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Abstract: Oxidative stress has been implicated in the etiology of Parkinson’s disease (PD). Molecules
non-covalently binding to the Keap1–Nrf2 complex could be a promising therapeutic approach for PD.
Herein, two novel prenylated indole alkaloids asperpenazine (1), and asperpendoline (2) with a scarce
skeleton of pyrimido[1,6-a]indole were discovered from the co-cultivated fungi of Aspergillus ochraceus
MCCC 3A00521 and Penicillium sp. HUBU 0120. Compound 2 exhibited potential neuroprotective
activity on SH-SY5Y cells against oxidative stress. Molecular mechanism research demonstrated
that 2 inhibited Keap1 expression, resulting in the translocation of Nrf2 from the cytoplasm to the
nucleus, activating the downstream genes expression of HO-1 and NQO1, leading to the reduction
in reactive oxygen species (ROS) and the augment of glutathione. Molecular docking and dynamic
simulation analyses manifested that 2 interacted with Keap1 (PDB ID: 1X2R) via forming typical
hydrogen and hydrophobic bonds with residues and presented less fluctuation of RMSD and RMSF
during a natural physiological condition.

Keywords: prenylated indole alkaloids; neuroprotection; oxidative stress; Keap1–Nrf2

1. Introduction

As one of the most commonplace neurodegenerative movement disorders, Parkinson’s
disease (PD) affects more than 10 million individuals worldwide [1]. A wealth of evidence
indicated that oxidative stress, characterized by the excessive production of reactive oxygen
species, may be directly or indirectly implicated in the etiology of PD [2–4]. It is commonly
identified that nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression
level of intracellular ROS and glutathione (GSH), which also is a positive transcriptional
regulation factor for modulating the expression of genes carrying with antioxidant re-
sponse elements (ARE) [5]. Normally, Nrf2 binds with Kelch-like ECH-associated protein 1
(Keap1), which sequesters the former in the cytoplasm to promote its degradation via the
ubiquitylation system, then leads to blocking the nuclear translocation of Nrf2. Disrup-
tion of the Keap1–Nrf2 protein–protein interaction (PPI) was beneficial to release Nrf2,
which stimulated Nrf2 translocating from cytoplasm to nucleus, binding to ARE, and then
activating the antioxidative defense system to generate antioxidative enzymes such as
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heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1) [4]. Although
accumulating research developed Nrf2 activators involving covalently bonding with Keap1,
the small-molecule non-covalently targeting of the Keap1–Nrf2 complex may offer better
safety owing to improved efficacy and selectivity [6,7].

Small molecules metabolized from fungi possess versatile skeletons, whose fascinating
bioactivities of treating human maladies are well documented and have been an original
driving force for continuously exploring lead drugs [8–10]. Prenylated indole alkaloids
were obtained mainly from diverse species of Aspergillus and Penicillium fungi [10–12],
presenting neuroprotective effects on SH-SY5Y cells or BV-2 cells and primary microglial
cells [13–15]. During our ongoing pharmaceutical investigation on exploring new neuro-
protective lead compounds from fungi [14,16], two novel prenylated indole alkaloids with
diketopiperazine motif, termed asperpenazine (1) and asperpendoline (2) (Figure 1), were
discovered from an ethyl acetate extract of co-cultured Aspergillus ochraceus and Penicillium
sp. HUBU 0120. Structurally, compound 2 is an unexpected prenylated diketopiperazine
derivative possessing the rare skeleton of pyrimido[1,6-a]indole, resulting from the key
steps of putative biosynthesis such as indole oxidation, pinacol rearrangement, regiospe-
cific N-prenylation at the indole ring [17], and intramolecular oxidation. Metabolites
were screened for neuroprotective effects on H2O2-injured SH-SY5Y cells, which demon-
strated compound 2 predominantly protected cells from an oxidative stress injury. Further
mechanism studies implied that 2 attenuated ROS accumulation, augmented GSH level,
suppressed Keap1 protein and mRNA expressions, enhanced Nrf2 protein expression in the
nucleus, and then upregulated HO-1 and NQO1 protein and their mRNA expressions. We
delineated herein the isolation, structural determination, plausible biosynthetic pathway,
the pharmacologically active evaluation, and molecular simulation, which is elucidated in
what follows.
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2. Results and Discussion

The marine-derived fungus Aspergillus ochraceus and soil-derived Penicillium sp. HUBU
0120 were co-inoculated on the potato dextrose agar (PDA) for 7 days and then cultivated
in Erlenmeyer flasks (150 × 500 mL) containing sterilized rice at 25 ◦C for one month
(Figure S1). The ethyl acetate (EtOAc) extract was chromatographed exhaustively to afford
novel prenylated indole alkaloids trivially termed asperpenazine (1) and asperpendo-
line (2).

