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Abstract

Background: Transcriptome analysis of breast cancer discovered distinct disease subtypes of clinical significance.
However, it remains a challenge to define disease biology solely based on gene expression because tumor biology
is often the result of protein function. Here, we measured global proteome and transcriptome expression in human
breast tumors and adjacent non-cancerous tissue and performed an integrated proteotranscriptomic analysis.

Methods: We applied a quantitative liquid chromatography/mass spectrometry-based proteome analysis using an
untargeted approach and analyzed protein extracts from 65 breast tumors and 53 adjacent non-cancerous tissues.
Additional gene expression data from Affymetrix Gene Chip Human Gene ST Arrays were available for 59 tumors
and 38 non-cancerous tissues in our study. We then applied an integrated analysis of the proteomic and transcriptomic
data to examine relationships between them, disease characteristics, and patient survival. Findings were validated in a
second dataset using proteome and transcriptome data from “The Cancer Genome Atlas” and the Clinical Proteomic
Tumor Analysis Consortium.

Results: We found that the proteome describes differences between cancerous and non-cancerous tissues that are not
revealed by the transcriptome. The proteome, but not the transcriptome, revealed an activation of infection-related
signal pathways in basal-like and triple-negative tumors. We also observed that proteins rather than mRNAs are increased
in tumors and show that this observation could be related to shortening of the 3′ untranslated region of mRNAs in
tumors. The integrated analysis of the two technologies further revealed a global increase in protein-mRNA concordance
in tumors. Highly correlated protein-gene pairs were enriched in protein processing and disease metabolic pathways. The
increased concordance between transcript and protein levels was additionally associated with aggressive disease,
including basal-like/triple-negative tumors, and decreased patient survival. We also uncovered a strong positive
association between protein-mRNA concordance and proliferation of tumors. Finally, we observed that protein
expression profiles co-segregate with a Myc activation signature and separate breast tumors into two subgroups
with different survival outcomes.

Conclusions: Our study provides new insights into the relationship between protein and mRNA expression in
breast cancer and shows that an integrated analysis of the proteome and transcriptome has the potential of
uncovering novel disease characteristics.
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Background
Gene expression profiling of breast tumors has led to
the landmark discovery of disease subtypes and novel
biomarkers for therapy response and disease survival [1–4].
However, it remains a challenge to define breast cancer
biology solely based on gene expression and without know-
ledge of related changes in the proteome because proteins
are key functional drivers of biology and common targets
of anticancer drugs. Recent technological advances in mass
spectrometry (MS) have laid the groundwork for large-scale
characterization of protein expression in human tissues
using either untargeted or targeted approaches for protein
quantitation [5–8]. System-wide proteomics of the estrogen
receptor (ER)-positive disease revealed some insights
into disease development that were not revealed by
mRNA-based studies [8]. While untargeted proteomics
has advanced our knowledge of breast cancer biology
[5, 6, 8–13] and other cancers [14–16], a more systematic
investigation of the relationship between the tumor prote-
ome and transcriptome, here termed proteotranscriptomic
analysis, has the potential to uncover novel molecular
alterations in breast cancer biology. To this end, we
hypothesized that proteotranscriptomic integration will
reveal novel disease characteristics beyond a single tech-
nology and applied an integrated analysis of proteomic
and transcriptomic data that we jointly collected from
human breast tumors and adjacent non-cancerous tissues
from patients with survival follow-up. A major difference
between this and previous proteome studies is the inclu-
sion of adjacent non-cancerous tissues, African-American
patients, and our ability to assess relationships with pa-
tient survival. Our study revealed that the proteome
and transcriptome describe a partially different tumor
biology and that proteins are more commonly upregulated
in tumors than the corresponding transcripts. Moreover,
our data describe a pathway-centric increase in the
concordance between protein and transcript levels that
is associated with more aggressive disease and decreased
patient survival. These findings were corroborated using
proteome and transcriptome data for 404 breast tumors
from “The Cancer Genome Atlas” (TCGA) and 77 breast
tumors from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) [13, 17].

Methods
Tissue collection
Breast cancer patients were recruited between 1993 and
2003, as described previously [18, 19]. Samples of fresh-
frozen tumor and adjacent non-cancerous tissue were
prepared by a pathologist immediately after surgery and
stored at − 80 °C. Clinical and pathological information
was obtained from medical records and pathology reports.
Details on patient recruitment, specimen collection, and
tumor classification are provided in Additional file 1. The

collection of biospecimens and the clinical and patho-
logical information was approved by the University of
Maryland (UMD) Institutional Review Board (protocol
#0298229). The research was also reviewed and approved
by the NIH Office of Human Subjects Research Protections
(OHSRP #2248).

