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ABSTRACT
This study aimed to develop a computed tomography (CT)-based radiomics model capable of precisely 
predicting hyperprogression and pseudoprogression (PP) in patients with non-small cell lung cancer (NSCLC) 
treated with immunotherapy. We retrospectively analyzed 105 patients with NSCLC, from three institutions, 
treated with immune checkpoint inhibitors (ICIs) and categorized them into training and independent testing 
set. Subsequently, we processed CT scans with a series of image-preprocessing techniques, and 6008 radiomic 
features capturing intra- and peritumoral texture patterns were extracted. We used the least absolute shrinkage 
and selection operator logistic regression model to select radiomic features and construct machine learning 
models. To further differentiate between progressive disease (PD) and hyperprogressive disease (HPD), we 
developed a new radiomics model. The logistic regression (LR) model showed optimal performance in 
distinguishing PP from HPD, with areas under the receiver operating characteristic curve (AUC) of 0.95 (95% 
confidence interval [CI]: 0.91-0.99) and 0.88 (95% CI: 0.66-1) in the training and testing sets, respectively. 
Additionally, the support vector machine model showed optimal performance in distinguishing PD from 
HPD, with AUC of 0.97 (95% CI: 0.93-1) and 0.87 (95% CI: 0.72-1) in the training and testing sets, respectively. 
Kaplan‒Meier survival curves showed clear stratification between PP predicted by the radiomics model and true 
progression (HPD and PD) (hazard ratio = 0.337, 95% CI: 0.200–0.568, p < 0.01) in overall survival. Our study 
demonstrates that radiomic features extracted from baseline CT scans are effective in predicting PP and HPD in 
patients with NSCLC treated with ICIs.
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Introduction

The introduction of immune checkpoint inhibitors (ICIs) has 
transformed the treatment paradigm for various malignan-
cies, including non-small cell lung cancer (NSCLC). 
Immunotherapy, distinct from other therapeutic modalities, 
elicits atypical responses, including pseudoprogression (PP) 
and hyperprogressive disease (HPD). This has led to the 
development of immune-related response evaluation criteria, 
including the immune-related Response Criteria (irRC),1 

immune-related Response Evaluation Criteria in Solid 
Tumors (irRECIST),2 and immune-based Response 
Evaluation Criteria in Solid Tumors (iRECIST).3 

Pseudoprogression, characterized by a transient increase in 
the tumor burden due to delayed tumor shrinkage, should be 
distinguished from true tumor progression, encompassing 
hyperprogression and progression. Accurate identification 
of pseudoprogression is critical because it directly affects 
clinical decision making in patients who may benefit from 
ICI therapy. The incidence of pseudoprogression ranges from 
0.6% to 9.96%,1,4–6 depending on tumor type and the criteria 

employed for assessment. HPD is characterized by an accel-
erated rate of tumor growth, which typically results in the 
deterioration of the patient’s condition after 
immunotherapy.7 The incidence of HPD varies from 5.0% 
to 37.0%,8–11 with variations attributed to tumor histology 
and the applied diagnostic criteria.

The underlying biological and clinical causes of PP 
development in response to ICIs are poorly understood. 
Based on published findings, PP can be linked to the 
presence of immune cells, such as CD103+ tissue-resident 
memory cells and T cells.12,13 Another mechanism could 
involve the delayed establishment of an adaptive immune 
response, resulting in sustained tumor growth until 
a sufficient immune response is mounted.14 The pathogen-
esis of HPD may be associated with the amplification of 
EGFR or MDM2/4,15 while IFNγ signaling might also con-
tribute to tumor hyperprogression.16 Various molecular 
changes, such as circulating tumor DNA (ctDNA),17 

Interleukin-8 (IL-8),18 CXC motif chemokine ligand 2 
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(CXCL2),19 and neutrophil-to-lymphocyte ratio (NLR)20,21 

can serve as potential indicators for evaluating atypical 
responses. However, these approaches have not been con-
sistently replicated in all studies. Biopsy is an important 
diagnostic tool for pseudoprogression. Accumulating evi-
dence indicates that pseudoprogression may result from 
lymphocyte infiltration into the tumor, leading to 
a transient increase in tumor size instead of actual neoplas-
tic cell growth.6 However, biopsies are frequently limited 
by inadequate tissue samples, spatial heterogeneity, and 
procedural risks.