2.1. Chemical Structure Elucidation

Asperpenazine (1), afforded as light-yellow needle crystals, whose molecular formula
was deduced as C21H25N3O2 by the analysis of the high-resolution electrospray ionization
mass spectroscopy (HRESIMS) with a quasimolecular ion at m/z 374.1903 ([M + Na]+ calcd.
374.1839). 1H and 13C nuclear magnetic resonance (NMR) spectra combining HSQC data
analyses deciphered an ortho-disubstituted phenyl ring existence with the characteristic
resonances [δC 126.7 (C-12), 118.4 (C-13), 120.1 (C-14), 122.5 (C-15), 111.2 (C-16), and 136.3
(C-17); δH 7.42 (d, J = 7.7 Hz, H-13), 7.06 (td, J = 7.6 and 1.1 Hz, H-14), 7.12 (td, J = 7.6
and 1.1 Hz, H-15), and 7.25 (d, J = 7.9 Hz, H-16)], four methyls [δC 26.2 (C-20), 19.1 (C-21),
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19.0 (C-23), and 16.6 (C-24); δH 1.71 (d, J = 1.1 Hz, H-20), 1.98 (d, J = 1.1 Hz, H-21), 0.86
(d, J = 6.8 Hz, H-23), and 1.02 (d, J = 7.0 Hz, H-24)], one methylene [δC 28.2 (C-10); δH 3.46
(dd, J = 15.4 and 4.2 Hz, H-10a), and 2.87 (ddd, J = 15.3, 11.8, and 1.3 Hz, H-10b)], one sp2

methine [δC 120.7 (C-18); δH 5.27 (dt, J = 9.6 and 1.3 Hz, H-18)], four sp3 methines [δC 48.3
(C-3), 60.9 (C-6), 53.6 (C-9), and 32.7 (C-22); δH 6.45 (d, J = 9.5 Hz, H-3), 3.98 (brt, J = 2.4 Hz,
H-6), 4.38 (dd, J = 11.7 and 4.0 Hz, H-9), and 2.38 (ddt, J = 10.5, 6.8, and 3.7 Hz, H-22)], two
amide carbonyls [δC 163.8 (C-5) and 168.4 (C-8)], and three sp2 quaternary carbons [δC 132.6
(C-2), δC 106.6 (C-11), and δC 139.0 (C-19)]. Conjunction analysis of HSQC, 1H–1H COSY,
and HMBC NMR data designated the 1H and 13C NMR signals of 1 (Table 1), which resulted
in a proposal that 1 was likely to possess an indole diketopiperazine motif within [18,19].
1H–1H COSY spin–spin systems of H-13/H-14/H-15/H-16, and HMBC correlations from
H-13 to C-11/C-17 and from H-16 to C-12, together with the presence of a sp2 quaternary
carbon [δC 132.6 (C-2)], roughly established an indole functional group (Figure 2). Further
analyses of the HMBC data with the correlated resonances of H-6/C-5 and H-6/C-8, H-
9/C-5 and H-9/C-8, and H-22/C-5 and H-22/C-6, along with the 1H–1H COSY coupling
systems of H-6/H-22/H-23/H-24, constructed a diketopiperazine entity with an isopropyl
group located at C-6. Finally, the HMBC spectrum with the correlated signals from H-3
to C-5, C-9, and C-11, and from H-10 to C-2, C-8, and C-9, connected the aforementioned
motifs to the indole diketopiperazine skeleton with the C-3 isobutenyl substituent, forming
an atypical fumitremorgin-type alkaloid [12], due to the HMBC correlations from Me-20
(and Me-21) to C-18 and C-19, and from H-18 to C-3, C-20, and C-21 (Figure 2).

Table 1. 1H (400 MHz) and 13C (100 MHz) NMR data of compounds 1 and 2 (recorded in CDCl3).