Mass spectrometry-based analysis of the proteome
Frozen human tissue samples were pulverized under liquid
nitrogen, and extracts for mRNA and protein isolation were
prepared. Extracted proteins were digested with trypsin and
analyzed using an untargeted MS analysis approach as de-
scribed in Additional file 1. For the liquid chromatography
(LC)-MS measurements, 17 fractions per sample were pre-
pared which generated about 1900 individual fractions from
the 118 tissues that were subjected to the MS analysis.
The obtained MS data were searched against the UniProt
Homo sapiens database downloaded from the European
Bioinformatics Institute website (ftp://ftp.ebi.ac.uk/pub/da-
tabases/integr8) using the Proteome Discoverer 2.0 software
(Thermo Fisher Scientific) interfaced with the SEQUEST
HT algorithm and filtered with percolator to yield peptide
identifications at the 1% false discovery rate (FDR) cutoff.
We employed the Protein Scorer and Protein FDR Validator
nodes to apply an additional 5% protein-level FDR. Up to
two missed tryptic cleavage sites and oxidation of methionyl
residues were allowed during this database search. The data
was searched with a precursor ion tolerance of 1.4 Da and a
fragment ion tolerance of 0.5Da and two levels of grouping
were applied, one for peptide grouping and one for protein
grouping. We selected the “strict maximum parsimony
principle” option, and only the best ranked peptide-
spectrum match (PSM) per spectrum was used for protein
identification and grouping. To further reduce false-positive
discovery, we considered only those proteins as correctly
identified when at least two peptides in a tissue sample
uniquely mapped to these proteins. As the last filtering step
that was implemented by us, we calculated protein cover-
age across all samples (Additional file 2: Figure S1A) and
found that the correlation between protein coverage and
abundance is very high (rho = 0.97) when we remove those
proteins from the analysis that are detected in fewer than
10% (n = 12) of the samples (Additional file 2: Figure S1B).
By setting this 10% coverage cutoff (after the initial protein
level 5% FDR using the Proteome Discoverer 2.0 software),
we removed the proteins that are difficult to quantify by
our technology, leading to a total of 7141 quantified pro-
teins in 118 tissues that we included into the analyses. This
approach was validated by showing that the identified pro-
teins in our study largely overlap with proteins identified in
three other studies [8, 12, 13] (Additional file 2: Figure S2).
The peptide spectral counts for each tissue are shown in
Additional file 3: Table S1. The mass spectrometry proteo-
mics data have been deposited with the ProteomeXchange
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Consortium (http://proteomecentral.proteomexchange.org)
under the dataset identifier PXD005692. To assess differen-
tial protein expression between tissues (e.g., tumor vs. non-
cancerous tissue), we used the Bioconductor package
DESeq2 that was shown to perform well in label-free
MS proteomics [20]. Using DESeq2, we estimated the size
factor and median values for the ratios of the observed
counts, controlled for count differences between samples,
and monitored outlier samples using Cook’s distance
(Additional file 2: Figure S1C). We then applied negative
binomial generalized linear model (GLM) fitting and Wald
statistics for significance testing. Furthermore, DESeq2
implements additional filtering that removes statistically
insignificant associations, leading to the preferential removal
of proteins with low counts and insignificant differences
typically due to high dispersion. DESeq2 introduces rlog
(https://bioconductor.org/packages/release/bioc/vignettes/
DESeq2/inst/doc/DESeq2.html#data-transformations-and-
visualization), which is calculated by fitting each protein to
a GLM with a baseline expression (i.e., intercept only) and
computing GLM data for each sample, shrunken with
respect to the baseline, using the empirical Bayes pro-
cedure. rlog incorporates a prior on the sample differences
and removes the dependence of the variance on the mean,
particularly the high variance of the count data when the
mean is low. After rlog normalization, we found that all
samples have a very similar distribution for the trans-
formed proteomic data, as shown in Additional file 2:
Figure S1D. To compare the spectral count-based ranking
of proteins in our study with the ranking of proteins in
the Mertins et al. dataset [13], we plotted z-scaled log con-
verted PSMs for each protein common to both studies.

Gene expression microarray analysis
For gene expression profiling, mRNA was converted into
cDNA using the Ambion WT Expression Kit for Affymetrix
GeneChip Whole Transcript Expression Arrays (Life
Technologies). After fragmentation and labeling using
the GeneChip WT Terminal Labeling Kit from Affymetrix,
ssDNA was hybridized onto Gene Chip Human Gene 1.0
STArrays (representing 28,869 genes) according to Affyme-
trix standard protocols (Santa Clara, CA). The probe cell
intensity data was processed by robust multi-array average
(RMA) algorithm and analyzed with the Bioconductor
limma R package. For more details, including pathway
enrichment analysis, see Additional file 1. We only used
protein-coding genes for pathway annotation. The top
20 enriched pathways enriched for upregulated and
downregulated protein-coding transcripts are shown in
Additional file 4: Table S2.

Protein-mRNA correlation analysis
A protein-mRNA correlation analysis was performed using
the regularized-logarithm transformation (rlog) value of the

spectral counts and the normalized log2 probe intensity for
mRNAs and is described in detail in Additional file 1.
Briefly, we calculated the global Spearman correlation
coefficient, rho, for 5677 and 3316 protein-mRNA pairs
within tumors and non-cancerous tissues, respectively.
Adjusted P values based on the analysis of 59 tumors
and 38 non-cancerous tissues were computed by the
Benjamini-Hochberg procedure [21]. Correlation differ-
ences between the tumors and non-cancerous tissues
were examined by ranking rho for each tissue in the
two groups and then performing a Wilcoxon rank sum test.
A KEGG (Kyoto Encyclopedia of Genes and Genomes)
enrichment analysis was performed using the calculated
Spearman correlation coefficients for all protein-mRNA
pairs and applying the Kolmogorov-Smirnov test to assess
how the concordance between protein/mRNA pairs asso-
ciates with biological processes. Additional analyses, e.g.,
relationships with tumor subtypes and mRNA features,
are described in Additional file 1.