Computed tomography (CT) is a routine examination 
tool that provides a large amount of valuable information. 
CT imaging-based radiomics is the process of separating 
a region of interest (ROI), extracting quantitative features 
using artificial intelligence algorithms, and conducting sub-
sequent data analysis to provide decision support.22 

Radiomic features have been applied to guide clinical deci-
sion-making, including differential diagnosis23,24 and treat-
ment response prediction for various cancers.25,26 However, 
investigations utilizing radiomic features to predict atypical 
responses to cancer immunotherapy are lacking. Studies 
have demonstrated the efficacy of 18F-fluoro-ethyl- 
tyrosine PET imaging in accurately identifying the progres-
sion disease (PD) and PP of brain metastases in patients 
with NSCLC undergoing immunotherapy and 
radiotherapy.27 Baseline CT scans can serve as a predictive 
tool for assessing the risk of HPD in patients with NSCLC 
treated with immunotherapy.28 However, differentiating 
between PP and HPD in patients with NSCLC post- 
immunotherapy lacks investigation, necessitating 
a noninvasive and instant predictive method.

This study aimed to develop and evaluate a radiomics model 
capable of accurately predicting PP and HPD in patients with 
NSCLC.

Materials and methods

Study design

This retrospective observational study adhered to the prin-
ciples outlined in the Declaration of Helsinki and 2008 
Declaration of Istanbul. The study was approved by the 
Ethics Committee for Clinical Research of the Shandong 
Cancer Hospital and Institute (SDTHEC2023010013), and 
the requirement for informed consent was waived.

Patients

We retrospectively collected data from 1,146 patients with NSCLC 
who were treated with ICIs between May 2019 and October 2022. 
Subsequently, radiomics models were constructed using datasets 
from three distinct hospitals: the training set from Shandong 
Cancer Hospital and the external testing set from both Shandong 
Provincial Hospital and Shandong Proton Center. The inclusion 
criteria included (1) all tumors pathologically confirmed as 
NSCLC, (2) at least two cycles of ICIs administered, and (3) age 
˃18 years. The exclusion criteria were (1) no previous, baseline, or 
follow-up CT scans; (2) CT showing inflammatory lung cancer or 
non-measurable lesions; (3) obvious artifacts on CT images; and 
(4) variable response to treatment. Finally, 105 patients were 
included in the study. The overall work design is illustrated in 
Figure 1.

CT image acquisition

All patients underwent standard contrast-enhanced computed 
tomography (CECT). CT examinations were conducted using 
various devices, including Philips, Siemens, Toshiba, and GE CT 
scanners. The adopted scanning protocol utilized a tube voltage of 
120 kV, a tube current ranging from 160–300 mA, an in-plane 

Figure 1. Workflow and pipeline overview. Tumor identification and annotation were performed before immunotherapy using the PyRadimocs package based on 
python (version 3.7.1) to extract intra-tumoral and peri-tumoral radiomic features. Subsequently, LASSO regression was employed to select relevant features from the 
training set, followed by the construction of radiomics models using LR and SVM classifiers. These models were validated using an independent testing set.

2 Y. LI ET AL.



pixel resolution between 0.68–0.87 mm, and operated in the helical 
scanning mode.

Identifying PP, HPD, and PD

Patient responses were assessed by two thoracic radiologists 
with 10 and 8 years of clinical experience, respectively. These 
radiologists were blinded to the patients’ clinical histories and 
performed evaluations based on baseline and post- 
immunotherapy CT scans (within 6 months) in accordance 
with RECIST version 1.1. PP was defined as a ≥ 25% increase 
in tumor burden at week 12 that was not confirmed as 
a progressive disease at the next assessment29 (Figure 2(a)). 
Meanwhile, in order to determine the HPD, we defined HPD as 
the first evaluation of tumor progression following immu-
notherapy, characterized by a rate of progression exceeding 
twice the baseline and a tumor size greater than 50% 
(Figure 2(c)). The criterion for PD was defined as 
a minimum increase of ≥ 20% in the total sum of tumor target 
diameters (Figure 2(b)).

