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Abstract

Background: Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to
derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological
processes or molecular pathways that are mechanistically well understood and are described in public databases.

Objectives: To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day
gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent
and cross-species predictions.

Methods: Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic
exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by
the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was
derived using random forests. The prediction model was independently validated on test sets associated with liver cancer
risk obtained from mice, rats and humans.

Results: Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area
under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the
results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated
species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all
pathway responses leading to carcinogenicity predictions.

Conclusions: Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term
carcinogenicity and also for its ability to extrapolate results across multiple species.
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Introduction

There is push to use a broad array of biological data in toxicity

testing to improve reliability and provide reasonably quick

indications of animal and human toxicity of chemical compounds.

The National Toxicology Program (NTP) ’s High Throughput

Screening (HTS) [1] and the Environmental Protection Agency’s

ToxCast programs [2] are efforts in this direction. These efforts

have been initiated in light of the fact that for a lot of the 100,000

chemicals in commerce in the U.S. and Europe, information on

toxicity is extremely limited [3]. Data provided from the long term

chronic testing of chemicals on animals, like those from NTP’s

two-year cancer bioassay though invaluable in providing carcino-

genicity information in vivo over a wide range of animal tissues and

across multiple doses, is not suitable when one needs to rapidly

identify potential harm from chemical exposure. Over the past

approximately 40 years, only around 600 chemicals have been

tested by the NTPs in their two-year cancer bioassay and only

about 5–6 times this number have been tested worldwide.

The goal of toxicity testing is ultimately to protect human

health. Even though the two-year cancer bioassay is performed on
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rats and mice, there is considerable data supporting its use to

screen for carcinogens in humans [4]. The HTS and ToxCast

programs are performed on cell lines; these can be both human

and animal and thus provide a logical path for extrapolation

between species. However, cell lines are distantly removed from a

functional whole organism so it becomes necessary to extrapolate

the in vitro results from the various cell lines to the human in vivo

context.

An alternative to the cell-based assays in the HTS and ToxCast

programs is the use of short term molecular data (typically gene

expression) from exposed animals or humans to predict future

toxicity or carcinogenicity. Others have used gene expression data

based classifiers that would distinguish a toxin or carcinogen from

a non-toxin or non-carcinogen [5,6,7,8,9,10,11,12,13,14]. These

representative examples demonstrate different approaches to

predictive toxicology using gene expression data obtained from

rodents dosed over a period of time ranging from a day to 90 days.

In all of the published studies, chemicals were classified in a binary

fashion (for example, attempts were made to classify chemicals as

being carcinogenic or not). Such an approach underutilizes the

results from the chronic studies in light of the fact that a

continuous statistic was used to evaluate the data originally (e.g. p-

value from the Fisher exact test or the trend statistic from the Poly-

3 test [15]) and a considerable amount of other biological

information was brought to bear on a final evaluation. This leads

to obvious loss of information regarding the differential toxicity of

different compounds at their relevant doses.

A characteristic of gene expression data is the very large features

(genes) to samples (animals) ratio. This characteristic contributes to

the lack of identification of robust classifiers as demonstrated by

[16] – multiple classifiers give the same prediction accuracies

which quite often are 100 percent. This could mean that the data

was over-fit or there are correlations between genes that allow for

alternate sets of genes to server as predictors. In the second

scenario of correlated gene expressions, this would suggest the use

more of mechanistically-relevant prediction models where the data

is examined at the biological pathway level rather than at the gene

level.

In order to gauge quantitative predictive accuracy of a pathway-

based prediction model we obtained gene expression data from the

livers of mice dosed with 26 chemicals over a period of 90 days. All

the 26 chemicals were tested in a two-year bioassay in the same

strain of mice dosed via the same respective routes. Thus, the

differential liver carcinoma and adenoma rates between treated

and control animals from the results of the two-year bioassays are

known. Using the data, we derived pathway-based models to

predict the differential tumor rates at the end of a two-year

bioassay. The use of a pathway-based model would result in a

reduction of a model with around 6000 gene features to one with

around 200 pathways in the KEGG database [17,18,19]. The

model derived using the mouse data was then used to predict

carcinogenicity in appropriately chosen scenarios in rats and

humans.

Materials and Methods

Mice chemicals, animals and treatments
The chemical treatments used in the experiments on female

B6C3F1 mice are summarized in Table 1. Note the treatments are

the same as the maximum tolerable dose (MTD) used for the

corresponding chemical in the two-year bioassay. Treatments

involving lower doses of a subset of 5 chemicals from Table 1 are

provided in Table 2. More detailed descriptions of the chemicals,

treatments and gene expression analysis are provided in the

Text S1.