Query of The Cancer Genome Atlas breast cancer
Publicly available TCGA/CPTAC breast cancer data were
downloaded from the Cancer Genomics Data Server
(CGDS, at http://www.cbioportal.org/public-portal). Pro-
cessing of the data to obtain 70 annotated protein-mRNA
pairs for 404 tumors is described in Additional file 1.
TCGA/CPTAC proteomics breast cancer data were down-
loaded together with the corresponding gene expression
via cbioportal. The PAM50 assignment for the tumors
was obtained from the publicly available data provided by
the TCGA analysis group.

Association between protein expression and shortening
of the 3′UTR
We retrieved data from Xia et al. [22], who described
382 genes with significant 3′UTR mRNA shortening in
human breast tumors due to alternative polyadenylation
based on the analysis of 106 TCGA breast tumor-adjacent
tissue pairs.

Tumor proliferation score
We selected the array-based gene expression profiles of
11 cell cycle genes (BIRC5, CCNB1, CDC20, CEP55,
MKI67, NDC80, NUF2, PTTG1, RRM2, TYMS, UBE2C)
and summed them into a metagene score as a marker
for tissue proliferation, as described previously [23].

Non-negative matrix factorization
Non-negative matrix factorization (NMF) was used to
describe tumor subgroups with different protein abundance
profiles. We selected proteins with the highest variability
among the proteins detected in the 59 tumors, using a
median absolute deviation cutoff of 0.5, which resulted
in 1000 proteins for clustering. We applied the consensus
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NMF clustering method in the R package (https://cran.r-
project.org/web/packages/NMF/index.html) to identify
tumor subgroups described by the proteome data. More
details describing the tumor proliferation score and the
NMF analysis including the survival analysis can be found
in Additional file 1.

Statistical analysis
All statistical tests were two-sided, and an association
was considered statistically significant with P < 0.05.
Statistical analyses were performed using the R software
developed by the R Development Core Team at R
Foundation for Statistical Computing and packages in
Bioconductor [24]. We used paired tests for the statistical
analysis of differences in protein and gene expression
between tumor-adjacent normal pairs. Survival analysis,
e.g., Cox regression and Kaplan-Meier methods, was per-
formed using the survival package of R. For correlation
analysis, the R function “cor.test” was used. We applied
the Spearman rank correlation test for protein-mRNA
correlations because protein and mRNA abundances do
not strictly follow a normal distribution or a linear rela-
tionship, consistent with previous observations [25]. Re-
ported Spearman coefficients were corrected for ties.
Pearson’s correlation test was applied in the analysis of the
relationship between tumor proliferation index and the
global protein-mRNA concordance. Lastly, we applied a
linear regression model to control for confounders in our
correlation analyses of the protein-mRNA concordance
with race/ethnicity or disease markers.

Results
Proteomic profiling of breast tumors and adjacent
non-cancerous tissues
We performed a LC-MS-based proteomic analysis that
quantified protein abundance, as described under the
“Methods” section. The approach generated large-scale
proteome data and quantified 7141 proteins in 65
breast tumors and 53 adjacent non-cancerous tissues
(Fig. 1a). Patient and tumor characteristics are described in
Additional file 5: Table S3, showing the inclusion of both
African-American and European-American patients in
this study. We stratified tumors into luminal A (estrogen
receptor-positive), HER2-positive, and triple-negative/basal-
like subtypes, the latter based on both gene and protein
marker expression, as described in Additional file 1. The
dynamic range of protein expression levels encompassed
five orders of magnitude (Fig. 1b). To further validate our
coverage of proteins for breast cancer, we compared our list
of proteins with the list of identified proteins in three pub-
lished breast cancer studies [8, 12, 13]. This analysis showed
that 70 to 80% of our proteins were shared with each of
these studies (Fig. 1c and Additional file 2: Figure S2). This
overlap in identified proteins further increased to 86% when

