. During maximal exercise test, a heuristic
algorithm for tracking photoplethysmographic heart rate was done by Silva et al. [25].

As far as fuzzy logic is concerned, its application has been enormous. Fuzzy algorithms are not
sensitive to the changing surroundings and are less erroneous, thereby making them robust. When
comparing the computationally precise system, the reasoning process is quite simple, and so a lot
of computing power can be saved in incorporating fuzzy methods. A fuzzy inference system was
developed to identify Event-Related Desynchronization (ERD) for Brain–Computer Interface (BCI)
applications [26]. A fuzzy logic traffic signal controller was optimized through the differential evolution
algorithm for various traffic scenarios by Dogan and Akgungor [27]. A fuzzy rule-based system was
utilized for detecting and visualizing stress during commuter driving by Dobbins and Fairclough [28].
A fuzzy optimization concept was utilized by Prabhakar and Rajaguru along with Modified Adaboost
Classifier for epilepsy classification [29]. Fuzzy techniques were utilized by Prabhakar and Rajaguru to
analyze the cerebral blood flow for epileptic and diabetic patients [30]. As far as the fuzzy-inspired
photoplethysmography signal classification is concerned, Liu et al. [31] proposed a work where a fuzzy
logic discriminator was utilized for heart rate extraction from PPG signals. The fuzzy logic was utilized
to authenticate PPG signals by Gu and Zhang [32]. For the ubiquitous healthcare, the detection of
heartbeat based on filter banks and fuzzy inference was done by Lee and Kang [33]. For improving
the stroke volume measurement, the PPG signal quality was classified using fuzzy neural networks
by Liu et al. [34]. Not much literature is available with exception to the very few works done with
the application of fuzzy concept to PPG signal modeling, analysis, or classification. Other than that,
the methodology proposed in this paper is first of its kind utilized for the efficient classification
of CVD. The organization of the paper is as follows. In Section 2, the materials and methods are
explained, followed by the fuzzy-inspired Modeling in Section 3. Section 4 explains the different
types of optimization utilized here for selecting the best values and optimizing it followed by the
classification in Section 5. It is followed by the results and discussion in Section 6 and conclusion in
Section 7.

2. Materials and Methods

From the Capnobase dataset, the various morphological waveforms have been obtained from
the IEEE TMBE Pulse Oximetry database [35]. The raw PPG signal recordings of 8-minute duration
have been found in this dataset. In this database, the annotated representation of signals such as
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Capnogram (inclusive and exclusive CO2, pressure, and respiratory flow) are present. In the Capnobase
dataset, the entire IEEE benchmark (42 records) has been considered for the experiment with 28 records
representing the CVD and 14 records representing the normal condition. A 100 Hz sampling rate was
utilized in this PPG dataset. About 150,000 samples per patient are obtained with this data length,
and it is preprocessed with the help of Independent Component Analysis (ICA). The block diagram of
the work is shown in Figure 1.
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Figure 1. Block diagram of the work.

3. Fuzzy-Inspired Modeling

To manipulate noisy and imprecise information and to obtain decisions based on such data,
one of the most effective tools is fuzzy set theory [36]. A linguistic approach can be offered by fuzzy
systems so that a quite reasonable inference can be made. The fuzzy modeling for PPG risk levels at
every two-second segment from PPG signals are analyzed. The optimization of the segment results is
performed, as they are at various risk levels. Once the optimization is achieved, the fuzzy modeling
is performed. The different parameters obtained after sampling are provided as inputs to the fuzzy
system. The parameters obtained from PPG signals here are Energy, Variance, Approximate Entropy
(ApEn), Mean, Standard Deviation, Skewness, Kurtosis, and Peak Maximum.

3.1. Fuzzy Membership Functions

Initially, energy is considered to be a prominent parameter, and the other seven input features are
analyzed with it to get seven outputs. Five linguistic levels such as Normal (N), Low (L), Medium (M),
High (H), and Very High (VH) are utilized with each input feature. For representing the linguistic
levels of the Energy, Variance, ApEn, Mean, Standard Deviation, Skewness, Kurtosis, and Peak
Maximum, triangular membership functions are defined. The classification of the output risk level is
also classified into five linguistic levels such as Normal (N), Low (L), Medium (M), High (H), and Very
High (VH). The representation of risk level classifications of a PPG signal is given in Table 1. The binary
representation of risk levels is given in Table 2. For each representation, a binary string is associated,
and its respective weight and probability is calculated. The parameter ranges for various risk levels
are given in Table 3. The Fuzzy Associative Matrix (FAM) table is expressed in Table 4.
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Table 1. Representation of output risk level classifications.

Risk Level Representation

Normal (N) A

Low (L) B

Medium (M) C

High (H) D

Very High (VH) E

Table 2. Binary representation of risk levels.

Representation Binary String Weight Probability

E 10000 16/31 = 0.516129 0.073732

D 01000 8/31 = 0.258065 0.036866

C 00100 4/31 = 0.129032 0.018433

B 00010 2/31 = 0.064516 0.009216

A 00001 1/31 = 0.032258 0.004608

11111 = 31 Σ = 1

Table 3. Parameter ranges for various risk levels for fuzzy linguistic sets.