Rat liver gene expression data
To address the question of species extrapolation, gene

expression and tumor data from chemical exposures in Fischer

344 rats were obtained from the literature [5]. The chemical

treatments are summarized in Table S1. Additional information is

provided in the Text S1. Normalized probe intensity data for each

treatment were grouped separately with the control and normal-

ized using the quantile normalization function in MATLAB

(2008a, The MathWorks, Natick, MA).

Human gene data
The pathology review of the treated mice after 90 days of

exposure to hepatocarcinogens did not identify liver tumors (see

Text S1). Hence, the 90 day gene expression patterns are

potentially reflective of a pre-neoplastic state in the case of the

chemicals that are known hepatocarcinogens (as characterized by

the 2 year bioassay). We considered known risk factors for various

human diseases including liver cancer. Both genetic (i.e., single

nucleotide polymorphisms) and non-genetic (i.e., disease) risk

factors were considered.

Genetic risk factors in terms of single nucleotide polymorphisms

associated with various human diseases including liver cancer are

tabulated on databases like the Genetic Association Database [20].

Genes having polymorphisms associated with various human

cancers,Alzheimer’s disease and Schizophrenia were downloaded

from the database. Identifying non-genetic risk factors for liver

cancer has been an active research topic

[21,22,23,24,25,26,27,28]. Among the main factors contributing

to the risk are Hepatitis C and B virus [22,24,25], cirrhosis [21]

and diabetes [27,28]. The risks of liver cancer associated with

cirrhosis induced by Hepatitus C virus was estimated to be

comparable with cirrhosis induced by non-alcoholic steatohepatitis

(NASH) [29]. In fact NASH is correlated with characteristics of

metabolic syndrome like obesity and diabetes. Various human

gene expression datasets associated with these risk factors are

identified on the Gene Expression Omnibus (GEO) database [30].

The processed and normalized gene expression data were used as

is from the database except for cases where the data were

presented as intensity values. In these cases, the intensity values

were log2-transformed. The entire set of data sets associated with

risk factors for liver cancer is summarized in Table 3.

Biochemical pathways used in the analysis
The biochemical pathways used in the analysis in this paper

were obtained from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) Pathway database [17,18,19]. The data for the

set of genes involved in each of the pathways and their associated

interactions were downloaded via the KEGG API. All pathways in

the database were used. The list of 216 pathways that were

homologous across human, mice and rats species, along with their

mouse KEGG ids are reported in Table S2.

Structurally enhanced pathway enrichment analysis
(SEPEA)

SEPEA, a network based pathway enrichment method

described in detail in [31], was used to evaluate the linkage

between the gene expression data and the KEGG pathways.

Unlike traditional pathway enrichment methods that treat

pathways as sets of genes, SEPEA treats pathways as networks of

interacting proteins and/or enzymes. The genes corresponding to

Biological Networks for Predicting Carcinogenicity
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the proteins in the signaling network are given more weight

according to whether they are at the receptor or the terminating

end of the pathway that typically signals for transcription in a

number of genes. Further, pathways where the perturbed genes

are close relative to each other on the associated network are

modeled as being more likely to be affected than pathways where

the perturbed genes occur further apart over the network. There

were three analytic methods described in [31]; in the work

described here, SEPEA_NT2 is used [31] for the gene expression

analysis and SEPEA_NT3 for the gene polymorphism data. The

goal of the enrichment analysis is to assign significance (in terms of

p-values) to all chosen KEGG [17,18,19] human, rat and mouse

pathways for the increased likelihood of being affected in the livers

of the treated animals over the matched controls. The significance

obtained by SEPEA_NT2 were based on 56104 randomizations

(see [31] for details). For the analysis performed here, the SEPEA

p-value was converted to a z-score, Zij using the equation,

Zij~{W{1 max Pij=2,2e{5
� �� �

ð1Þ

where W refers to the standard normal distribution and Pij denotes

the p-value obtained using SEPEA for pathway j as a result of the

Table 1. Treatment groups and abbreviations used in the 90 day exposure to the 26 chemicals and corresponding vehicle controls
used in this study.