we searched for commonly identified proteins between
our dataset vs. the combined datasets of Mertins et al.
and Tyanova et al. [12, 13]. We also compared the spectral
count-based ranking of proteins in our study with the
ranking of proteins in the Mertins et al. dataset. This
comparison revealed a significant correlation (rho = 0.56),
further indicating a high consistency in protein discovery
between the two datasets (Fig. 1d). The relative abundance
of the 7141 proteins that we quantified in our study sepa-
rated tumors from the adjacent non-cancerous tissue by
principal component analysis (Fig. 1e and Additional file 2:
Figure S3) and showed subtype-related protein expression
patterns (Additional file 6: Table S4 and Additional file 2:
Figure S3). Since both global protein and gene expression
data were available for 59 tumors and 38 non-cancerous
tissues in our study, we jointly analyzed them for an inves-
tigation of the relationship between tumor proteome and
transcriptome. This approach showed that differentially
expressed proteins between tumor and non-cancerous
tissue (n = 2643, FDR < 5%) were more frequently upregu-
lated (n = 2165, with 1843 proteins at a fold change > 2)
than downregulated (n = 478, with 270 proteins being
downregulated more than twofold) in tumors in a paired
analysis of tumor-adjacent normal pairs (Additional file 7:
Table S5). In the analysis of gene expression, 58% of the
differentially expressed transcripts were upregulated in
tumors and 42% showed a decreased expression. The ob-
servation that proteins rather than mRNAs are increased
in tumors could be related to the shortening of the 3′UTR
in cancer cells, which leads to an increased translation of
mRNAs into tumor proteins because of the loss of repres-
sive binding sites in these mRNAs [26]. We tested this
hypothesis with data from Xia et al., who described 382
genes with significant 3′UTR mRNA shortening in human
breast tumors due to alternative polyadenylation [22]. Of
the 382 genes, we could map 193 to proteins in our study
and found that these proteins have an expression increase
in breast tumors (1.77-fold vs. adjacent non-cancerous
tissue) more than other proteins (1.41-fold; P < 0.05 for
difference, Wilcoxon signed-rank test), without an increase
in transcript levels (Additional file 2: Figure S4), indicating
that 3′UTR shortening leads to increased expression of
proteins in breast tumors. Proteins that were significantly
upregulated in tumors clustered in distinct biological
processes commonly related to protein synthesis and
degradation and disease metabolism (Fig. 2a). When we
compared the association of upregulated proteins vs.
the association of upregulated mRNAs with these pro-
cesses, only proteins, but not mRNAs, captured ribosome
synthesis and function as a disease-associated process.
Moreover, only upregulated proteins showed a consistent
relationship with metabolic processes in cancer, whereas
both upregulated proteins and mRNAs were comparably
associated with most other processes (Fig. 2a). We made
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similar observations when we restricted our analysis to
either the basal-like or luminal A subtypes of breast cancer
[1, 17]. In basal-like tumors, however, upregulated proteins
also clustered in several KEGG pathways related to bacterial
and viral infections (Additional file 2: Figure S5), suggesting
an activation of infection-related signal pathways in this
aggressive subtype. Notably, Mertins et al. also found an
enrichment of proteins in immune response/inflammation
pathways among basal-like tumors [13]. Together, the two
studies advocate that host defense pathways are commonly
activated in this tumor subtype, which may relate to an
infectious agent contribution in disease etiology. To further
capture subtype-specific KEGG pathway enrichment, we
performed a hierarchical cluster analysis using the sig-
nificance of the pathway enrichment scores to generate
a heatmap that shows enrichment of proteins in KEGG
pathways by tumor subtypes (Fig. 2b). The data reveal
that HER2-positive tumors have a distinct downregulation
of proteins in the complement and coagulation cascade

while triple-negative and basal-like tumors share enrichment
for upregulated proteins related to tRNA biosynthesis, spli-
ceosome, cell cycle, and immune diseases and infections and
for downregulated proteins related to extracellular matrix
(ECM) receptor interactions.

Increased correlation between protein and mRNA
abundance is a disease-associated characteristic
Next, we examined the relationship between protein and
mRNA abundance and its association with disease charac-
teristics. Within breast tissues, the concordance between
protein and transcript levels was globally higher in tumors
(rho = 0.31) than in adjacent non-cancerous tissues (rho =
0.19) (Fig. 3a). This significant difference (P = 1.5 × 10−14,
Wilcoxon signed-rank test) was not explained by a general
difference in protein levels between tumor and non-
cancerous tissue because an analysis after stratification
of proteins into abundance categories validated the initial
finding and showed that independent of protein abundance

Fig. 1 Quantification of proteins in the breast tissues. a Mass spectrometry-based proteomics workflow. b Dynamic range of protein expression in
our study. c Overlap in the identified proteins between our study (Tang et al.) and Mertins et al. [13]. d Abundance of individual proteins
correlates between our study and Mertins et al. (Spearman’s rank correlation rho = 0.56). Correlation is better for high than low abundance
proteins. Scaled total spectral counts (z-scaled log converted PSMs) were plotted on the x- and y-axes. e A principal component analysis (PCA)
based on the abundance of 7141 proteins in 118 tissues (breast tumors n = 65; adjacent non-cancerous tissues n = 53). The two-dimension PCA
plot shows distinct clustering of the tumor (red) and non-cancerous (blue) tissues
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levels in these tissues, protein-mRNA pairs have a generally
increased correlation in cancerous tissues (Additional file 8:
Table S6). When we repeated our calculations of the global
protein-mRNA concordance for the tumors after random
selection of proteome subsets, we obtained results very
similar to the full dataset (Additional file 2: Figure S6A).
Moreover, when we computed the concordance values
in relationship to protein coverage across samples
(Additional file 2: Figure S6B) and for the subset of pro-
teins that was detected in both tumors and the adjacent
non-cancerous tissues (Additional file 2: Figure S6C-D),
the concordance values for the tumors remained signifi-
cantly increased throughout the range of protein coverage.
These findings further underscore the robustness of our
data by showing that the observations are independent of
the protein abundance across samples. Lastly, we exam-
ined if differences in ECM protein expression between
tumor and non-cancerous tissue may have confounded
this finding. It was shown that the content of ECM

proteins can be higher in non-cancerous tissues [8].
Yet, exclusion of 163 annotated ECM proteins from our
proteome data did not significantly alter the global protein-
mRNA concordance for tumors or the non-cancerous
tissues (Additional file 2: Figure S7). Together, these data
indicate that the increased correlation between protein and
mRNA abundance levels is a disease-associated characteris-
tic. Thus, we asked if this concordance measure is addition-
ally associated with disease aggressiveness and outcome. As
shown in Fig. 3b, the concordance between protein-mRNA
pairs was highest in the aggressive triple-negative and
basal-like tumors, slightly lower in HER2-positive tumors,
and lowest in luminal A tumors. Likewise, the concordance
increased with a more undifferentiated disease grade
(Fig. 3c), and both ER-negative tumors and tumors from
African-American patients had a significantly higher global
concordance for protein-mRNA pairs than either ER-
positive tumors or tumors from European-American
patients, respectively (Fig. 3d and e). To examine the

