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Patient-derived prostate tissue explant cultures are powerful research tools that offer the
potential for personalized medicine. These cultures preserve the local microenvironment
of the surrounding stroma but are not without limitations and challenges. There are several
methods and processing techniques to culture tissue ex vivo, that include explant tissue
chunks and precision-cut tissue slices. Precision-cut tissue slices provide a consistent
distribution of nutrients and gases to the explant. Herein we summarize the prostate tissue
slice method, its limitations and discuss the utility of this model, to investigate prostate
biology and therapeutic treatment responses.
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INTRODUCTION

Ex vivo tissue culture retains the local microenvironment and is potentially a powerful tool to
examine prostate responses to treatment and/or genetic manipulation. This technique is particularly
relevant to prostate, which contains several cell types including glandular epithelium, fibromuscular
stroma, neuroendocrine cells, and immune cells. The crosstalk between these cell types may
influence experimental responses between patients. Several methods for ex vivo prostate tissue
culture have been reported, which have some similarities, but there is no established gold standard
method. Briefly, prostate tissue, benign or cancer, is cultured in media within a culture vessel over
the course of 2-5 days. The patient-derived explant (PDE) model typically refers to prostate tissue
that is chopped, minced, or sliced with surgical tools whereas tissue slice culture (TS) utilizes a
precision slicing method to cut slices into an exact thickness. These methods are also useful for ex
vivo patient-derived xenografts (PDXs) from mice. This review focuses on the prostate TS method,
utilization, challenges and opportunities.
EX VIVO RADICAL PROSTATECTOMY TISSUES CULTURED AS
PRECISION CUT SLICES

Precision cut slices from fresh tissues enable consistent diffusion of gases across the tissue and rely
on capillary action to bring culture medium into the tissues. Slices were initially developed using
liver and kidney for use in pharmacology metabolism studies (1). Parrish et al. were the first to
extend this method to other tissues, including prostate (2). The ex vivo culture of prostate TSs
was further refined to preserve the secretory epithelium and reduce basal cell hyperplasia (3).
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Androgen responsiveness is essential for any ex vivo model and
the Peehl Lab showed that TS respond to androgens and
androgen ablation both ex vivo and when grafted under the
renal capsule of mice (3, 4).

TS relies on precise sectioning of a core of fresh radical
prostatectomy tissue using a specialized tissue slicing
instrument. The uniform thickness of the slices enables even
nutrient and oxygen diffusion through the tissue to avoid
necrosis (3). Diseases of the prostate, such as cancer, are often
multi-focal and challenging to identify on gross specimens, thus
it is essential to collect slices for histological examination.
Culture length is variable and has been reported between one
day and five days, dependent on endpoints.
TISSUE SLICE CULTURE METHOD

Patient radical prostatectomy specimens or PDXs (5) have been
used for prostate TS cultures (Figure 1). The detailed method has
been reported by others (2, 4, 6, 7). Briefly, a 5 or 10 mm core of
fresh tissue is stabilized in agar and mounted in a precision slicer,
generating ~300 µm slices, which are quickly placed into culture.
The majority of studies utilize titanium mesh inserts to mount
slices within 6-well tissue culture plates (3, 6, 8–12). The TS on a
titanium mesh rotates on an angle to dip the TS in and out of
media, driving capillary action for equivalent distribution of
media and exposure to gases. However, earlier tissue cultures
have utilized titanium mesh within scintillation vials (2).
Alternative to mounting TS on titanium mesh, Blauer et al.
demonstrated retention of androgen responsiveness and luminal
epithelium by culturing the TS completely submerged (7).

Optimization of primary culture medium can be challenging
and TS cultures have been tested in different mediums including
KSFM, M199, MCD105, and PFMR, with additives of
supplements, serum, and androgens. One of the earliest studies
used KSFM on titanium mesh within scintillation vials and
varied supplementation with bovine pituitary extract, EGF,
DHT, and FBS (10%) (2). They concluded that DHT promotes
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tissue slice viability, as the medium containing DHT prevented
the loss of luminal epithelial cells, and that media containing 10%
FBS promotes hyper-proliferation of basal cells. This
proliferation of basal cells was also observed by Maund et al.,
who found low levels of androgen resulted in the basal hyper-
proliferation (3). Maund et al. systematically tested many
conditions for TS cultures. The first condition contained a
mixture of KSFM and M199 [the 1:1 ratio as reported by (7)]
with 1 nM DHT and resulted in luminal cell degeneration and
basal cell hyperplasia. The second media contained PFMR-4A
with 10 nM R1881 and resulted in less cell loss and viability for
up to two days, after-which tissue slices exhibited luminal cell
degeneration and basal cell hyperplasia. The third media
contained PFMR-4A with 50 nM R1881 and resulted in the
most cell viability at two days, with histology, proliferation, and
apoptosis that was most similar to day zero TS. In summary,
assessment of viability, toxicity, proliferation, and apoptosis
resulted with the media composition containing PFMR-4A and
50 nM R1881 being optimal for TS culture media and
concentration of testosterone (3). However, PFMR-4A is not
commercially available and others have found success using
PrEGM supplemented with 50 nM R1881 (12) or serum‐free
aDMEM/F12 K medium with R1881 (13).