Segmentation and feature extraction

Two expert thoracic radiologists separately mapped the ROI on 
the tumor’s contour in pretreatment CECT images using ITK- 
SNAP software (version 3.8.0, available at https://www.itksnap. 
org). Subsequently, an expanded morphological approach was 
employed to delineate a 5 mm-wide ring that extended radially 
from 0 to 15 mm beyond the tumor nodule, enabling compre-
hensive characterization of peritumoral features while exclud-
ing adjacent healthy tissues or organs. To evaluate consistency, 

both intra- and interobserver reliabilities were tested by having 
the two radiologists repeat the segmentation for 30 randomly 
chosen patients after 1-month interval. We employed specific 
preprocessing steps in our imaging analysis, focusing on voxel 
resampling and gray-intensity normalization. Voxel resam-
pling standardized the pixel spacing across all images to ensure 
consistent voxel dimensions of 1 × 1 × 1 mm. Additionally, we 
implemented gray intensity normalization to standardize the 
range of intensity values, reducing variations unrelated to 
tissue properties. The PyRadiomics package in Python (version 
3.7.1) was used to extract 1502 radiomic features from each 
region.30 In total, 6008 radiomic features were extracted from 
the peritumoral (0–5 mm, 5–10 mm, and 10–15 mm) and 
intratumoral areas. The Z-score normalization method was 
employed to standardize radiomic features in the training set, 
and the same method was used to normalize features in the 
testing set using the mean and standard deviation values 
derived from the training set.

Radiomics model building

To evaluate and analyze patients in the dataset, unsupervised 
clustering of radiomic features was performed using heat maps 
to distinguish between patients with different treatment 
responses.

Intra-class correlation coefficient (ICC) was computed to 
assess both intra- and inter-observer consistency. Features 
demonstrating strong intra- and inter-observer reliability 
(ICC >0.8) were selected for further analysis. The Mann‒ 
Whitney U test or t-test was employed to identify radiomic 
features with P-value ˂0.05. To eliminate redundant variables, 

Figure 2. CECT scans: (a) Pseudoprogression, (b) Progression, and (c) Hyperprogression. Baseline CECT was performed when the patient was receiving immunotherapy, 
pre-treatment CT was performed more than 2 weeks before immunotherapy, and the first and second evaluations were within 6 months.
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Spearman’s correlation analysis was applied, removing features 
displaying a high correlation (Spearman’s coefficient > 0.90) 
from the dataset.

A synthetic minority oversampling technique (SMOTE) was 
implemented to address class imbalance in the training set. 
This expanded the sample size of the patients with PP, achiev-
ing a more balanced dataset. Subsequently, the least absolute 
shrinkage and selection operator (LASSO) regression algo-
rithm was employed with 10-fold cross-validation to identify 
the top-performing features with nonzero coefficients (Figure 
S1). Machine learning-based models were developed using 
classifiers, such as support vector machine (SVM) and logistic 
regression (LR), and evaluated on an independent testing set. 
The same radiomics modeling strategy was employed for the 
HPD group to distinguish between HPD and PD. The model’s 
predictive efficacy was assessed using various metrics, includ-
ing the area under the receiver operating curve (AUC) with 
a 95% confidence interval (CI), accuracy (ACC), sensitivity 
(SEN), specificity (SPE), positive predictive value (PPV), nega-
tive predictive value (NPV), and F1 score.

In our radiomics model, employing SVM and LR algo-
rithms, the cutoff value for distinguishing between low- and 
high-score cases is determined by the natural decision thresh-
olds inherent in these models.31 Progression-free survival 
(PFS) and overall survival (OS) were compared between the 
two groups. PFS was defined as the duration from the initiation 
of ICIs treatment to either disease progression or death due to 
any cause, and OS was defined as the duration between the 
initiation of ICIs treatment and death. To assess PFS and OS, 
we employed the Kaplan‒Meier method and evaluated the 
differences in Kaplan‒Meier curves using the log-rank test.