Chemical Short Name NTP No. Routea Dose Ames Assay Liver Tumorsb

1-Amino-2,4-dibromoanthraquinone ADBQ 383 F 20,000 ppm + Yes

Benzofuran BFUR 370 GC 240 mg/kg 2 Yes

Methylene Chloride MECL 306 I 4,000 ppm +,2,+ Yes

N-Methylolacrylamide MACR 352 GW 50 mg/kg 2 Yes

1,5-Naphthalenediamine NAPD 143 F 2,000 ppm + Yes

Tris(2,3-dibromopropyl)phosphate TDPP 76 F 1,000 ppm 2 Yes

2,2-Bis(bromomethyl)-1,3-propanediol BBMP 452 F 1,250 ppm +,+,2 No

1,2-Dibromoethane DBET 86 GC 62 mg/kg + No

Ethylene Oxide ETOX 326 I 100 ppm + No

Naphthalene NPTH 410 I 30 ppm 2 No

Vanadium Pentoxide VANP 507 I 2.0 mg/m3 2 No

Benzene BENZ 289 GC 100 mg/kg 2 Eqc

Coumarin COUM 422 GC 200 mg/kg + Eqc

1,2,3-Trichloropropane TCPN 384 GC 60 mg/kg +,+ Yes

1,4-Dichlorobenzene DCBZ 319 GC 600 mg/kg 2 Yes

Propylene glycol mono-t-butyl ether PGBE 515 I 1,200 ppm + Yes

Tetrafluoroethylene TFEL 450 I 1,250 ppm NA Yes

2-Chloromethylpyridine hydrochloride CMPH 178 GW 250 mg/kg + No

Diazinon DIAZ 137 F 200 ppm 2 No

Iodoform IODO 110 GC 93 mg/kg +,+ No

Malathion MALA 24 F 16,000 ppmd

(14,800 ppm)
2 No

N-(1-naphthyl) ethylenediamine dihydrochloride NEDD 168 F 3,000 ppm
(2,000 ppm)e

+ No

4-Nitroanthranilic acid NAAC 109 F 10,000 ppm +,+ No

Pentachloronitrobenzene PCNB 61 F 8,187 ppm 2 No

Tetrafluoroethane TFEA ---f I 50,000 ppm NA No

Trichlorofluoromethane TCFM 106 GC 3,925 mg/kg 2.2 No

Air ACON I

Corn oil CCON GC

Feed FCON F

Water WCON GW

aI = inhalation; F = feed; GC = gavage, corn oil (5 ml/kg); GW = gavage, deionized water (5 ml/kg).
bThe results for liver tumors were based on a p = 0.01 threshold for combined increase in adenomas or carcinomas.
cThe results for liver tumors in this study were considered equivocal or borderline significant. Combined increase in hepatocellular adenomas or carcinomas resulted in
p = 0.075 and p = 0.084 for benzene and coumarin respectively.
dDue to signs of toxicity, the 16,000 ppm dose was reduced to 0 ppm on day 9 for a period of 2 days. The dose was raised to 8,000 ppm for a period of 9 days and
returned to 16,000 ppm for the remainder of the study. The time weighted average dose was 14,800 ppm.
eThe initial dose of 3,000 ppm was reduced to 2,000 ppm in week 2 of the study due to taste aversion and weight loss. The 2,000 ppm dose is the same as the low dose
in the original bioassay.
fChemical not evaluated by the NTP. Bioassay performed by Alexander et al. [20].
doi:10.1371/journal.pone.0063308.t001
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mice being dosed with chemical i at a given dose or human data

set i.

Evaluation of carcinogenicity for mice chemical data
The carcinogenicity rate of a chemical is defined using the

survival-adjusted proportions of animals treated with the chemical

that developed liver adenomas or carcinomas and the corresponding

proportion for the control animals at the end of the two-year

bioassay. The data for all chemicals except tetrachloroethane [32]

were obtained from their respective technical reports for the two-

year cancer bioassay developed by the NTP(see Text S1 for

reference to the NTP technical reports). The poly-3 survival-

adjusted numbers [15,33] were used when available, else the survival

adjustment provided in the technical reports were used. The poly-3

statistic, zi, for chemical i used in this analysis is defined as,

zi~
ptreat

i {pcont
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ptreat
i

(1{ptreat
i

)

ntreat
i

z
pcont
i

(1{pcont
i

)

ncont
i

r
8>><
>>:

9>>=
>>;

ð2Þ

where ni
treat and pi

treat are the survival adjusted number and

proportion, respectively of animals treated with chemical i that

developed adenomas or carcinomas, ni
cont and pi

cont are the

corresponding terms for the control animals. To avoid outlier

effects in the analysis, zi = z2e25 was used when zi$z2e-5 where z2e25

is the critical value of the standard normal distribution correspond-

ing to 261025 significance.