TS from patient derived xenograft models (PDX-TS), has
been used in several studies. Zhang et al. did a systematic analysis
on PDX-TS culture method and the effects of media composition
(13). They used 3 PDX-TS and found that rocking on a cell
strainer (very similar to titanium grids rotating) in serum‐free
aDMEM/F12 K medium with R1881 was optimal to preserve
proliferation and prevent apoptosis. Proof of concept studies in
PDX-TS have developed a method to examine many tissues at
once in 96-well format by a method they call micro-dissected
tissue (MDT) (14, 15). MDT are 500 µm in diameter, compared
to normal TS which are 3-5 mm, thus MDT permits more precise
tissue acquisition and potentially many more experimental
endpoints. Dorrigiv et al. optimized this by using cell line
xenografts as the tissue source (15). They also developed
a method to create an FFPE microarray from the MDT
FIGURE 1 | Tissue slice culture workflow and preclinical endpoints. Precision cut tissue slices (TS) derived from radical prostatectomy (RP) or a patient-derived
xenograft (PDX) incubate on titanium mesh grids at a 45° angle within a rotating tissue culture plate.
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(MDTMA) (14). The small MDT appeared to be free of
the challenges with larger tissue pieces and preserved cell
morphology, viability, and proliferation throughout 15 days
of culture.
INVESTIGATION OF PROSTATE
BIOLOGICAL RESPONSES USING
TISSUE SLICE CULTURES

TS cultures have been utilized to target key developmental
signaling pathways and validate prior findings from in vitro
studies in human prostate. TS retain expression of the hormone
receptors and are shown to be responsive to the hormones
vitamin D (12, 16) and androgen (2, 3, 7, 9, 13, 16, 17).
McCray et al. analyzed TSs treated with 25-hydroxyvitamin D
and analyzed epithelial and stromal gene expression via spatial
transcriptomics (12). Among a panel of genes, the Wnt pathway
and DKK3 were identified as downregulated by 25-
hydroxyvitamin D. In another study, TS responded to both 25-
hydroxyvitamin D and testosterone in regulation of target
genes (16). The TS also retained expression of the endocytic
membrane receptor, megalin, which imports hormones into the
cells (16). Importantly, in both vitamin D studies, the TS data
corroborated evidence from patient-derived organoids and
relationships in patient specimens, demonstrating consistency
and reproducibility between models to investigate developmental
pathways ex vivo.

Several studies have utilized TS cultures to investigate DNA
damage responses. DNA damage response of benign radical
prostatectomy-derived TS was monitored following ionizing
radiation (IR) (6). They found that IR did not elicit Tyr (15)
and p53 responses in TS and they suggest that absence of
these DNA damage response pathways may contribute to
carcinogenesis (6).
TS AND BIOMARKER DISCOVERY

TS from prostate cancer (PCa) are suited for biomarker
discovery since the amount of tissue of each pathology can be
controlled; matched benign/PCa tissues are available from each
patient, and specimens from multiple patients can be used to
account for inter-patient heterogeneity. Spichiarich et al.
identified glycoproteins, specifically sialylated glycans,
associated with PCa using bio-orthogonal labeling (10). They
used paired benign and PCa TS from eight different patients and
identified 21 proteins unique to all PCa samples and undetected
in the benign tissue, including VDAC1 and the sialoglycoprotein,
legumain. The unique metabolic state of PCa compared to
benign tissue is preserved in TS and a source for biomarkers.
The Kurhanewicz group used intracellular labeling of [3-13C]
pyruvate in TS (7 benign and 4 PCa) to identify hyperpolarized
13C lactate as a PCa biomarker (8). They further examined lactate
by TS of various Gleason Grade and showed that high-grade PCa
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(N=4) has higher lactate than low grade (N=11) or benign tissue
(N=15) (11).