Statistical analyses

Statistical analyses were performed using SPSS (version 26.0; 
IBM Corp., Armonk, NY, USA) and R software (version 4.2.2). 
Blood variables did not follow a normal distribution and were 
reported as medians (interquartile ranges). The Kruskal‒ 
Wallis test was used to compare blood variables across different 
groups. Associations between radiomic features and clinical 
variables were assessed using the unpaired, two-tailed chi- 
square test or Fisher’s exact test for categorical variables and 
the Student’s t-test or Mann–Whitney U-test for continuous 
variables. Statistical significance was defined as a two-sided 
p<0.05.

Results

Patient dataset

We retrospectively collected data of 1146 patients who under-
went immunotherapy, of whom 105 met the predefined inclu-
sion criteria, with 16 exhibiting PP, 44 exhibiting HPD, and 45 
exhibiting PD. The distribution of patients in the training and 
testing sets is presented in Table S1. Table 1 summarizes the 
clinicopathological characteristics of the patients. The patients 
who received immunochemotherapy demonstrated 
a significantly lower incidence of HPD compared to those 
treated with ICIs monotherapy (P<0.001). No statistically 

significant differences (P>0.05) were observed in sex, age, 
smoking history, ECOG performance status, number of prior 
lines of systemic cancer therapy, combined targeted therapy, 
histology, PD-L1 expression status, EGFR mutation status, 
liver metastasis, or number of metastases among the three 
groups. Moreover, no statistically significant differences were 
observed in lymphocytes, neutrophils, LDH (lactate dehydro-
genase), NLR, dNLR (derived neutrophil-to-lymphocyte ratio), 
and SII (Systemic Immune Inflammation Index) (Table S2).

PP radiomics model development and testing

A heatmap analysis of intratumoral and 0–5 mm peritumoral 
radiomic features revealed that cluster 1 encompassed 81.3% of 
patients with PP (Figure 3(a)). Similarly, heatmap analysis of 
5–15 mm peritumoral radiomic features demonstrated cluster-
ing of patients with PP (Figure 3(b)), potentially indicating that 
these specific patient groups had distinct radiomic features 
than that of patients with true progression.

Seven radiomic features, including four intratumoral and 
three peritumoral (Table S3), were selected using LASSO 
regression analysis. The selected radiomic features did not 
exhibit any significant correlation with clinical variables, as 
determined by Pearson’s correlation coefficient. (Figure S2A).

The LR model exhibited a superior performance. The radio-
mics model score was significantly higher in the PP group than 
in the true progression group, both in the training (mean, 0.84  
± 0.17 vs. 0.15 ± 0.27, p<0.0005) and testing (mean, 0.79 ± 0.40 
vs. 0.10 ± 0.28, p<0.05) sets (Figure 5(a,b)). In the training set 
(n = 75), the LR radiomics model achieved an AUC of 0.95 
(95% CI, 0.91–0.99) (Figure 4(a)) and demonstrated 
a predictive accuracy of 0.88 for distinguishing PP from other 
response patterns, with sensitivity and specificity of 0.92 and 
0.86, respectively. In the independent testing set (n = 30), the 
LR model exhibited an AUC of 0.88 (95% CI, 0.66–1) 
(Figure 4(b)), with a model accuracy, sensitivity, and specificity 
of 0.90, 0.83, and 0.92, respectively; the F1 score was observed 
to be 0.77, while the positive and negative predictive rates were 
0.71 and 0.96, respectively (Table S5).

HPD radiomics model development and testing

Our results indicated that patients with HPD were more likely 
to cluster together in the unsupervised clustering analysis of 
patients with true progression (PD and HPD), suggesting that 
they had a distinct radiomic signature compared to those with 
PD (Figure 3(c,d)). Subsequently, LASSO regression analysis 
was performed on the radiomic features, resulting in the selec-
tion of seven features: four intratumoral and three peritumoral 
(Table S3). Pearson’s correlation analysis was conducted on the 
selected radiomic and clinical features; however, no significant 
correlations were identified (Figure S2B).