Prediction model relating carcinogenicity to either
pathway features

The critical hypothesis of this manuscript is that the observed

changes in gene expression manifest at the pathway level have

adequate information to predict future carcinogenicity. However,

it is not obvious what mathematical functional form relates the

observed changes in pathways to the carcinogenicity predictions.

Specifically, the poly-3 statistic for a chemical obtained from the

two-year cancer bioassays is assumed to be functionally related to

the 90 day gene expression-based perturbation of the pathways

(obtained from the SEPEA analysis):

f (Zi1,Zi2, . . . ZiNp )~z i : i~1,2, . . . ,Nc ð3Þ

where Np represents the number of pathways (216, in the analysis

in this paper), Nc the number of chemicals (26 chemicals were

tested in mice). zi is given by Equation (2) and Zij is given by

Table 2. Dose response treatment groups and abbreviations used in the 90 day exposure with the results from the NTP rodent
cancer bioassay.

Chemical Short Name NTP No. Routea Dose
Dose Tested in
NTP Bioassay Liver Tumors

Methylene Chloride MECL5 306 I 4,000 ppm Yes Yes

MECL4 3,000 ppm No

MECL3 2,000 ppm Yes Yes

MECL2 500 ppm No

MECL1 100 ppm No

Naphthalene NPTH5 410 I 30 ppm Yes No

NPTH4 20 ppm No

NPTH3 10 ppm Yes No

NPTH2 3 ppm No

NPTH1 0.5 ppm No

1,2,3-Trichloropropane TCPN5 384 GC 60 mg/kg Yes Yes

TCPN4 40 mg/kg No

TCPN3 20 mg/kg Yes No

TCPN2 6 mg/kg Yes No

TCPN1 2 mg/kg No

Propylene glycol mono-t-butyl ether PGBE5 515 I 1200 ppm Yes Yes

PGBE4 800 ppm No

PGBE3 300 ppm Yes No

PGBE2 75 ppm Yes No

PGBE1 25 ppm No

1,4-Dichlorobenzene DCBZ5 319 GC 600 mg/kg Yes Yes

DCBZ4 500 mg/kg No

DCBZ3 400 mg/kg No

DCBZ2 300 mg/kg Yes No

DCBZ1 100 mg/kg No

The vehicle controls were the same as given in Table 1.
aI = inhalation; GC = gavage, corn oil (5 ml/kg).
doi:10.1371/journal.pone.0063308.t002
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Equation (1) for the pathway-specific predictor. Note, the model is

fit to data sets corresponding to chemical treatments in Table 1.

The framework of the so-called Super Learner [34] coded in the

SuperLearner package [35] in R [36] provides a reasonable way of

evaluating alternate functional forms in a cross-validation frame-

work. The functional forms tried include tree-based methods

(random forests [37], bagging, conditional tree forests), support

vector machines, loess polynomial regression, bayes generalized

linear models, sparse partial least squares regression and neural-

networks – the book [38] describes details of all of the these

algorithms except random forests. Unless otherwise specified the

default settings of these learning algorithms in the SuperLearner

package are used. The SuperLearner algorithm that is based on

the optimal continuous combination of the predictions of the other

algorithms and the Discrete SuperLearner that picks the best

predictor at each fold of cross-validation were used. The

performances of these algorithms were evaluated in terms of their

cross-validated risk [34].

Five-fold cross-validation was chosen where the chemicals in

each of the five folds were fixed (Table S3) and chosen so that

distribution of high and low carcinogenicity values in each fold was

more or less the same. Predictions for all the data sets were based

on this 5-fold cross validation framework. In order to get ‘honest’

predictions for the chemicals with data from mice, because these

chemical data are used to make predictions for the very same set of

chemicals, two levels of 5-folds cross-validation was implemented

using the CV.SuperLearner function implemented in the Super-

Learner package. Specifically, the predictions for the chemicals in

each of the 5 test sets (corresponding to the 5-folds) are derived

from an additional 5-fold cross-validation of the remaining 20 or

21 chemicals in the 5 training tests.