Fig. 2 Pathway association of differentially expressed proteins and transcripts. a Enrichment of differentially expressed proteins between tumors
and adjacent non-cancerous tissue (n= 2643; 2165 upregulated and 478 downregulated tumor proteins) in KEGG pathways. Enriched pathways at ≤ 10%
FDR are shown for two categories, proteins upregulated (red) and downregulated (green) in tumors. The red and green bars highlight the pathways with
enrichment for proteins without a similar enrichment for differentially expressed mRNAs. The gray bars indicate those pathways that were enriched for
both proteins and mRNA in tumors. Several metabolism pathways, such as the pentose phosphate pathway, starch and sucrose metabolism,
gluconeogenesis and glycolysis, galactose metabolism, and glutathione metabolism, were only enriched for upregulated proteins in tumors but not
upregulated mRNAs. Four other pathways, TCA cycle, gap junction, pyruvate metabolism, and long-term depression, showed enrichment for proteins
upregulated in tumors whereas pathway-associated mRNAs tended to be downregulated in these same tumors (green-bordered bars). For analysis, all
proteins were ranked using Wald statistic and imported into the GSEA pre-ranked module. The KEGG gene sets of MSigDB were selected as the reference
database. b Heatmap showing subtype-specific enrichment of proteins in KEGG BRITE categories and pathways. Hierarchical clustering using the pathway
enrichment scores [FDR-based] yielded three branches with differential enrichment of proteins in KEGG pathways by breast cancer molecular subtype
(luminal A, HER2-positive, ER-negative, triple-negative, and basal-like). Shown are unique and common features between subtypes. Red indicates
upregulated proteins that are significantly enriched in pathways, whereas blue indicates downregulated proteins with pathway enrichment

Tang et al. Genome Medicine           (2018) 10:94 Page 6 of 14



possibility of confounding in these observations, we ap-
plied a multivariable regression analysis. This test showed
that the difference in protein-mRNA correlation between
African-American and European-American patients is
independent of tumor subtypes and grade (P = 0.005). In
addition, we found that the association of the protein-
mRNA correlation with disease grade was independent of

the tumor ER status (P = 0.013) while the relationship of
the protein-mRNA correlation with the ER status was
partly confounded by disease grade (P = 0.053). In our con-
cluding analysis, we identified 285 proteins whose expres-
sion level correlated with disease grade (Additional file 2:
Figure S8 and Additional file 9: Table S7). These proteins
were enriched for highly correlated protein-gene pairs (285

Fig. 3 Correlation between steady-state protein and mRNA abundance in breast tumors and association with subtypes and survival. a Density
plot showing the global Spearman correlation for protein-mRNA pairs within breast tumors (n = 59; 5677 protein-mRNA pairs) and adjacent
non-cancerous tissue (n = 38; 3316 pairs). Protein and mRNA abundance was positively correlated in all tissues samples with a mean Spearman’s
correlation coefficient (rho) of 0.31 in tumors, which was significantly higher (P = 1.5 × 10−14, Wilcoxon rank sum test) than the rho of 0.19 in
adjacent non-cancerous tissues. b Protein-mRNA pairs have considerably different global correlations among breast cancer subtypes (triple-negative,
basal-like, HER2, and luminal A). Triple-negative tumors (TNBC) and tumors of the basal-like subtype (Basal) had the highest mean correlation while
luminal A tumors (LumA) had the lowest correlation. c Concordance between protein and transcript levels varies by tumor grade. Poorly differentiated
grade III tumors had the highest mean correlation between protein and mRNA pairs. b, c P values were calculated using the Kruskal Wallis
test. d, e Estrogen receptor (ER)-negative tumors and tumors from African-American patients show an increased concordance between protein and
mRNA abundance. f Global protein-mRNA concordance values closely correlate with the proliferation score in the 59 tumors (r = 0.7; P = 8 × 10−10,
Pearson correlation) but not in the 38 adjacent non-cancerous tissues (g). The dashed line shows regression. h High concordance between
protein-mRNA pairs in tumors is associated with decreased breast cancer survival. Tumors were stratified into three groups according to their global
correlation coefficient across all protein-mRNA pairs [< 25%, 25–75%, and > 75% (tumors with highest global correlation)]. Shown is a Kaplan-Meier
plot for these three groups. Tumors with the highest correlations between protein and mRNA pairs had the worst outcome [Cox regression hazard
ratio (HR) comparing 75% vs. 25% tumor group = 6.91, 95% CI 1.5–31.7 adjusted for disease subtypes; Ptrend across the three groups = 0.004]
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pairs; mean rho = 0.38) and were functionally associated
with protein metabolism, spliceosome and ribosome func-
tions, immune response and infections, and extracellular
matrix-receptor interactions.