The SVM radiomics model demonstrated optimal classi-
fier performance. In the training (0.87 ± 0.47 vs −0.74 ± 0.62, 
p<0.0005) and testing (0.58 ± 0.70 vs. 0.44 ± 0.71, p<0.005) 
sets (Figure 5(c,d)), the radiomics model scores of the PD 
group were higher than those of the HPD group. In the 
training set, the AUC for distinguishing HPD responders 
was 0.97 (95% CI, 0.93–1) (Figure 4(c)), with an accuracy of 
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0.92 and a sensitivity and specificity of 0.88 and 0.97, respec-
tively. In the testing set, the model achieved an AUC of 0.87 
(95% CI, 0.72–1) (Figure 4(d)), with an accuracy of 0.83, and 
a sensitivity and specificity of 0.92 and 0.75, respectively. The 
F1 score is 0.85 (Table S5).

In the univariate analysis, patients receiving immunother-
apy without chemotherapy demonstrated a significantly higher 
risk of HPD than that of those receiving combination che-
motherapy (p = 0.03) (Table S4). By incorporating this factor 
into the radiomics model score, a clinical-radiomic model was 
created, demonstrating enhanced predictive capability on both 
the training and testing sets, achieving AUCs of 0.97 and 0.90, 
respectively (Figure S3).

Radiomics model to predict the outcome of NSCLC 
immunotherapy

Patients with PP demonstrated significantly prolonged PFS than 
that of patients with true progression (hazard ratio [HR] = 0.246, 
95% CI: 0.167–0.362, p<0.01) (Figure 5(e)). Furthermore, 
patients with PD had a significantly longer PFS than that of 

patients with HPD (HR = 0.397, 95% CI: 0.250–0.631; p<0.01) 
(Figure 5(f)). The radiomics model for PP revealed that patients 
with high scores in the model experienced extended PFS that 
that of patients with low scores (HR = 0.430, 95% CI: 0.291– 
0.635, p<0.01) (Figure 5(e)). Similarly, the HPD radiomics 
model also indicated that patients with high scores had 
a longer PFS than that of patients with low scores (HR = 0.458, 
95% CI: 0.291–0.721; p<0.01) (Figure 5(f)).

Furthermore, we conducted a comprehensive analysis of the 
OS. We observed that patients with PP had a significantly 
longer OS than that of patients with true progression 
(HR = 0.280, 95% CI: 0.161–0.486, p<0.01) (Figure 5(g)). 
Similarly, patients with PD had a markedly longer OS than 
those with HPD (HR = 0.412, 95% CI: 0.244–0.696, p<0.01) 
(Figure 5(h)). In the predictive model for PP, patients with 
high scores demonstrated a substantially longer OS than those 
with low scores (HR = 0.337, 95% CI: 0.200–0.568, p<0.01) 
(Figure 5(g)). A parallel trend was observed in the HPD pre-
dictive model, where patients with high scores also exhibited 
a significantly extended OS compared to those with low scores 
(HR = 0.506, 95% CI: 0.300-0.853, p<0.01) (Figure 5(h)).

Table 1. Clinical characteristics of the dataset.

ALL HPD PD PP
P value 

(χ2)

Number of patients 105(100) 44(41.9) 45(42.9) 16(15.2)
Sex

Female 22(21.0) 11(25.0) 7(15.6) 4(25.0) 0.497
Male 83(79.0) 33(75.0) 38(84.4) 12(75.0)

AGE
>60 41(39.0) 22(50.0) 15(33.3) 4(25.0) 0.137
≤60 64(61.0) 22(50.0) 30(66.7) 12(75.0)

Smoking
Never 51(48.6) 24(54.5) 21(46.7) 6(37.5) 0.505
Current/former 54(51.4) 20(45.5) 24(53.3) 10(62.5)

ECOGa

0–1 100(95.2) 41(93.2) 43(95.6) 16(100.0) 0.737
≥2 5(4.8) 3(6.8) 2(4.4) 0(0)

Number of lines of prior systemic cancer therapy
>2 26(24.8) 15(34.1) 8(17.8) 3(18.8) 0.203
≤2 79(75.2) 29(65.9) 37(82.2) 13(81.2)

Combine chemotherapy
With 87(82.9) 29(65.9) 43(95.6) 15(93.8) 0.001*
Without 18(17.1) 15(34.1) 2(4.4) 1(6.2)

Combine targeting
With 20(19.0) 9(20.5) 6(13.3) 5(31.3) 0.294
Without 85(81.0) 35(79.5) 39(86.6) 11(68.7)