THERAPEUTIC RESPONSES IN EX VIVO
PDE AND TS

Research advancements in anti-androgen therapies, alternative
therapeutics for CRPC models, and other experimental
therapeutics have been made with ex vivo TS or PDEs
(Table 1). PDE cultures of tissue chunks have been used more
frequently than TS for these studies. Although there are limited
reports that use TS to measure treatment outcomes, these reports
have demonstrated responses that may inform treatments in the
clinic. PDEs are described as the ex vivo culture of prostate tissue
as small pieces on sponges with conditions that promote or
maintain tumor microenvironment and tissue architecture. Ex
vivo PCa tumor cultures have demonstrated the tumor
microenvironment remains intact using established methods
(21). Both low and high tumor grades (Gleason 3-5) have been
cultured successfully and remain viable for up to five days (3, 8,
10, 11). The methodology for PDE cultures and the promise of
their preclinical utility has been previously reviewed by others
(20, 28, 29) and is only briefly discussed here.

TS andPDEs are highly responsive to androgens andhave been
used to examine several anti-androgen therapies. Zhao et al.
revealed that the castration response of TS grafted into mice
mimicked the expression of proteins in prostate specimens
from patients with androgen deprivation therapies (9). The
patient heterogeneity of anti-proliferation responses to
bicalutamide and enzalutamide was demonstrated in PDE (17,
18). Butler et al. further showed tumor areas resistant to
enzalutamide also had aberrations in their lipid profiles (18),
which lead to discovery of ELOVL5, a fatty acid elongase, as a new
metabolic target of androgens (24). The potential to predict
patient response to combination therapy with enzalutamide and
docetaxel was shown in PDE, reflecting individual treatment
outcomes observed in the clinic (21). Shafi et al. also identified
heterogeneous responses to experimental therapeutics,
including veliparib, palbociclib, and NU7441 (21), emphasizing
that patient-specific responses may be tested in PDEs. The
antiandrogen therapy, apalutamide, was shown to radiosensitize
PDX-TS PCa demonstrating a possible therapeutic treatment
for AR-dependent PCa (19). Explants are also useful for
studying resident immune cells and PDEs were recently used to
show an increase in CD163+/CD68+ macrophages after
enzalutamide (23).

PDEs from PDXs have been used to test therapeutics.
Galiellalactone, a STAT3 inhibitor, reduced AR activity in
PDEs of thin tissue pieces (cut by a razor blade) (27). Bray
et al. showed in 5 human prostatectomy-derived tumors that
combination treatment with BCL-2 inhibitor, ABT-737, and
cisplatin yielded a synergistic therapeutic response more than
either treatment alone using ex vivo PCa TS (200 µm) (25). PDEs
from PDX of CRPC demonstrated sensitivity of CRPC to BRET
inhibitors (22), and PARP inhibitors (26). Zhang at al. used
PDXs from 3 patients for TS cultures and observed the expected
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responses to enzalutamide and olaparib, based on the AR
expression and BRCA2 mutations, respectively (13).
LIMITATIONS AND CHALLENGES OF
PROSTATE TS AND EX VIVO CULTURES

There are challenges that are common between all ex vivo culture
methods and those unique to TS. The primary challenge to ex vivo
cultures for TS (or PDEs) is rapid accessibility to fresh surgical
specimens. This requires close collaboration and cooperation
between research and clinical staff as well as pre-surgical consent
of the patient to utilize excess tissue not needed for diagnosis. The
size of the specimen further limits the amount of TS or PDE that
can be made from it. These challenges contribute to the rarity of ex
vivo CRPC cultures and underscore the importance of PDX-CRPC.
To date, neuroendocrine prostate cancer (NEPC) has yet to be
reported for TS studies, likely owing to limited access. Identification
of cancer areas on gross radical prostatectomy specimens is a
challenge. Furthermore, fresh tissue pieces are never one cell type.
Benign areas will contain varied amounts of glandular epithelium
and stroma. PCa often presents multi-focal lesions that are not fully
encapsulated in a sample. Thus, samples for ex vivo culture may
contain mixed pathologies that will bias endpoints that homogenize
the entire piece of tissue. The TS method preserves histological
features and allows for spatial examination of endpoints such as
immunohistochemistry, in situ hybridization, ISH or spatial
transcriptomics. The method of MDT (described above) (14) and
Frontiers in Oncology | www.frontiersin.org 4
pathology guided micropunching (PGM) (30) sample smaller areas
(260-500 µM), reducing heterogeneity of the specimens, but also
provide limited tissue for endpoint analyses. The relatively short
length of culture for androgen adaptation studies is a limitation to
both PDEs and TS. However, several studies grafted TS under in the
renal capsule of nude mice, rather than in vitro culture, and were
able to predict androgen sensitivity (4, 9). Finally, while TS are
optimal for assessing therapeutic responses, overexpression and
knockdown tools needed for mechanistic studies need to be
carefully optimized to penetrate into explant tissue cultures. This
includes delivery of siRNAs, as reported in localized PCa PDE
cultures by Tieu et al. (31).