Evaluation of the results of the predictions
The two year cancer bioassay carcinogenicity calls of the

chemicals used in the mice and rats experiments along with the

continuous predictions from the model (Equation (3)) derived using

the mouse data are used to generate receiver-operator (ROC)

curves using the pROC package [39] in R [36]. The carcinoge-

nicity calls (carcinogenic or non-carcinogenic) are based on a

significance p-value threshold of 0.01 using the statistic given in

Equation (2)) Myristicin and isosafrole were untested chemicals

among the rat data and predictions for these were not used in

generating the ROC curves. For the case of the human data, all

gene expression data sets associated with risks for liver cancer were

considered positive for carcinogenicity. The data set of gene

polymorphisms associated with liver cancer was also considered

positive while all other gene polymorphism data sets were

considered negative. The ROC curve naturally defines notions

of false positives and false negatives at chosen levels of specificity

Table 3. Human data sets associated with risk for liver cancer that were used for carcinogenicity predictions.

IDa Risk factor Treatment comparison Experiment description

GDS2239 HCV 3 HCV core protein induced
vs 3 control

Hepatitis C virus core protein effect on hepatocyte cell line

GDS3347 Type 2
diabetes

10 normal and 10 diabetic Type 2 diabetes: cultured myotubes

GDS3656 Type I
diabetes

11 normal and 11 type I diabetic Folic acid effect on endothelial progenitor cells of type 1
diabetes patients

GSE10356_AC Alcoholic
cirrhosis

8 control and 7 alcoholic cirrhosis Post-alcoholism and post-hepatitis C cirrhosis

GSE10356_HC HCV
cirrhosis

8 control and 7 HCV cirrhosis Post-alcoholism and post-hepatitis C cirrhosis

GSE15331 HCV 6 HCV 2ve and 24 HCV +ve mRNA expression in human hepatitis c virus (HCV) liver
biopsy samples

GSE15653 Type 2
diabetes

5 control and 5 obese and
well-controlled DM

Expression data from liver of obese (with or without type 2
diabetes) and lean human subjects

GSE16415 Type 2
diabetes

5 normal and 5 diabetic Genome wide gene expression profiling of visceral adipose
tissue among Asian Indian diabetics

GSE20948_12 hrs HCV 3 Huh7 cells_JFH-1 Infected after 12 hours vs 3 Huh7
cells_Mock Infected after 12 hours

Effect of Hepatitis C Virus Infection on Host Gene Expression

GSE20948_18 hrs HCV 3 Huh7 cells_JFH-1 Infected after 18 hours vs 3 Huh7
cells_Mock Infected after 18 hours

Effect of Hepatitis C Virus Infection on Host Gene Expression

GSE20948_24 hrs HCV 3 Huh7 cells_JFH-1 Infected after 24 hours vs 3 Huh7
cells_Mock Infected after 24 hours

Effect of Hepatitis C Virus Infection on Host Gene Expression

GSE20948_48 hrs HCV 3 Huh7 cells_JFH-1 Infected after 48 hours vs 3 Huh7
cells_Mock Infected after 48 hours

Effect of Hepatitis C Virus Infection on Host Gene Expression

GSE23343 Type 2
diabetes

7 normal and 10 diabetic Expression data from human liver with or without type 2
diabetes

SNP set Genes with Single Nucleotide Polymorphisms (SNPs) associated with human bladder, brain, breast, cancer, cervical, colorectal, endometrial,
esophageal, gastric, head and neck, liver, lung, lymphoma, lymphoma-Hodgkins disease, ovarian, pancreatic, prostate, renal, skin-non melanoma,
testicular, thyroid, leukemia, leukemia-childhood acute lymphoblastic cancers and alzheimer’s and schizophrenia diseases

aThe first 13 data sets with IDs beginning GDS- or GSE- represent gene expression data obtained from GEO database (http://www.ncbi.nlm.nih.gov/geo/, accessed June
2009). The gene polymorphism data associated with various human diseases are obtained from the GAD database (http://geneticassociationdb.nih.gov/, accessed June
2009).
doi:10.1371/journal.pone.0063308.t003
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and sensitivity on the ROC curves. Additionally the area-under-

the-curve (AUC) measures [40] of the ROC curves.

Results, Discussion and Conclusions

Choice of prediction algorithm
Different prediction models were evaluated in terms of their 5-

fold cross-validated risk for fitting the model given by Equation (3)

(see Table S4). Random forest and support vector machines using

all the pathway features displayed the lowest cross-validated risk.