Risk Levels
Very Low Low Medium High Very High

Parameters

Energy 0–0.1 0.7–3.6 2.9–8.2 7.6–11 9.2–30

Variance 0–0.3 0.15–0.45 0.4–2.2 1.6–4.3 3.8–15

Approximate Entropy 0–1.8 1–2.2 2–3.6 3.2–5 4.3–12

Mean 0–2 1–5 4–10 7–16 15–28

Standard Deviation 0–2 1–4.5 4–9 7–11.6 10–13

Skewness 0–0.3 0.15–0.45 0.4–2.4 1.8–4.6 3.6–10

Kurtosis 0–0.05 0.025–0.1 0.09–0.4 0.28–0.64 0.54–1

Peak maximum 0–3 1–5.2 4–9.3 7–11.6 10–14.6

Table 4. Fuzzy Associative Matrix (FAM) table for energy vs. variance parameters.

Energy

Fuzzy Sets
Variance

Very Low Low Medium High Very High

Very Low N L x x x

Low L L M x x

Medium x M M H x

High x x H H VH

Very High x x x VH VH

Table 1 shows the fuzzy linguistic sets to represent the output risk levels of the subject through
PPG signal parameters. The five level of cardiac risk levels will vary from Normal as represented by
the string A to Very High risk level as represented by string E.

Table 2 shows the binary representation of cardiac risk levels to represent the fuzzy modeled
outputs in the coded form along with their positional values. The output fuzzy values are processed as
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an individual code by a specific coding method. Since working on definite alphabets is much easier and
hassle-free than processing numbers with large decimal accuracy, the output is encoded with a specific
string of alphabets. The alphabetical representation of the five classifications of the outputs is shown
in Table 1. These numerical values are associated with the probability of each coded CVD risk-level
pattern. The five risk levels are encoded in descending order as E > D > C > B > A in binary strings of
five-bit length using a weighted positional indication, as shown in Table 2. A string of seven letters
named chromosomes is obtained by encoding each output risk level of the fuzzy output, the value of
which is computed as the total sum of probabilities of the individual specific genes. For example, if the
output of an epoch is encoded as EEDDCBE, its value would be 0.322577. Now, each fuzzy modeled
pattern is encoded in the numerical form of the range 0–1.

Table 3 indicates the edges of the triangular membership functions associated with the five
linguistic fuzzy sets in the type I fuzzy system for the eight derived parameters from the PPG signal
samples. As shown in the Table 3, the linguistic fuzzy sets are overlapped with the adjacent fuzzy sets.
This is clearly depicted in the FAM shown in Table 4.

As indicated in the Table 4, the FAM table for energy vs. variance parameters shows the
overlapping of the fuzzy membership functions along with the adjacent linguistic sets only. Therefore,
we can effectively utilize the thirteen fuzzy rules instead of twenty-five fuzzy rules. In the Table 4,
x indicates the “do not care” condition.

3.2. Fuzzy Rule Set

The fuzzy rules in this work are framed in the format as:

• If Energy is Low and Variance is Low, then the Output is of Low-Risk Level
• If Energy is High and Variance is Medium, then the Output is of High-Risk Level

In this fuzzy system (2 × 1), two inputs and one output are present. We have five linguistic
levels of energy and five linguistic levels of other seven features such as Variance, ApEn, Mean,
Standard Deviation, Skewness, Kurtosis, and Peak Maximum. Therefore, there are seven individual
fuzzy systems available. Therefore, we obtain a total rule base of 175 rules based on seven sets,
each comprising 25 rules. This is a type of exhaustive fuzzy rule-based system developed to get the
perfect results. The fuzzy modeled output for a two-minute duration of PPG signals in the CVD case is
expressed in Table 5.

Table 5. Fuzzy modeled output for two-minute duration of PPG signal in CVD case.

BEEEEED ADECEEE ACDBCEE ADEEEEE EDEDEEE

BCDAECE BEEEEDD DDECEEE BCDBECE CEEEEED

DEEBEEE ADEBDDE DDEEDDD CEEBEEE DDEDEDE

DDEEDDD CEEAEEE CDECEEE EDDEDDD BEEAEEE

CDECEEE ECDEDDD BEEAEEE DDECEEE ECDEDDD

AEEAEEE DDECEEE EDDEDDD BEEAEEE DDECEEE

BDEAEEE BEEAEEE DDECEEE ECDEDDD AEEAEEE

BDEAEEE EBCECEC BEECDDE BDEBEBE CDEDDDD

AEEAEDE BEEBECE CDEDDDD AEEAEDE BDEAECE

EEEEDEE AEEAEEE BEEAEEE EEEEDEE BEEAEEE

CDEAEDE EEEEDEE AEEAEEE CDEAEDE DEEEDED

AEEAEEE BDEBEDE DEEEEEE AEEBEDE BDEBEDE

BEEEEED corresponds to two hundred samples of two-second duration in the PPG signal.
There are sixty such code words shown in Table 5 (12 × 2 × 5 = 120 s). The target code in this case is
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EEEEDEE = 0.47925. Likewise, the fuzzy model will produce 750 code words per patient, and all the
words highly differ among themselves. Therefore, a mechanism to identify the diversity of the fuzzy
modeled outputs can be further exhibited. The histogram of the fuzzy modeled output is shown in
Figure 2.
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Figure 2. Histogram of fuzzy modeled output.

Figure 2 shows the presence of discontinuity points in the attained code words of the fuzzy system.
This is further authenticated by the Cumulative Density Function (CDF) plot of the fuzzy modeled
system, as shown in Figure 3. As demonstrated in Figure 3, the fuzzy modeled outputs are highly
discontinued and have a step-level pattern or representation.
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The Normal Probability Plot for the fuzzy modeled output is shown in Figure 4, and it indicates
the outliers in the code words of the fuzzy modeled output. Therefore, it is necessary to optimize the
fuzzy modeled outputs to attain a singleton pattern, which in turn represents the cardiac risk level of
the patient.