High concordance between protein-mRNA pairs in tumors
is associated with decreased breast cancer survival
To uncover functional correlates between increased pro-
tein-mRNA concordance in tumors and tumor biology, we
assessed the proliferation level of each tumor by comput-
ing an expression metagene score comprised of 11 cell
cycle genes (see the “Methods” section) and correlated this
score with a protein-mRNA concordance. The analysis
revealed a strong positive association between proliferation
scores and protein-mRNA concordance [r = 0.7, un-
adjusted Pearson correlation; r = 0.59 after adjusting for
disease subtypes (P = 2.5 × 10−7)] in tumors (Fig. 3f and
Additional file 10: Table S8), but this relationship did
not exist in the adjacent non-cancerous tissues (Fig. 3g).
In a second approach, we applied gene set enrichment
analysis (GSEA) to characterize concordant protein-mRNA
pairs. GSEA showed that ribosomal proteins and genes in
the “cell cycle” KEGG pathway were the most significantly
enriched ones among the highly correlated protein-mRNA
pairs. Having observed that a globally increased protein-
mRNA concordance is a characteristic of disease ag-
gressiveness, we asked if it influences disease survival
as well. We grouped patients according to their tumor
protein-mRNA concordance scores and compared sur-
vival of patients with the lowest mean scores in their
tumors (< 25%) to patients with either intermediate (25 to
75%) or the highest mean scores (> 75%) in their tumors
(Fig. 3h). The survival analysis revealed that a globally
increased concordance between protein-mRNA pairs in
tumors is significantly associated with reduced survival
(Ptrend = 0.004), and tumors with the highest concordance
scores conferred a significantly increased risk of an early
cancer death when compared to tumors with the lowest
concordance scores [hazard ratio (HR) 6.91, 95% confi-
dence interval (CI) 1.5–31.7; P = 0.013] (Fig. 3h). This
association of the protein-mRNA concordance with pa-
tient survival was independent of the tumor proliferation
score (HR 7.59, 95% CI 1.25–46.2; P = 0.028), as shown by
a Cox regression analysis with the proliferation score as
covariable (see also Additional file 11: Table S9). Our
observations were validated in the TCGA breast cancer
dataset [17] with an analysis of 404 tumors with reverse
phase protein array (RPPA) data for 70 informative
protein-mRNA pairs and patient survival information
(Fig. 4a–d and Additional file 1) and in the CPTAC
breast cancer proteomics dataset, consisting of high-qual-
ity proteome and corresponding gene expression data
for 77 tumor samples but limited outcome data [13] (Add-
itional file 2: Figure S9). The concordance between

protein-mRNA pairs was highest in the most aggressive
molecular subtypes, basal-like and HER2-enriched, and
lowest in the least aggressive molecular subtypes, luminal
A and normal-like (Fig. 4b and Additional file 2: Figure S9),
in agreement with the findings in our discovery dataset.
Moreover, an increased global concordance between
protein-mRNA pairs in the breast tumors was again asso-
ciated with reduced survival (Fig. 4c and Additional file 11:
Table S9). When we performed an additional analysis re-
stricted to luminal A tumors, the most common breast
cancer subtype, an increased protein-mRNA concordance
in these tumors defined disease aggressiveness and was
also significantly associated with reduced patient survival
(Fig. 4d and Additional file 11: Table S9).

Characteristics of proteins and mRNAs with increased
protein-mRNA correlations in tumors
To obtain additional insight into features that may affect
protein-mRNA concordance, we applied an across-subject
correlation matrix (described in Additional file 1) and
calculated protein-mRNA concordance across tumors or
the adjacent non-cancerous tissues (Additional file 12:
Table S10). Correlation levels were weaker in this analysis
than in the within tissue analysis, but markedly increased
in tumors (Fig. 5a), analog to observations in the TCGA
colorectal cancer study [16]. Key observations from this
analysis included the striking finding that protein-mRNA
pairs with a high positive correlation in tumors clustered
prominently in pathways related to protein processing and
tumor metabolism (Fig. 5b). Moreover, proteins with a
differential abundance between tumor and adjacent non-
cancerous tissue (“tumor signature,” Additional file 12:
Table S10) had a higher mean protein-mRNA coefficient
than the pool of all detected proteins (Fig. 5c), whereas
those proteins that were significantly differently expressed
between basal-like tumors and adjacent non-cancerous
tissue (“basal-like signature,” Additional file 12: Table S10)
showed the highest correlation. To find characteristics of
proteins and mRNAs that increase protein-mRNA corre-
lations in tumors, we grouped protein-mRNA pairs by
predicted stability for both (described in Additional file 1)
and found that the global correlation coefficient between
protein-mRNA pairs increased with the predicted stability
of these molecules (Fig. 5d), consistent with a previous
observation [16, 27]. In summary, we found that increased
protein-mRNA correlations are a disease marker that is
pathway-centric and concentrates in metabolism-related
pathways and is moderately influenced by predicted
mRNA stability.

Proteomic subtypes and their association with Myc signaling
Lastly, we examined whether protein abundance profiles
can separate breast tumors into distinct subgroups. We
applied the NMF algorithm and selected the 1000 proteins
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with the highest expression variability for clustering
(see the “Methods” section). In the best-fit NMF model,
two distinct groups of tumors emerged (Fig. 6a and
Additional file 2: Figure S10). Group 1 was enriched for
basal-like tumors and group 2 for the luminal A subtype.
Myc signaling was the strongest differentiator among these
two tumor groups, as most tumors in group 1 contained a
previously described Myc activation signature [19, 28].
This finding was further supported by the observation that
upregulated proteins in group 1 were commonly encoded
by genes with a predicted Myc binding motif (Fig. 6b). Our
finding indicates a major influence of Myc signaling on the
proteome in breast cancer, consistent with the function of
Myc as a regulator of ribosome biogenesis and enhancer of
protein synthesis [29, 30]. Next, we asked if these two
groups of tumors exhibit differences in survival outcomes.
As shown in Fig. 6c, patients with group 1 tumors experi-
enced significantly shorter survival than patients with
group 2 tumors [hazard ratio (HR) = 2.65, 95% confidence

interval 1.08–5.51, group 1 vs. group 2]. Group 1 tumors
were also associated with an increased proliferation index
and tumor grade, but in contrast to the proteome-defined
subtypes, neither the proliferation index nor tumor grade
was significant predictors of survival in this dataset.