No.
1 2

δH δC δH δC

2 132.6 7.23 d (9.8) 58.5
3 6.45 d (9.5) 48.3
4 163.0
5 163.8 3.91 brt (2.4) 60.1
6 3.98 brt (2.4) 60.9
7 166.6
8 168.4 4.66 dd (13.0, 2.3) 48.9

9 4.38 dd (11.7, 4.0) 53.6 Ha 1.53 t (13.2)
Hb 2.64 dd (13.8, 2.6) 36.4

10
Ha 3.46 dd (15.4, 4.2)

Hb 2.87 ddd (15.3,
11.8, 11.3)

28.2 91.1

11 106.6 198.4
12 126.7 119.6
13 7.42 d (7.7) 118.4 7.59 d (8.0) 125.5
14 7.06 td (7.6, 1.1) 120.1 6.87 t (7.5) 120.3
15 7.12 td (7.6, 1.1) 122.5 7.55 d (7.7) 138.7
16 7.25 d (7.9) 111.2 7.17 d (8.4) 110.7
17 136.3 157.7
18 5.27 dt (9.6, 1.3) 120.7 5.77 d (8.6) 117.9
19 139.0 139.4
20 1.71 d (1.1) 26.2 1.79 s 26.1
21 1.98 d (1.1) 19.1 1.91 s 18.8
22 2.38 ddt (10.5, 6.8, 3.7) 32.7 2.29 ddt (13.7, 7.0, 3.2) 32.2
23 0.86 d (6.8) 19.0 0.88 d (7.1) 18.7
24 1.02 d (7.0) 16.6 0.52 d (6.8) 16.0

25-OCH3 3.14 s 52.0
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The NOESY experiments were then performed to deduce the relative stereo-character
istics of 1 (Figure 2). Pivotal NOESY cross-peaks of H-6/H-9 and H-9/H-10a permitted an
equatorial direction for these protons as an α-oriented assignment. Attributed to the key
signal absence between H-3 and H-9, the signal of H-3/H-10b observed in the NOESY spec-
trum suggested the axial-directed for H-3 and H-10b as the β orientation. Completely, the
absolute stereochemistry confirmation was finished via the single-crystal X-ray diffraction
spectroscopy (XRD) on the single crystal of 1. The chiral features of C-3, C-6, and C-9 were
established as 3R,6S,9S (Figure 3), since the XRD data were collected with CuKα radiation,
providing the Flack parameter of 0.08(4) (CCDC 2070312).
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Asperpendoline (2) was isolated as a greenish-yellow powder with the molecular for-
mula C22H27N3O4, possessing the eleven degrees of unsaturation, which was deduced by
the HRESIMS positive ion peak at m/z 420.1897 ([M + Na]+ calcd. 420.1894). Interpretation
of the 1H, 13C, and DEPT NMR spectra along with HSQC correlations provided the 1H and
13C chemical shift assignments of 2 (Table 1). The 1D and HSQC NMR spectra deduced
the presence of 1,2-disubstituted phenyl ring with the typical resonances [δC 119.6 (C-12),
125.5 (C-13), 120.3 (C-14), 138.7 (C-15), 110.7 (C-16), and 157.7 (C-17); δH 7.59 (d, J = 8.0 Hz,
H-13), 6.87 (t, J = 7.5 Hz, H-14), 7.55 (d, J = 7.7 Hz, H-15), and 7.17 (d, J = 8.4 Hz, H-16)],
four methyls [δC 26.1 (C-20), 18.8 (C-21), 18.7 (C-23) and 16.0 (C-24); δH 1.79 (s, Me-20), 1.91
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(s, Me-21), 0.88 (d, J = 7.1 Hz, Me-23), and 0.52 (d, J = 6.8 Hz, Me-24)], one methoxyl [δC
52.0 (C-25); δH 3.14 (s, Me-25)], one methylene [δC 36.4 (C-9); δH-9a 1.53 (t, J = 13.2 Hz) and
δH-9b 2.64 (dd, J = 13.8 and 2.6 Hz)], four sp3 methines [δC 58.5 (C-2), 60.1 (C-5), 48.9 (C-8),
and 32.2 (C-22); δH 7.23 (d, J = 9.8 Hz, H-2), 3.91 (brt, J = 2.4 Hz, H-5), 4.66 (dd, J = 13.0 and
2.3 Hz, H-8), and 2.29 (ddt, J = 13.7, 7.0, and 3.2 Hz, H-22)], one sp2 methine [δC 117.9 (C-18);
δH 5.77 (d, J = 8.6 Hz, H-18)], one oxygenated carbon [δC 91.1 (C-10)], two amide carbonyls
[δC 163.0 (C-4) and 166.6 (C-7)], one carbonyl [δC 198.4 (C-11)], and one sp2 quaternary
carbon [δC 139.4 (C-19)]. Based on the 1H–1H COSY and HMBC NMR signals and the
shift value analyses, the indolin-3-one unit presented in 2 rather than the indole motif as
in 1, was substantiated by the 1H–1H COSY coupling systems of H-13/H-14/H-15/H-16,
the HMBC signals between H-13 and C-11/C-17, H-15 and C-17, and H-16 and C-12, and
particularly, the presence of the C-10−N-1 bond, which reasonably supported the unusual
downfield shift of C-10 (δC 91.1), although as an oxygenated carbon, C-10, with a methoxyl
substituent resulting from the HMBC cross-peaks of Me-25/C-10 (Figure 2). Compound 2
has the identical diketopiperazine unit along with a C-6 isopropyl substituent to 1, which
is confirmed by the similar chemical shift values of C-4, C-5, C-7, C-8, C-22, C-23, and C-24,
to those of 1, and the HMBC correlated signals of H-5 to C-4 and C-7, H-8 to C-4 and C-7,
and H-22 to C-5, as well as the 1H–1H COSY signals of H-5/H-22/H-23/H-24 observed
in the spectrum. Furthermore, the key correlations in the HMBC spectrum of H-2 to C-4,
C-10, and C-17, and H-9 to C-7, C-10, and C-11, as well as the COSY cross-peak of H-8/H-9,
demonstrated the fusion of the indolin-3-one unit with the diketopiperazine motif, meeting
the eleven indices of hydrogen deficiency, along with the isobutenyl functional group at C-2
for the observed signals of Me-20/21 to C-18 and C-19, and H-18 to C-2, C-20, and C-21 in
the HMBC correlations (Figure 2). Architecturally, to the best of our knowledge, 2 with an
unprecedented skeleton, which was forged via C-9–C-10–N-1–C-2 incorporating the indo-
line into the diketopiperazine motif, forming the scarce skeleton of pyrimido[1,6-a]indole,
rather than via C-10–C-11=C-12–C-3 combination such as in that reported ones [18,19].