Diagnostics 2020, 10, 763 7 of 20Diagnostics 2020, 10, x FOR PEER REVIEW  7 of 21 

 

 

Figure 4. Normal probability plot for the fuzzy modeled output. 

Furthermore, to identify the presence of non‐linearities in the fuzzy modeled outputs, it can be 

explained  by  the  estimation  of Rhythmicity  and Hurst  exponent  parameters. Table  6  shows  the 

analysis of the Rhythmicity and Hurst exponent for fuzzy modeled outputs. 

Table 6. Rhythmicity and Hurst exponent analysis on fuzzy modeled output. 

Parameters  CVD Cases  Normal Cases 

Rhythmicity  0.102905  0.111619 

Hurst Exponent  0.401  0.535 

 

C
R

D
   (1) 

where R = Rhythmicity, C = No. of categories of patterns; and D = Total number of patterns, which is 21,000 in 

CVD cases and for Normal cases, D = 10,500. For an ideal classifier C to be considered one, R = 4.76E‐05 for CVD 

cases and R = 9.52381E‐05 as in the consideration of normal cases. However, we attained C = 2161 for CVD cases 

and C = 1172 for normal cases. Table 6 shows the higher rhythmicity value of fuzzy modeled outputs, which 

implies  that  the  fuzzy model needs  further optimization  to produce a singleton output.  In a  time series,  the 

degree  of  long‐range dependence, predictability,  and  self‐similarity  is  assessed  by  the Hurst  exponent  (H). 

Dependent on asymptotic behaviour, it also means the smoothness of a fractal time series. For various types of 

signals, the value of a Hurst exponent is specified as follows. The Hurst exponent value of 0.5 matches a truly 

random time series. Anti‐persistent behavior is exhibited by the Hurst exponent if 0 < H < 0.5. The duration for 

every sample must be changed in the time series at the limit of H = 0. A temporarily persistent time series is 

described by the Hurst exponent if 0.5 < H < 1. As shown in the Table 6, the Hurst exponent values are distinct 

in the two classes of the fuzzy modeled outputs. 

4. Optimization Techniques 

Optimization  techniques have been  implemented  in many areas  to handle different practical 

issues  [37].  In  different  engineering  and medical  applications,  the  optimiztaion  techniques  have 

become a vital priority because of its wonderful properties. Optimization holds an important place 

in  machine  learning  as  it  helps  to  improve  the  covergence  rate,  can  enhance  the  degree  of 

approximation, has the capability to select the features efficiently, etc. The fuzzy codes or values are 

optimized, and the best values are selected before classification. Four different types of optimization 

0.36 0.38 0.4 0.42 0.44 0.46 0.48

0.01 

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

0.99 

Fuzzy Classifier Output for CVD Patient

P
ro

ba
bi

lit
y

Normal Probability Plot

Figure 4. Normal probability plot for the fuzzy modeled output.

Furthermore, to identify the presence of non-linearities in the fuzzy modeled outputs, it can be
explained by the estimation of Rhythmicity and Hurst exponent parameters. Table 6 shows the analysis
of the Rhythmicity and Hurst exponent for fuzzy modeled outputs.

R =
C
D

(1)

where R = Rhythmicity, C = No. of categories of patterns; and D = Total number of patterns, which is
21,000 in CVD cases and for Normal cases, D = 10,500. For an ideal classifier C to be considered one,
R = 4.76E-05 for CVD cases and R = 9.52381E-05 as in the consideration of normal cases. However,
we attained C = 2161 for CVD cases and C = 1172 for normal cases. Table 6 shows the higher rhythmicity
value of fuzzy modeled outputs, which implies that the fuzzy model needs further optimization to
produce a singleton output. In a time series, the degree of long-range dependence, predictability,
and self-similarity is assessed by the Hurst exponent (H). Dependent on asymptotic behaviour, it also
means the smoothness of a fractal time series. For various types of signals, the value of a Hurst
exponent is specified as follows. The Hurst exponent value of 0.5 matches a truly random time series.
Anti-persistent behavior is exhibited by the Hurst exponent if 0 < H < 0.5. The duration for every
sample must be changed in the time series at the limit of H = 0. A temporarily persistent time series is
described by the Hurst exponent if 0.5 < H < 1. As shown in the Table 6, the Hurst exponent values are
distinct in the two classes of the fuzzy modeled outputs.

Table 6. Rhythmicity and Hurst exponent analysis on fuzzy modeled output.

Parameters CVD Cases Normal Cases

Rhythmicity 0.102905 0.111619

Hurst Exponent 0.401 0.535

4. Optimization Techniques

Optimization techniques have been implemented in many areas to handle different practical
issues [37]. In different engineering and medical applications, the optimiztaion techniques have become
a vital priority because of its wonderful properties. Optimization holds an important place in machine
learning as it helps to improve the covergence rate, can enhance the degree of approximation, has the
capability to select the features efficiently, etc. The fuzzy codes or values are optimized, and the best
values are selected before classification. Four different types of optimization are utilized in this work
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such as Differential Search (DS), Shuffled Frog Leaping Algorithm (SFLA), Wolf Search (WS) and
Animal Migration Optimization (AMO).