Random forests [37] (denoted by SL.randomForest.1_All in Ta-

ble S4) were because they provide a rigorous metric called

importance for each of the biochemical pathways used in the

prediction model. The importance of a pathway is a measure of how

much it contributes to increases the accuracy of the predictions.

Receiver-operator curves for the predictions in the three
species

The model derived using the mouse data was used to predict the

carcinogenicity in mice, rats and humans for the corresponding

data sets. In this manuscript, the predicted values were treated as

proxies for the continuous NTP carcinogenicity values in Equation

(2). The receiver-operator curves for the three species are shown in

Figure 1. The Area-Under-the-Curve (AUC) metric for both mice

and rats (0.66 and 0.74) are reasonably good while it was 0.91 for

humans. This is a very encouraging result suggesting the utility of

extrapolation of stated mice results to the case of humans. The fact

that the rat and human prediction performances were better than

that for the mice may seem surprising and counter-intuitive.

However, it should not be. For the data sets under consideration,

the performance of predictions from test sets (in this case those

from rats and humans) using the inferred prediction model

depends on how closely the majority of positive (negative) test sets

were to a majority of the elements of the positive (negative)

training set (in this case those from mice). The ‘closeness’ here is

measured in the pathway-response feature space. Therefore, the

mechanisms of hepatocarcinogenicity implied by the pathway

responses of the 26 chemicals in mice were enough to adequately

cover the corresponding mechanisms seen in the data sets from

rats and humans.

The false positives and false negatives in each of the three

species at a level of specificity between 56–75% (i.e., comparable

Type I error rate) is summarized are Table 4. A further discussion

of the identified false positives and false negatives is provided in

Text S1.

This paper presents results only for pathway-based prediction

models. Gene-based prediction models were also evaluated and

they showed a similar performance in terms of the AUC metric

(data not shown) [12]. Evaluated gene-based models for predicting

lung carcinogenicity using the same set of 26 chemicals as used in

this paper. The average AUC metric they observed using a range

of learning models was around 0.7.

Features of the prediction models
The importance measures for each of the pathway-based

features are reported in Table S2. The top fifteen pathways

ranked by their importance measures output from the random

forests learning algorithm are provided in Table 5. From the

KEGG pathway database [17,18,19], the broad categories in

which each of the pathways lie are also provided. Among these

broad categories, altered fatty acid metabolism is associated with

liver steatosis, leading to steatohepatitis and subsequently to an

inflamed liver, liver cell death including apoptosis, inflammation,

hepatocellular regeneration, stellate cell activation, and fibrogen-

esis, events that culminate in cirrhosis and liver cancer [41,42].

This could also explain the reason why the gene expression data

based on non-genetic risk factors like obesity, cirrhosis and

diabetes were predictive of chemical-induced hepatocarcinogene-

sis. Calcium signaling is associated proliferating cells [43] and also

along with cytochrome c in programmed cell death, apoptosis

[44,45]. Perturbed glycan synthesis has been found in ovarian

cancer [46] and human mammary, colon [47], hepatic [48,49],

and glial tumors [50]. Other pathways included those associated

with altered gene transcription and translation, xenobiotic,

vitamin and carbohydrate metabolism. A clustergram of the z-

transformed SEPEA p-values for all the pathways across the 26

chemicals used for the mouse data is shown in figure S1 (see Text

S1 for details of generation of the clustergram). The lack of

predictability especially for the case of mice (because prediction

was based on mice data) suggests plausible new features that are

not captured by the the pathway-based ones or that the set of 26

chemicals was not diverse enough in terms of having sufficient

number of chemicals with alternate mode-of-actions. Some

pathways such as Amyotrophic lateral sclerosis (ALS) may have

Figure 1. Receiver-operator characteristics (ROC) curves of
carcinogenicity predictions using the pathway-based predic-
tion models across three species. (a. Mice, b. Rats and c.
Humans) The legend in the sub-plots provides the area-under-the-
curve (AUC) for the corresponding ROC curve. The curves for mice, rats
and humans are based on datasets corresponding to those in Tables 1,
Table S1 and Table 3 respectively.
doi:10.1371/journal.pone.0063308.g001
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relatively large importance measures but may have no direct

significance to the biological processes in the liver. The

interpretation one should have in such cases is that the responses

of the set of genes associated with ALS disease process in the liver

are relevant to the prediction of hepatocarcinogenicity.