Discussion
Here, we provide a comprehensive proteotranscrip-
tomic analysis of breast cancer, including the analysis of
tumor-adjacent non-cancerous tissue pairs and patients
with survival follow-up, and generate a proteome data
resource that includes tumors from African-American
and European-American patients. Our data show that
mRNA abundance incompletely predicts protein abun-
dance in breast tumors and even less so in the adjacent
non-cancerous tissue. Furthermore, the tumor proteome
described disease pathways and subgroups that were only
partially captured by the tumor transcriptome, consistent
with the findings in the CPTAC breast cancer study [13].

Fig. 4 Global concordance between protein-mRNA pairs in TCGA breast tumors and association with molecular subtypes and survival. a Density
plot showing global Spearman correlation for 70 protein-mRNA pairs within 404 TCGA breast tumors. b Significantly different global correlations
for protein-mRNA pairs among the molecular breast cancer subtypes (P = 3 × 10−8, Kruskal Wallis test), with basal-like tumors having the highest
mean correlation. Shown are the PAM50-defined subtypes for TCGA tumors. c Global concordance between protein-mRNA pairs in TCGA tumors
is associated with survival. Stratification of tumors into three groups [< 25%, 25–75%, and > 75% (tumors with highest global correlation)]. Tumors with
the highest mean correlation between protein and mRNA pairs had the worst outcome [HR 75% vs. 25% tumor group = 2.6, 95% CI 1.01–6.65; Ptrend
across the three groups = 0.043]. d Increased global concordance between protein-mRNA pairs is associated with reduced survival in patients with
luminal A tumors. Ptrend = 0.0083
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Notably, however, our work discovered an increased
protein-mRNA concordance in breast tumors as a novel
disease characteristic and prognostic factor that is associ-
ated with molecular subtypes, aggressiveness, and inferior
patient survival.
To the best of our knowledge, a relationship between

protein and mRNA abundance as a prognostic marker in
cancer has not been previously reported. Concordances
between protein-mRNA pairs in breast cancer cell lines
have been examined, and a mean correlation score of ~
0.5 for 94 pairs can be estimated from the study by

Kennedy et al. [7]. A more recent study using reverse
phase protein arrays reported a mean protein-mRNA
correlation score of ~ 0.45 for key cancer proteins across
several hundred cell lines and 0.35 for 47 breast cancer
cell lines [31], which is comparable with the results from
other cell-based studies [27, 32]. Thus, in cultured
cells, the transcriptome is a moderate predictor of the
proteome. TCGA/CPTAC investigators reported a mean
protein-mRNA concordance score of 0.39 for breast
tumors and 0.47 for colorectal tumor [13, 16]. The lower
average concordance in breast tumors in TCGA/CPTAC

Fig. 5 Global protein-mRNA correlations across breast tissues and their association with tumor characteristics. a Density plot for global Spearman
correlation between protein and mRNA pairs across tumors (n = 59; 5677 protein-mRNA pairs) and adjacent non-cancerous tissue (n = 38; 3316
pairs). Mean global correlation coefficients are significantly different between tumor and adjacent non-cancerous tissue (P < 2.2 × 10−16, Wilcoxon
rank sum test). b Concordance between protein and mRNA pairs is associated with discrete pathways in KEGG, e.g., protein processing and
metabolism-related pathways. Protein-mRNA pairs for these pathways tend to show significantly increased concordances. Shown are the 10
highest ranked KEGG pathways that are enriched for high concordance protein-mRNA pairs. Multiple test-adjusted P values from the Kolmogorov-Smirnov
test. c Protein-mRNA correlation for all proteins in tumors (“proteins,” 5677 protein-mRNA pairs), for tumor proteins with significant differences in
abundance between tumor and adjacent non-cancerous tissue (“tumor signature,” n= 2258 pairs), and for basal-like tumor proteins with significant
differences in abundance between tumor and adjacent non-cancerous tissue (“basal-like signature,” 159 pairs). Basal-like signature protein-mRNA pairs have
the highest concordance. Definition of the signatures is described in the “Methods” section. d Concordance between protein and mRNA levels in breast
tumors is associated with the predicted stability of proteins and mRNAs. Protein-mRNA pairs consisting of a protein and mRNA that are both stable have
the highest mean concordance
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and our study could be the result of tumor heterogeneity
and variations in technology or could be due to the dif-
ferences in growth rates between breast and colorectal
cancer, as our data show that protein-mRNA concord-
ance in breast tumors is linked to proliferation. The
proteogenomic characterization of TCGA/CPTAC colorec-
tal and breast tumors found, as we did, that genes encoding
metabolic functions tend to show high protein-mRNA
correlations [13, 16], indicating enhanced protein-mRNA
coupling in cancer metabolism. This finding indicates
that cancer cells require a stricter regulation of their
metabolism to survive by linking transcription to immedi-
ate translation.
Others examined the proteome of breast cancer and