4.1. Differential Search Optimization

Then, the fuzzy modeled values are optimized again with the help of DS optimization developed by
the Civicioglu [38]. In this algorithm, the search space is simulated as the food areas, and every point in
the search space matches to an artificial superorganism migration. Finding the global optimal solution
is the main goal of this migration. The algorithm begins with a randomly initiated artificial organism
that utilizes the NP∗D-dimension parameter vector with its respective minimum and maximum bound
conditions expressed as follows:

→

Amin =
{
a1,min, a2,min, . . . , aD,min

}
(2)

→

Amax =
{
a1,max, a2,max, . . . , aD,max

}
. (3)

The yth component of the zth vector is generated as:

ay,z,0 = ay,min + randz,y + [0, 1].
(
ay,max − ay,min

)
(4)

where randz,y[0, 1] is a uniform distribution random number between 0 and 1.
Assume z = 1, . . . , NP and y = 1, . . . , D. Between the artificial organisms, stop over vectors sz,H

are generated that can be explained by a Brownian-like random walk model. Corresponding to each
and every population individual, the algorithm creates a stopover vector in the current population.
The technique for providing a stop over vector is expressed as follows:

sz,H = Az,H + scale.
(
Ar1,H −Az,H

)
(5)

where r1 ∈ [1, . . . , NP] are the chosen integers in a random fashion and r1 , z. The individual positions
of the artificial organisms are controlled by the scale here, and the value of it is generated by a gamma
random number, which in turn is controlled by a uniform distribution number ranging between 0 and
1. The individuals of the artificial organism of the super organism are used to calculate the search
process of the stop over site and are expressed as

s′z,y,H =


s

z,y,H i f rz,y = 0
A

z,y,H i f rz,y = 1
(6)

where y = [1, . . . , D]; rz,y is an integer number either belonging to 0 or 1. s′z,y,H indicates the trial

vector of the yth particle in the zth dimension at the Hth iteration. To choose the next population,
a selection operator is used between the artificial organism population and the stop over site population,
(H = H + 1). The selection operator is expressed as:

Az,H+1 = sz,H, i f f
(
s′z,H

)
≤ f (Az,H) (7)

Az,H+1 = Az,H, i f f
(
s′z,H

)
> f (Az,H) . (8)

The standard pseudocode for the algorithm is given in Pseudocode 1.
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Pseudocode 1:

begin
Generation counter initialization H = 0
Population of NP∗D individuals Ay is randomly initialized.
Parameter initialization p1, p2
Fitness evaluation for each individual in P
While stopping criteria is not satisfied do
scale = rand h(2 ∗ rand) ∗ (rand− rand)
for z = 1 to NP do
Randomly select b , z
sy = az + scale× (ab − az)

end
r = rand(NP, D);
If rand < rand, then
If rand < p1 then
for z = 1 to NP do
r(z, :) = r(z, :) < rand
end
else
f or i = 1 to NP do
r(z, randz(D)) = 0
end
end
else
for z = 1 to NP do
d = randz(D, 1, [p2.rand])
for y = 1 to size(d, 2) do
r(z, d(y)) = 0
end
end
end
r = r > 0;
s(r) = A(r);
for z = 1 to NP do
Offspring evaluation sz

If sz is better than Az, then
Az = sz

end if
end for
Memorize the best solution achieved so far
end while
end

Thus, the global optimum values of the fuzzy modeled technique are obtained through the DS
optimization algorithm.

4.2. Shuffled Frog Leaping Algorithm (SFLA)

One of the famous swarm evolutionary algorithms is SFLA, which follows the pattern of frogs
exchanging vital and useful information as separated or split memeplexes when searching for food [39].
The optimum solution is obtained by the combination of local search and global search in memeplex.
Here, many frogs together compose a virtual memeplex where each frog represents a candidate solution.
Many memeplexes are obtained after division from the population, where each memeplex contains
a certain number of frogs. Various memeplexes have their own behavior and culture, which can be
easily affected by each other. Once the local search has been implemented for specific times, the mixing
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up of the memeplexes is done to get a new solution, and as a result, the information can be exchanged
globally among all the memeplexes. Unless the desired convergence is obtained, the local and global
search are alternated, thereby expressing it as maximum number of iterations or the achievement of
a certain convergence accuracy.

For the unconstrained function optimization, the solution steps are as follows:

(1) Beginning stage/initialization: ′c′ candidate solution is generated in its possible structural domain
Ω ⊂ <D (for a D-dimensional problem). The expression of the ′c′ candidate solution is done
as the initial swarm Swarm = (A1, A2, . . . , Ac), where Ai = (ai1, ai2, . . . , aiD); here, the candidate
solution is described by the ith(1 ≤ i ≤ c) solution.

(2) Classification of Memeplex: The population is partitioned into Zmemeplexes as follows. Based on
the fitness value, the frogs are allocated to the groups. To the first memeplex, the first frog that has
the highest value is moved to it, and to the second memeplex, the second frog that has the second
highest value is moved to it. Similarly, to the last memeplex, the movement of the zthhighest frog
is done. Unless the allocation of the last frog is done to the memeplex, these operations continue.
Ultimately, every memeplex now contains frogs. Thus, c = y× z.