Dose-response predictions
The predicted dose response for the chemicals in Table 2 is

shown in Figure 2. The slopes of the curves and the p-values of the

alternate hypothesis that the slopes are positive are given in

Table 6. NPTH is the only non-liver carcinogen among the five

chemicals and had a negative slope. The responses derived from

the model produce larger positive and more significant (lower p-

values) slopes for the carcinogens. The fall in the carcinogenicity

responses across the two lowest doses for PGBE and TCPN could

be suggestive of alternate mode-of-actions at lower doses.

Conclusions
The analyses involved in this paper worked with hepatocarcin-

ogenicity prediction models trained using data from mice and

extrapolated to data sets from rats and humans. Alternate models

derived from rats to predict carcinogenicity in other species could

be attempted. This was not attempted here because of lack of

sufficient analogous two-year cancer assay data for the rat and

human data sets. The model derived here used data for chemicals

at their maximum tolerable dose (MTD) levels. It could be argued

that responses at lower doses are the ones with the most human

relevance. Again this was not attempted here because of lack of

sufficient number of chemicals dosed at lower levels. One

possibility of understanding chemical-specific low-dose mecha-

nisms would be the availability to a relatively large epidemiological

data set of exposed people (e.g., [51] demonstrates an example of

such a study for the case of workers exposed to benzene).

The mice used in the study lacked the genetic diversity of

humans. So, the extrapolations of carcinogenicity predictions to

human data has also to be viewed in the light of limitations in

addressing concerns of identifying and characterizing the risk to

susceptible populations. Populations could be considered suscep-

tible either based on their genetics, age, nutritional and physical

activity status and possibly other risk factors.

The B6C3F1 mice differ significantly from humans in the

etiology of hepatocellular carcinoma (HCC). The mice have a

relatively high background rate of developing HCC. In humans,

HCC is thought to arise in a background of chronic inflammation,

necrosis and regeneration, fibrosis and extracellular matrix

deposition [52]. In comparison, HCC in mice are not known to

arise under this background. Rather, a genetic event is assumed to

precede a stepwise progression to HCC in mice. There are also

known differences and similarities for the initiating genetic events

for HCC between mice and humans. Therefore there is certainly a

point in questioning the use of B6C3F1 mice when attempting to

understand the etiology of human HCC. The utility of using the

Table 4. False positives and false negatives predictions of predictors across the three species at appropriately chosen points on
the receiver-operator curves in Figure 1.

ROC curve False positives False negatives Sens Spec

Mice naac, iodo, nedd, coum, mala, pcnb, dbet abdq,macr,tdpp,tfel 0.6 0.56

Rats APAP, TYP, VtC ESG_LOW,SAF_LOW,MEG_LOW 0.7 0.67

Humans cancer of the cervix, endometrium, esophogus ,stomach, head
and neck, lung, , ovary, testicle and lymphoma, Hodgkins disease

GSE16415 0.93 0.58

doi:10.1371/journal.pone.0063308.t004

Table 5. Top 15 pathways of the fitted prediction model.

KEGG pathway Broad pathway category Importance Score

Drug metabolism Xenobiotics Biodegradation and Metabolism 1.62

Glyoxylate and dicarboxylate metabolism Carbohydrate metabolism 1.15

Pentose and glucuronate interconversions 1.13

Ascorbate and aldarate metabolism 1.13

O-Mannosyl glycan biosynthesis Glycan Biosynthesis and Metabolism 1.02

Apoptosis Cell Growth and Death 1.01

Calcium signaling pathway Signal Transduction 0.99

Retinol metabolism Metabolism of Cofactors and Vitamins 1.45

Thiamine metabolism 1.00

Ribosome Transcription and Translation 1.11

RNA polymerase 1.01

Arachidonic acid metabolism Lipid metabolism 1.93

Steroid hormone biosynthesis 1.09

Glycosphingolipid biosynthesis - globo series 1.04

Amyotrophic lateral sclerosis (ALS) Neurodegenerative Diseases 1.29

doi:10.1371/journal.pone.0063308.t005
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carcinogenicity results from existing rodent bioassays to the

context of humans have been questioned by Bruce Ames and

colleagues [53,54,55,56]. This concern was in light of the relatively

large proportion of tested chemicals being declared as rodent

carcinogens. Some of these chemicals occur naturally in human

dietary sources and others are being prescribed as pharmaceutical

drugs. The exposures to humans from these sources were at doses

much lower than what were used in the rodent bioassays. In fact

the high positive rates from the rodent bioassays were hypothe-

sized to have been caused by increased cell proliferation induced

by the relatively high doses of the tested chemicals. Specifically for

the data in this manuscript, none of the rodent liver carcinogens

are currently known to be associated with human liver cancer.