characterized disease subtypes [11–13] or engaged in

biomarker discovery [5, 10, 33]. In agreement with the find-
ings by Geiger et al. [5], we also noticed that two candidate
prognostic markers, IDH2 and CRABP2, are aberrantly up-
regulated proteins in breast cancer including basal-like tu-
mors (Additional file 7: Table S5). In contrast, few studies
evaluated whether the cancer proteome provides signatures
for classification into disease subtypes. In colorectal tumors,
proteomic signatures described disease subtypes that partly
overlapped with the transcriptome-defined subtypes for this
disease [16], while Tyanova et al. [12] reported that hier-
archical clustering of breast tumors based on protein ex-
pression shows high diversity between tumor samples and
no clear separation into the previously reported molecular
subtypes [1–4]. In their study, the proteome separated tu-
mors into subgroups enriched for certain subtypes. We

Fig. 6 Protein abundance profiles separate breast tumors into two groups with greatly different patient survival. a Consensus matrix plot of NMF
clustering for 59 breast tumors based on protein abundance levels in these tumors. Two groups of tumors emerged. Group 1 represents tumors
enriched for the basal-like subtype (P < 0.01, Fisher’s exact test) while group 2 represents tumors enriched for the luminal A subtype (P = 0.03).
Myc signaling was the strongest classifier for these two tumor groups (P < 1 × 10−8, Fisher’s exact test); most tumors in group 1 contained a Myc
activation signature. For analysis, protein counts were normalized and log transformed, and consensus matrices were computed at K = 2–7. NMF
class assignment for K = 2 was the most robust. The consensus index for each pair of samples is represented by a color gradient from white (0%)
to red (100%) in the consensus matrix. b Enrichment pattern for transcription factor binding sites in genes that encode differently expressed
proteins between tumor groups 1 and 2. Group 1—upregulated proteins are commonly encoded by genes with a predicted Myc binding motif,
highlighted in red bars. Different bars represent different Myc binding motifs. GSEA enrichment score is captured by the blue dots. c Kaplan-Meier
survival analysis comparing tumors in group 1 with tumors in group 2. Survival of patients in group 1 was significantly shorter than the survival of
patients in group 2 (log-rank test, P = 0.027; HR = 2.65, 95% CI 1.08–6.51, using Cox regression)
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observed that the proteome separates human breast tumors
into two main clusters with different survival outcomes,
where one cluster was enriched for basal-like and the
other for luminal tumors. Yet, further analyses showed
that a Myc activation signature in breast tumors [19, 28]
was the strongest classifier for these two tumor groups in
our study, indicating a major influence of Myc signaling
on the proteome in breast cancer. This observation is con-
sistent with both the known function of the MYC onco-
gene as a regulator of ribosome biogenesis and enhancer
of protein synthesis [29, 30] and the proteogenomic
characterization of breast tumors by the TCGA/CPTAC
Consortium [13]. In the CPTAC study, K-means
consensus-based clustering with global proteome data
yielded a separation of tumors into three groups, termed
basal-enriched, luminal-enriched, and stromal-enriched.
While our study using NMF clustering did not distinguish
stromal-enriched tumors as a third proteomic subtype,
both studies associated the basal-enriched proteomic
subtype with Myc activation.
Characterization of breast cancer with either proteome

or transcriptome data may yield different insights into
tumor biology. Proteins that are upregulated in tumors
may associate with processes that are very different from
those described by the analysis of upregulated mRNAs.
These differences may be partly explained by mRNA
properties, such as 3′UTR shortening, leading to increased
protein expression without upregulation of mRNA expres-
sion in tumors, as our data show. We examined the poten-
tial differences between a proteome and transcriptome
analysis using tumor-adjacent non-cancerous tissue pairs
and jointly examined differentially expressed proteins and
mRNAs and their pathway association. Recent studies have
demonstrated the advantage of pathway-based analysis in
assessing tumor biology [34, 35]. Our approach showed that
upregulated proteins specifically cluster in processes related
to protein synthesis and degradation and disease me-
tabolism. Proteins, but not mRNA, captured ribosome
synthesis and function as a disease-associated process
and indicated an activation of infection-related signal
pathways in basal-like and triple-negative tumors. The latter
is of interest because currently, an infection-related process
has not been linked to this subtype. Lastly, HER2-enriched
tumors were characterized by a distinct downregulation of
proteins in the coagulation cascade, which was not seen on
the mRNA level. Thus, the analysis of the proteome can
yield insights into tumor biology that are missed by a tran-
scriptome analysis.

Conclusions
We applied an integrated analysis of proteomic and tran-
scriptomic data that we jointly collected from human breast
tumors and adjacent non-cancerous tissues. Our study
revealed that the proteome describes differences between

cancerous and non-cancerous tissue and disease subtypes
that are not captured by the transcriptome. Proteins, but
not mRNA, linked infection-related pathways to basal-like
and triple-negative breast cancer. We also uncovered
cross-omics correlations that we validated in additional
datasets. Notably, our work describes an increased protein-
mRNA concordance in breast tumors as a disease char-
acteristic that is associated with molecular subtypes,
aggressiveness, and inferior patient survival.
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