(3) Local search idea: In the memeplex, identify the best frog, and it is named as Ab. The worst frog
is identified as Aw, and the global best is identified as Ag. In the following strategy, the renewal
of Aw, the memeplex is done by means of searching and is represented as

Ri =

{
min

{
int[r(Ab −Aw)], Rmax

}
, r(Ab −Aw) ≥ 0

max
{
int[r(Ab −Aw)], Rmax

}
, r(Ab −Aw) ≤ 0

}
(9)

Aneww = Aw + Ri (10)

where Ri is the renewing value of the specific step size. int[a] is the roundness of a, r = random
number ranging from (0,1). The maximum distance allowing the movement of frogs is Rmax.

After updating, if there exists Aneww ⊂ Ω, then Aneww is substituted by Aw. Otherwise, the Ab is
replaced in Equation (9) with Ag. Using Functions (9) and (10), the new A′neww is computed. If A′neww ⊂ Ω
and F

(
A′neww

)
< F(Aw) are present, then A′neww is replaced for Aw, or else to replace Aw, a new candidate

solution is arbitrarily generated. Unless the designed search time is reached, the ending of the iteration
is not done.

Global Information Exchange: Once the completion of the local search is done, then the mixing of
all the memeplexes is done into a final swarm. For the algorithm to be terminated, it must be satisfied
by one of the following three conditions:

(a) The objective function value should reach an optimum value.
(b) The predefined value is reached quickly based on the total number of iterations.
(c) No remarkable progress is returned in the main objective function during the iteration process.

Thus, the global optimum values of the fuzzy modeled technique are obtained through the SFLA
optimization algorithm.

4.3. Wolf Search Optimization

The grey wolves always cohabit together, and hunting is usually done in groups [40]. The process
of seeking and hunting is done as follows:

(a) Once a prey is found out, they plan to track, chase, and approach it in the most feasible manner.
(b) Once the prey identifies some danger, it starts running. Then, the grey wolves chase and encircle it.
(c) The prey gets harassed by the grey wolves unless it inhibits the movement.
(d) The attack starts and the prey gets killed.
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Analyzing the searching and hunting process of grey wolves, this optimization algorithm was
designed. In the mathematical modeling, alpha (α) represents the fittest solution, beta (β) represents
the second best solution, and delta (δ) represents the third best solution. The remaining candidate
solutions are assumed to be omegas (ω). When the optimization (searching) process along with
hunting is carried out, all the omegas would be guided by the three grey wolves. The iteration begins
when a prey is found out. Then, the omegas would lead the alpha, beta, and delta wolves to search

and encircle the prey. To explain the encircling behavior, three coefficients
→

X,
→

Y, and
→

Z are proposed.

→

Zα =

∣∣∣∣∣ →Y1.
→

Px −
→

P(t)
∣∣∣∣∣,

→

Zβ =
∣∣∣∣∣ →Y2.

→

Pβ −
→

P(t)
∣∣∣∣∣,

→

Zδ =
∣∣∣∣∣ →Y3.

→

Pδ −
→

P(t)
∣∣∣∣∣

(11)

where the current iteration is described by t. The position vector of the grey wolf is represented by
→

P
and

→

P1 =
→

Px −
→

X1.
→

Zα (12)
→

P2 =
→

Pβ −
→

X2.
→

Zβ (13)

→

P3 =
→

Pδ −
→

X3.
→

Zδ (14)

→

P(t) =

→

P1 +
→

P2 +
→

P3

3
. (15)

The parameters
→

X and
→

Y are a combination of the control parameter ′x′ and the random numbers
→
r1 and

→
r2.

Therefore,
→

X = 2α
→
r1 − α (16)

→

Y = 2
→
r2. (17)

The control parameter x chases
→

X, and ultimately, it causes the omega wolves to run away from

the dominant wolves such as α, β,γ. The grey wolves run away from the dominant ones if
∣∣∣∣∣→X∣∣∣∣∣ > 1,

and this implies that the omega wolves run away from the prey, thereby exploring more space termed

as global search in the optimization process. The dominant ones are approached if
∣∣∣∣∣→X∣∣∣∣∣ < 1, which

implies that the omega values follow the dominants approaching the prey and is termed as local search
in optimization. As the iterations are being carried out, the control parameter x is expressed to be
linearly declined for a value of 2 to zero and is represented as

α = 2
(
1−

iterations
N

)
(18)

where the maximum iteration number is expressed as N, and it is started at the beginning.
The application of this algorithm to any given problem is expressed as follows.

(1) The knowledge of some elemental parameters is known initially
(2) The random initialization of the grey wolf packing out of the space domain is done
(3) The other dominant grey wolves help lead the pack in order to search, find, and encircle the prey.

Once the grey wolves encircle the prey, it stops its movement, thereby ending the search,
and therefore, the attack begins. The procedure of it is explained in Pseudocode 2.
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Pseudocode 2:

Initialize the grey wolf population P j( j = 1, 2, 3, . . . , n)
Initialize x, X and Y
Calculate fitness of every search agent
Px = the best search agent
Pβ = the second-best search agent
Pδ = the third-best search agent
While (t < maximum number of iterations)
For each search agent
Update the position of the current search agent
End for
Update x, X and Y
Calculate the fitness of all search agents
Update Px,Pβ,Pδ
t = t + 1
End while
Return Px

Thus, the global optimum values of the fuzzy modeled technique are obtained through the WS
optimization algorithm.

4.4. Animal Migration Optimization

It is divided into the migration of the animal process and the updation of the animal process [41].
The movement of the animal groups from the present position to a new position is simulated by the
algorithm in the migration process. The probability technique is used for the updation of animals,
and it is simulated by the algorithm during the population updating process.

4.4.1. Animal Migration Process

Three rules should be obeyed by the animal in the animal migration process.