Histology
Non-SCC 73(69.5) 34(77.3) 31(68.9) 8(50) 0.116
SCCb 32(30.5) 10(22.7) 14(31.1) 8(50)

TNM stage
III 24(22.9) 11(25.0) 8(17.8) 5(31.3) 0.493
IV 81(77.1) 33(75.0) 37(82.2) 11(68.8)

PDL1
Positive 17(16.2) 3(6.8) 9(20.0) 5(31.3) 0.089
Negative 17(16.2) 8(18.2) 8(17.8) 1(6.2)
Unknown 71(67.6) 33(75.0) 28(62.2) 10(62.5)

EGFR
Positive 14(13.3) 8(18.2) 5(11.1) 1(6.3) 0.547
Negative 41(39.1) 16(36.4) 20(44.4) 5(31.3)
Unknown 50(47.6) 20(45.4) 20(44.4) 10(62.5)

Liver metastasis
With 15(14.3) 7(15.9) 7(15.6) 1(6.3) 0.612
Without 90(85.7) 37(84.1) 38(84.4) 15(93.8)

Metastasis
>3 46(43.8) 24(54.5) 18(40.0) 4(25.0) 0.105
≤3 59(56.2) 20(45.5) 27(60.0) 12(75.0)

aECOG, Eastern Cooperative Oncology Group. b SCC, squamous cell carcinoma.
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Discussion

The utilization of a noninvasive and widely employed techni-
que to prognosticate the risk of PP and HPD after immu-
notherapy holds paramount significance, while CT radiomics 
models exhibit inadequate development and validation for 
predicting the risk of PP and HPD. We developed CT radio-
mics models based on machine learning for noninvasive pre-
diction of PP and HPD in patients with NSCLC undergoing 
immunotherapy, specifically using SVM and LR models known 
for their strong generalization capabilities. In the PP group, the 
LR model outperformed, achieving an AUC of 0.95 and 0.88 in 
the training and testing sets, respectively. The SVM model 
demonstrated a slightly lower efficacy, with AUCs of 0.95 and 
0.84 for the training and testing sets, respectively. In the HPD 
group, the SVM model outperformed, achieving an AUC of 
0.97 and 0.87 in the training and testing sets, respectively, 
whereas the LR model showed comparatively lower perfor-
mance with AUCs of 0.96 and 0.80 for the training and testing 
sets, respectively.

The incidence of pseudoprogressive disease was 1.7%, align-
ing with the findings of previous studies.6 Existing literature 
demonstrates promising diagnostic potential for differentiating 
PP using NLR, ctDNA, IL-8, and CXCL2,17–20 although these 
tests, conducted only on small sample sizes, require further 
validation through larger-scale studies. Repeated pathological 
examinations of the primary or metastatic site can similarly 
facilitate an accurate diagnosis; however, biopsies carry inherent 
invasiveness and associated risks. Radiomics has emerged as 
a significant digital biopsy method for predicting the biological 
features of tumors and has demonstrated potential for 

noninvasive assessment of immunotherapy efficacy.32 Tian 
et al. used radiomic features to predict the expression of PDL1 
in NSCLC and inferred the clinical outcome of 
immunotherapy.33 Existing evidence suggests that the pattern 
of PP may be attributed to immune cell infiltration, such as 
T lymphocytes and CD103+ tissue-resident memory cells, which 
exhibit distinct CT radiomic features compared to tumor cells, 
leading to a transient increase in tumor burden.1,12,13,34–36 

Additionally, the underlying pathogenesis of PP is linked to 
delayed activation of the adaptive immune system14,29 and vas-
cular changes surrounding the tumor.37,38 Both factors are intri-
cately linked to the tumor microenvironment (TME), and 
numerous studies have shown that the TME exerts a profound 
influence on tumor response following treatment. The peritu-
moral area plays a crucial role in the TME,39–41 Sun et al. 
predicted CD8 cells with peritumoral radiomic features and 
used these features to predict the immunotherapy response.41 

He et al. demonstrated that the selection of the largest lesion as 
a measure for assessing treatment response offers enhanced 
accuracy and convenience,42 thus, we selected the largest lesion 
for delineation. Our analysis revealed excellent performance of 
the radiomics model, incorporating intratumoral and peritu-
moral radiomic features, in predicting PP and true progression.