TS have several additional limitations. The main one is that
specialized equipment is required to prepare and culture the
precision slices. Secondly, as PCa tumors are small, the pathology
of the specimen often drifts through the slices, requiring
additional collection of slices for pathology if the endpoint
doesn’t facilitate visualization of the histology. Lastly,
preparing frozen or FFPE sections from the TS is challenging
and requires a trained technician to obtain high quality sections
from a TS that is only about 200 µM thick after fixation.
OPPORTUNITIES FOR PROSTATE TS
EX VIVO CULTURE

Despite the challenges, TS cultures provide spatial examination
of inter and intra-patient heterogeneity not possible by other
TABLE 1 | Therapeutics tested in ex vivo prostate cultures.

Target Therapeutic Ex Vivo Model Reference

ACC1/2 PF-05175157 (10 µM, 25 µM, 50 µM) PDE Butler et al., 2021 (18)
AR Apalutamide (1 µM) + EBRT (2Gy) PDX (TS, 300 µm) Zhang et al., 2019a (19)

Bicalutamide (10 µM) PDE Centenera et al., 2013 (20)
Castration TS grafts, 300 µm Zhao et al, 2013 (9)
Enzalutamide (1 µM) PDE Shafi et al., 2018 (21)
Enzalutamide (1 µM) PDX (TS, 300 µm) Zhang et al., 2019b (13)
Enzalutamide (1 µM) + Docetaxel (50 nM) PDE Shafi et al., 2018 (21)
Enzalutamide (10 µM, 50 µM) PDE Butler et al., 2021 (18)
Enzalutamide (10 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)
Enzalutamide (10 µM) PDE Boibessot et al., 2021 (23)
Enzalutamide (10 µM) PDE Centenera et al., 2013 (20)
Enzalutamide (10 µM) PDE Centenera et al., 2021 (24)
Galeterone (10 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)

BCL-2 Cisplatin + ABT-737 (10 µM) TS, 200 µm Bray et al., 2009 (25)
BRET iBET151 (1 µM) and JQ1 (1 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)
CDK4 and CDK6 Palbociclib (1 µM) PDE Shafi et al., 2018 (21)

Ribociclib (1 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)
DNAPK NU7441 (1 µM) PDE Shafi et al., 2018 (21)
HSP90 NVP-AUY922 (100-1000 nM) PDE Centenera et al., 2013 (20)

NVP-HSP990 (100-1000 nM) PDE Centenera et al., 2013 (20)
pan-PIM CX-6258 (5 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)
PARP Talazoparib (1 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)

ABT888 (2.5 µM) PDE Schiewer et al., 2012 (26)
Olaparib (10 µM) PDX (TS, 300 µm) Zhang et al., 2019 (19)
Veliparib (2.5 µM) PDE Shafi et al., 2018 (21)

RNA polymerase I CX-5461 (1 µM) CRPC-PDX (PDE) Lawrence et al., 2018 (22)
STAT3 Galiellalactone (5 µM) PDE Handle et al., 2018 (27)
March 2022 | V
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methods. The rapid advancement and increased resolution of
spatial transcriptomic methods (32, 33) offers the ability to
compare transcriptomic differences (RNAseq) between areas of
the tissue and between patients. Co-detection by indexing
(CODEX) tissue imaging with DNA-barcoded antibodies has
the potential to examine up to 60 markers in one sample (34),
which would greatly expand the data available from a TS
experiment. Localized prostate tumors are often under hypoxia
and Figiel at al recently showed that localized PCa TS respond to
hypoxic culture conditions (35), which support use of TS in
therapeutic response studies.

In summary, although ex vivo culture of prostate TS was
first described two decades ago, it remains an emerging
model that holds promise for both research questions and for
precision medicine. TS are primed and amenable to recent
technologic breakthroughs in single cell sequencing and spatial
data collection.
Frontiers in Oncology | www.frontiersin.org 5
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