(a) The collision is to be avoided with the neighbor
(b) The movement should be in the same direction as the neighbors
(c) The neighbors should remain close to each other.

Generally, a topological ring-like structure is used to define the concept of the local neighborhood
of a particular individual. For every dimension of the individual, the neighborhood length is set to be
ten in our simulation. Based on the set of indices or vectors, the neighborhood topology can be either
static or dynamic. Assuming that the index of a particular animal is j, then its neighborhood comprises
of animals having indices j− 2, j− 1, j, j + 1, j + 2, respectively. For instance, if the index of the animals
is 1, then the neighborhood consists of an animal that has indices of NP−1, NP, 1, 2, 3, etc. Once the
construction of the neighborhood topology is done, one neighbor is selected randomly, and the position
of the individual based on this neighbor is updated as shown in the formulae as represented by

Z j,H+1 = Z j,H + δ·
(
Zneighbourhood,H −Z j,H

)
(19)

where Zneighbourhood,H is the present position of the neighborhood. With the Gaussian distribution,
a random number generation produces δ, Z j,H is the current position of the jth individual, and Z j,H+1

is the new position of the jth individual.

4.4.2. Population Updating Process

During this process, the animals leaving the group and some animals joining the new population
is simulated by the Algorithm 1. With a probability Pa, some new animals will be needed to replace
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the individuals. The quality of the fitness is used to determine the probability of it. Fitness is sorted in
descending order, and therefore, the individual with the worst fitness is 1, and the individual with the
best fitness is 1/NP.

Algorithm 1: Population Updating Process

For j = 1 to NP do
For l = 1 to D do
If rand > Pa then
Z j,H+1 = Zr1,H + rand.

(
Zbest,H −Z j,H

)
+ rand.

(
Zr2,H −Z j,H

)
End if
End for
End for

The randomly chosen integers, r1, r2 ∈ [1, . . . , NP], where r1 , r2 , j. After the production of the
new solution Z j,H+1, it is then compared with Z j,H, and the individual with a better objective fitness is
chosen as follows:

Z j =

 Z j,H i f f
(
Z j,H

)
> f

(
Z j,H+1

)
Z j,H+1 otherwise

. (20)

Thus, the global optimum values of the fuzzy modeled technique are obtained through
AMO algorithm.

5. Classification Techniques

The seven hundred and fifty code words that are attained per patient through fuzzy models are
at different risk-level representations. Therefore, after passing through the above said optimization
methods, the 750 code words are reduced to 375 code words by removing the redundant ones.
The optimized values are finally fed to the classifiers for efficient classification. The classifiers used
here are Logistic Regression (LR) [42], Fishers Linear Discriminant Analysis (FLDA) [43], K-Nearest
Neighbor (KNN) [44], Support Vector Machine (SVM) [45], and Artificial Neural Network (ANN)
based classifiers [46].

KNN: It is well-known that KNN is a very famous supervised learning technique which helps to
trace testing sample’s class based on the K-nearest training samples majority class, and in our work,
the value of K is reported to be 5.

ANN-Based Classifiers: For processing neurobiological signals extracted from EEG, ANNs are
widely used. The ANN-based classifiers used in this work are Radial Basis Function (RBF) and
Multilayer Perceptron (MLP).

RBF: It has 75 input neurons, 30 neurons in the hidden layer, and 1 output linear neuron.
MLP: There are 75 input linear neurons, one hidden layer with 25 neurons having hyperbolic

tangent as the activation function, and 1 output neuron with logistic activation function.
SVM: It uses a non-linear kernel RBF with values ranging from 0.001 < γ < 0.01 and 1800

support vectors.

6. Results and Discussion

It is classified with a 10-fold cross-validation method, and the performance of it is shown in the
tables below. The mathematical formulae for computing the Performance Index, Sensitivity, Specificity,
and Accuracy is mentioned in the literature, and using the same, the values are computed and exhibited.
Perfect Classification is represented as PC, Missed Classification is represented as MC, and False Alarm
is represented as FA.

The Sensitivity is expressed as

Sensitivity =
PC

PC + FA
× 100. (21)
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Specificity is expressed as

Speci f icity =
PC

PC + MC
× 100. (22)

Accuracy is expressed as

Accuracy =
Sensitivity + Speci f icity

2
. (23)

Performance Index (PI) is expressed as

PI =
(PC−MC− FA

PC

)
× 100. (24)

The Good Detection Rate (GDR) is expressed as

GDR =

(
[PC−MC]
[PC + FA]

)
× 100. (25)

The Mean Square Error (MSE) is expressed as follows:

MSE =
1
N

N∑
i=1

(Oi − T j)
2. (26)

where Oi indicates the observed value at a specific time, T j denotes the target value at model j; j = 1 to
28 for CVD patients and 14 for normal cases, and N is the total number of observations per patient
in our case, which is 375. The training of the classifiers was implemented with a zero-training error
of MSE.

Table 7 shows the average statistical parameters of various optimization techniques with different
features for normal cases. As demonstrated in the Table 7, we can observe that there is no variation
among the mean, variance, skewness, geometric mean, and harmonic mean parameters across the four
optimization methods. Furthermore, it is inspired from the Pearson Correlation Coefficient (PCC) that
the optimized values are non-linear and uncorrelated among the normal cases. The kurtosis parameter
indicates diverged conditions for the four optimization methods. Sample entropy and approximate
entropy attained higher values for the DS optimization method and low values at SLFA.