In this study, the incidence of HPD was 5%, consistent with 
previous reports.11,43 Several reports have indicated a potential 
association between HPD and various factors, such as age, sex, 
EGFR, and metastatic burden;44,45 however, findings are 
mostly contradictory across studies. In our study, compared 
to patients receiving ICIs monotherapy, those receiving immu-
nochemotherapy exhibited a significantly lower incidence of 
HPD, suggesting that combination chemotherapy may 

Figure 3. Radiomic feature selection. (a) Heat maps of unsupervised clustering analysis for intratumoral and 0–5 mm peritumoral radiomic features with 81.3% PP 
clustered together in cluster 1. (b) Heat maps of unsupervised clustering analysis for 5–15 mm peritumoral radiomic features of the PP group. (c) Heat maps of 
unsupervised clustering analysis for intratumoral and 0–5 mm peritumoral radiomic features with 65.9% HPD clustered together in cluster 2. (d) Heat maps of 
unsupervised clustering analysis for 5–15 mm peritumoral radiomic features of the HPD group.
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mitigate the risk of developing HPD after ICIs treatment.43,46 

The pathogenesis of HPD is closely associated with the TME, 
and several studies have demonstrated that the interaction 
between the immune checkpoint antibodies, Fc/FcR, and 
macrophages serves as a mechanism of HPD following PD-1/ 
PD-L1 blockade. An imbalance between effector and regula-
tory T cells within the TME is also implicated in HPD after PD- 
1 blockade.47 Furthermore, the main mechanism underlying 
ICI-related HPD involves the immunogenicity, metabolism, 
and cancer pathways through the IFNγ PKM2-β-catenin cas-
cade in preclinical models.16 The pathogenesis of HPD is 
closely associated with TME, and the predictive performance 
of intratumoral and peritumoral radiomics models surpasses 
that of a single peritumoral model.48 Therefore, we extracted 
the intratumoral and peritumoral radiomic features to con-
struct the radiomics model that demonstrated excellent perfor-
mance in our analysis.

Deep learning, an advanced subset of machine learning, 
excels in autonomously extracting hierarchical features 
from raw data, showing remarkable proficiency and diag-
nostic versatility. This is exceptionally relevant in oncology 
because of its critical role in cancer diagnosis, monitoring 
treatment response, and predicting patient outcomes.49–52 

By using deep learning, we can substantially increase the 
accuracy of predictive models for PP and HPD through 
comprehensive analysis of complex, high-dimensional data-
sets that integrate radiomics, genomic, and clinical data, 
optimizing patient outcomes and minimizing ineffective 
therapies. Although our current research employed tradi-
tional machine-learning techniques owing to dataset limita-
tions, the accumulation of larger datasets allows us to 
transition to deep-learning techniques for a more sophisti-
cated analysis. This application of deep learning is set to 
transform our predictive capabilities, offering a nuanced 

Figure 4. Performance analysis of the models. The ROC curve of LR and SVM model in the PP training set (a) and the testing set (b). The ROC curve of LR and SVM model 
in the HPD training set (c) and the testing set (d).
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understanding of the relationship between radiomic 
changes and immune response, thus enabling a more pre-
cise identification of patients requiring an alternative ther-
apeutic approach for HPD compared to those with PP, 
where continued immunotherapy may be beneficial.

This study has several limitations. First, the retrospective 
nature of the study and low incidence of PP and HPD resulted 
in a limited number of cases available for analysis. Second, as 
this was a multicenter study, CT parameters varied across 
different institutions; therefore, we standardized the images 
before feature extraction. Finally, although PDL1 and EGFR 
expression have demonstrated predictive values for PP and 
HPD in other studies, their absence from our clinical factors 
hindered our ability to fully assess their predictive power.

Conclusion

In conclusion, our study used a radiomics model to predict PP 
and HPD following immunotherapy in NSCLC. Intratumoral 
and peritumoral radiomic features based on noninvasive CT 
can be used to detect atypical tumor responses before immu-
notherapy, aiding clinicians in effectively managing patients 
and tailoring personalized treatment options.
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