However, in the predictive toxicology context of the manuscript,

in spite of the known differences in etiologies, our hypothesis is that

gene expression levels of the precancerous lesions are the similar in

mice and humans. This hypothesis is validated by the relatively

high predictability of human hepatocarcinogenicity using an

independently derived predictive model using 90 day gene

expression data from B6C3F1 mice. Further, the work in

Hoeneroff et al suggests that this hypothesis is not without

justification. In their work the authors found similar gene

expression profiles in cells from HCCs obtained from mice and

human samples. The situation is analogous to the case of

azoxymethane induced colon cancer [57] in rodents being used

as a model of human colon cancer. So the mode of action (chronic

inflammation, increased proliferation or specific genetic events)

leading to the pre-cancerous lesions in humans and rodents may

be similar or different but once the precancerous state is reached

then one could hypothesize that (at least evolutionarily) both

species may follow similar paths to tumor formation and

progression.

In summary, we rigorously derive and evaluate a biochemical

pathway based hepatocarcinogenicity prediction model. Among

the set of alternate prediction models , random forests were found

to perform the best in terms of cross-validated risk. The model

used gene expression data from a given tissue at the end of a short

Figure 2. Dose-response predictions using the pathway-based prediction models for data of the chemicals tabulated in Table 2.
Dose response predictions for five chemicals (a. dcbz, b. mecl, c. npth, d. pgbe and e. tcpn) treated at four different doses in mice.
doi:10.1371/journal.pone.0063308.g002

Table 6. Slopes of the dose-response curves in Figure 2.

Chemical Slopea p-valueb

dcbz 0.137/100 mg/kg 0.09

mecl 0.158/500 ppm 0.12

npth 20.256/5 ppm 0.99

pgbe 0.207/200 ppm 0.09

tcpn 0.331/10 mg/kg 0.05

aThe slopes are in terms of changes in the predicted z values per change in
tabulated dose. b p-value for hypothesis testing the alternative that the
estimated slopes are positive.
doi:10.1371/journal.pone.0063308.t006
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term study to predict the risk for development of tumors at the end

of a longer period of time. Specifically, the model is evaluated

using gene expression data obtained from the liver of mice treated

with a range of 26 chemicals over a period of 90 days. The model

with the information on affected pathways derived using these

gene expression data had sufficient signal to adequately predict the

two-year liver carcinogenicity risk of the same chemicals as

evaluated in the National Toxicology Program’s two-year cancer

bioassay. The fact that the model was developed at the

biochemical pathway level allows one to reasonably expect

conserved behaviors of the chemicals at the pathway level across

multiple species. This belief was validated using the model

developed for mice to predict results in humans and rats. This

fact was observed in Figure 1.The use of pathways in the

carcinogenicity prediction model allowed a biologically based

reduction of the feature space of the classifier. The responses of the

various pathways suggested a complex interplay between them

leading to the carcinogenicity prediction. What was encouraging

was the excellent extrapolation for the case of human data.

Supporting Information

Figure S1 Clustergram of transformed p-values (Equa-
tion (1)) representing the enrichment of the 216 path-
ways across the 26 chemicals treatments in mice, was
generated using hierarchical clustering with the euclid-
ean distance metric and average linkage to generate the
hierarchical trees of pathways and chemicals using the
Cluster and Tree view programs [58].
(PNG)

Text S1 Provides additional description of the micro-
array experiments, involved in mice and rats, the data

for which are used in the analysis. Also provided are details

of generation of Figure S1, a discussion of the identified false

positives and false negatives by the prediction models, primers on

the technique of cross-validation , receiver-operator curves and

references to the NTP technical reports of the two-year cancer

bioassays for each of the 26 mice treated chemicals.

(DOC)

Table S1 List of rat hepatocarcinogen treatment groups
from Auerbach et al., 2009.

(XLS)

Table S2 List of chemicals in Table 1 that were chosen
to be in each of the 5 folds in the cross-validation
analysis performed.

(XLS)

Table S3 List of various learning algorithms attempted
in the SuperLearner package [35] and the cross-validat-
ed risk for the case of pathway-based continuous
predictions.

(XLS)

Table S4 The list of pathways used as predictors along
with their importance measures as reported by the
random forests learning algorithm [37]. The importance

measures for each of the pathways are also reported.

(XLS)
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