Table 7. Average parameters at various optimization techniques with different features for normal cases.

Features Optimization
Methods Mean Variance Skewness Kurtosis Geometric

Mean
Harmonic

Mean

Pearson
Correlation
Coefficient

Sample
Entropy

Approximate
Entropy

Fuzzy-Inspired
and Modeled

Features

DS 0.338409 0.006599 −0.66892 0.333147 0.31886 0.302793 0.027919 6.0187 3.416

SFLA 0.371224 0.003499 −0.51108 −0.22984 0.36823 0.360155 0.040848 5.4976 2.816

WS 0.371667 0.003439 −0.56445 0.005272 0.36375 0.358953 0.011319 5.5058 3.103

AMO 0.337304 0.006448 −0.90151 0.745083 0.3256 0.300528 0.042151 5.991 3.2457

DS means Differential Search; SFLA means Shuffled Frog Leaping Algorithm; WS means Wolf Search; AMO means
Animal Migration Optimization; AMO means Animal Migration Optimization.

Table 8 shows the average statistical parameters at various optimization techniques with different
features for CVD cases. As observed in the Table 8, we can identify that there is no variation among
the mean, variance, skewness, geometric mean, and harmonic mean parameters across the four
optimization methods. Furthermore, it is inspired from the PCC that the optimized values are
non-linear and uncorrelated among the normal cases. The kurtosis parameter indicates variable
conditions for the four optimization methods. Sample entropy attained higher values for the WS
optimization method, and approximate entropy arrived at a high value in the SLFA. The AMO process
settled at low values for sample entropy and approximate entropy.
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Table 8. Average parameters at various optimization techniques with different features for CVD cases.

Features Optimization
Methods Mean Variance Skewness Kurtosis Geometric

Mean
Harmonic

Mean

Pearson
Correlation
Coefficient

Sample
Entropy

Approximate
Entropy

Fuzzy-Inspired
and Modeled

Features

DS 0.356827 0.004257 −0.53336 1.32084 0.348029 0.339244 0.033675 6.41 4.731

SFLA 0.345056 0.005002 −0.24626 −0.43423 0.336894 0.326393 0.046436 6.367 4.962

WS 0.354519 0.003382 −0.53748 1.421386 0.34366 0.339225 0.086153 6.471 4.631

AMO 0.363913 0.003522 −0.80286 1.527042 0.14617 0.349313 0.040009 6.1032 4.073

Table 9 shows the Canonical Correlation Analysis (CCA) at various optimization techniques with
different features for normal and CVD cases. It is widely acceptable that CCA values are more than 0.5,
and it indicates a close correlation among the variables. As shown in Table 9, CCA values indicate that
there is no correlation among the CVD and normal cases.

Table 9. CCA at various optimization techniques with different features for normal and CVD cases.

Features Optimization Methods CCA

Fuzzy-Inspired and Modeled Features

DS 0.14305

SFLA 0.1089

WS 0.12193

AMO 0.1191

Table 10 indicates the consolidated results of accuracy (%) among the classifiers at various
optimization techniques with different features for normal cases. In the DS optimization, MLP attained
higher accuracy of 93.36%, and the Logistic Regression (LR) classifier arrived at a lower accuracy of
77.47%. As in the case of SLFA, the RBF classifier reached 92.45% accuracy, while the KNN classifier
placed a low accuracy of 78.25%. For the WS optimization method, the RBF classifier maintained an
accuracy of 94.79%, and here also, the KNN classifier is at a low accuracy of 78.33%. In the case of the
AMO process, SVM–RBF attained a higher accuracy of 92.71%, and the LR classifier reduced to a low
accuracy of 76.2%.

Table 10. Consolidated results of accuracy (%) among the classifiers at various optimization techniques
with different features for normal cases.

Features Optimization Methods LR FLDA KNN RBF MLP SVM-RBF

Fuzzy-Inspired and
Modeled Features

DS 77.47188 79.17 85.42 91.47406 93.36 93.23

SFLA 84.08213 81.055 78.25563 92.45 89.85625 91.93

WS 85.02813 88.025 78.33727 94.795 85.67875 91.67

AMO 76.2025 84.08213 82.095 92.45 90.625 92.71

Table 11 shows the consolidated results of accuracy (%) among the classifiers at various optimization
techniques with different features for CVD cases. In the DS optimization, SVM–RBF attained a higher
accuracy of 93.75%, and the Logistic Regression (LR) classifier arrived at a lower accuracy of 81.51%.
As in the case of SFLA, the RBF classifier reached 93.23% of accuracy, while the KNN classifier placed
at a low accuracy of 82.29%. For the WS optimization method, the SVM–RBF classifier maintained an
accuracy of 94.66%, and here also, the KNN classifier is at a low accuracy of 85.02%. In the case of
the AMO process, SVM–RBF attained a higher accuracy of 95.05%, and the KNN classifier reduced to
a low accuracy of 81.77%.
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Table 11. Consolidated results of accuracy (%) among the classifiers at various optimization techniques
with different features for CVD cases.

Features Optimization Methods LR FLDA KNN RBF MLP SVM-RBF

Fuzzy-Inspired and
Modeled Features

DS 81.51 85.84047 83.9845 92.19 90.625 93.75

SFLA 87.10938 84.08213 82.29 93.23 92.19 90.49688

WS 87.10938 92.19 85.02813 92.58 91.47406 94.66438

AMO 88.8125 86.32813 81.77 92.97 86.32813 95.055

Table 12 shows the average performance index (%) among the classifiers at various optimization
techniques with different features for normal cases. It is observed from Table 12 that for the DS
optimization method, LR and FLDA have low PI values, and MLP has a high PI value of 84.66%. In the
SLFA, KNN has the lowest PI of 23.01%, and the RBF classifier has a high PI of 82.18%. As in the WS
optimization method once again, RBF attained a high PI of 88.38%, and the KNN classifier is at a low
PI of 23.51%. For the AMO process, a high PI of 82.93% is arrived in the SVM–RBF classifier, and LR is
ebbed at a low PI value of 9.12%.

Table 12. Average Performance Index (%) among the classifiers at various optimization techniques
with different features for normal cases.

Features Optimization Methods LR FLDA KNN RBF MLP SVM-RBF

Fuzzy-Inspired and
Modeled Features

DS 17.9325 28.59 58.83 79.43063 84.66125 84.315

SFLA 53.27363 38.93031 23.01625 82.18125 78.4275 80.72125

WS 57.22125 69.7275 23.51391 88.38 59.85 80.01

AMO 9.128125 53.27363 44.1925 82.18125 76.92 82.93

Table 13 shows the average Performance Index (%) among the classifiers at various optimization
techniques with different features for CVD cases. It is observed from Table 13 that for the DS
optimization method, LR has a PI value of 41.29%, and SVM–RBF has a high PI value of 85.7%. In SLFA,
KNN has the lowest PI of 45.16%, and the RBF classifier has a high PI of 84.315%. As in the WS
optimization method, once again, SVM–RBF attained a high PI of 88.045%, and the KNN classifier has
a low PI of 57.22%. For the AMO process, a high PI of 89.18% is arrived in the SVM–RBF classifier,
and the KNN classifier is ebbed at a low PI value of 42.58%.

Table 13. Average Performance Index (%) among the classifiers at various optimization techniques
with different features for CVD cases.

Features Optimization Methods LR FLDA KNN RBF MLP SVM-RBF

Fuzzy-Inspired and
Modeled Features

DS 41.29 60.4875 52.8515 81.4325 76.92 85.7

SFLA 65.2125 53.27363 45.16 84.315 81.4325 77.17125

WS 65.2125 81.4325 57.22125 82.55563 79.43063 88.045

AMO 74.32875 62.3175 42.58 83.6225 62.3175 89.18

Table 14 denotes the average performance of parameters among the classifiers at various
optimization techniques with different features for normal cases. As observed from Table 14, LR and
KNN are the least preferred classifiers because of their low performance among all the parametric
values such as accuracy, PI, GDR, and error rate. The RBF classifier is outperforming in the parametric
value amongst all other classifiers across the four optimization methods.
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Table 14. Average performance of parameters among the classifiers at various optimization techniques
with different features for normal cases.

Features Parameters (%) LR FLDA KNN RBF MLP SVM–RBF

Fuzzy-Inspired and
Modeled Features

Performance Index 34.38888 47.63036 37.38816 83.04328 74.96469 81.99406

Accuracy 80.69616 83.08303 81.02697266 92.79227 89.88 92.385

GDR 61.39114 66.16368 62.05419 85.58453 79.75384 84.77

Error Rate 38.60886 33.83632372 37.94581 14.41547 20.24616 15.23

GDR means Good Detection Rate.

Table 15 denotes the average performance of parameters among the classifiers at various
optimization techniques with different features for CVD cases. As observed from Table 15, the KNN
classifier is the least preferred classifier because of its low performance among all the parametric values
such as accuracy PI, GDR, and error rate. The SVM–RBF classifier outperforms in the parametric
values of all other classifiers across the four optimization methods.

Table 15. Average performance of parameters among the classifiers at various optimization techniques
with different features for CVD cases.

Features Parameters (%) LR FLDA KNN RBF MLP SVM-RBF

Fuzzy-Inspired and
Modeled Features

Performance Index 61.51094 64.37778 49.45319 82.98141 75.02516 85.02406

Accuracy 86.13531 87.11018 83.26815625 92.7425 90.1543 93.49156

GDR 72.26633 70.92411 66.53739 85.485 80.30859 86.98219

Error Rate 27.73367 25.78035344 33.46261 14.515 19.69141 13.01781

GDR means Good Detection Rate.

7. Conclusion and Future Work

In the microvascular tissue bed, to detect the blood volume changes, PPG is used for the analysis
of various disorders in the human body. With the help of a pulse oximeter, a PPG is often combined
so that the skin is illuminated, and the light absorption changes are measured. In this work, a new
approach has been developed for the PPG signal classification, as no previous works in this fuzzy
adopted methodology have been reported so far. The extracted parameters are initially modeled with
the help of fuzzy techniques, and then four types of optimization are used to get the best optimized
values. Finally, the optimized values are classified with suitable classifiers to get the best results. When
fuzzy-inspired modeling is implemented with AMO optimization and classified with the Support
Vector Machine–Radial Basis Function (SVM–RBF) classifier, a classification accuracy of 95.05% is
obtained for CVD cases. The second-best classification results are obtained when fuzzy-inspired
modeling is implemented with WS optimization and classified with RBF reporting an accuracy of
94.79%. The third-best classification results are obtained when fuzzy-inspired modeling is implemented
with WS optimization and classified with SVM–RBF, reporting an accuracy of 94.66%. Future works
aim to work with other classifiers, especially deep learning, for a better classification of CVD levels.
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