Detailed NOESY correlation analyses revealed the relative chiral features of 2. The
observed key signals in the NOESY spectrogram of H-5/H-8, H-8/H-18, and Me-25/H-18
suggested that these protons were co-facial, and then H-5, H-8, and the C−O bond were
arbitrarily designated as the α orientation. As in the six-membered ring unit, the absence of
NOESY cross-peaks of Me-25/H-2, Me-25/H-8, and H-2/H-8 illustrated the β orientation
of H-2, which could be further supported due to the upfield shift of C-2 (δC 58.5) resulting
from the γ-gauch effect. Therefore, the relative configuration as 2S*,5R*,8R*,10R*-2 was
constructed, and then the quantum chemical prediction on the 13C NMR shifts of which
was executed via scaling methods [20,21] at the mPW1PW91/6-31G(d)-SCRF//M062X/6-
31G(d) level. The calculated chemical shifts (δ) were obtained via the equation δ = (intercept
− σ)/(−slope) (σ was the calculated isotropic value for a given nucleus; the values of the
intercept and the slope were 193.2179 and −0.9537, respectively) [21], and then constructed
the linear regression correlations between the calculated with the experimental 13C NMR
shifts to acquire scaled calculated NMR shifts (Scal. Calc) (Table S1). The results with the
high R2 value of 0.9991 (Figure 4A), the low average absolute deviation (AveDev) of 1.25,
and the maximum absolute deviation (MaxDev) of 4.09 (Table S1), strongly supported the
proposed relative configuration. Subsequently, the electronic circular dichroism (ECD) cal-
culation was performed at the CAM-B3LYP-SCRF/def2-TZVPP//PBE0-SCRF/6-311G(d,p)
level to simulate the Cotton effects of 2, using the Gaussian 16 program. ECD simulation
results matched well with the experimental curve (Figure 4B), which implied the absolute
structure assignment 2S,5R,8R,10R of 2.

Prenylated indole alkaloids, as well as derivatives thereof, whose skeletons are bio-
genetically originated from the condensation product involving tryptophan and other
amino acids biocatalyzed by the nonribosomal peptide synthetase (NPS) [10–12]. The
putative biosynthetic routes of compounds 1 and 2 are proposed in Figure 5. Firstly, trypto-
phan and valine occur condensation to form the key intermediate i via NPS catalyzation,
which then proceeds along the following pathways. After bearing the prenylation via the
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dimethylallyl pyrophosphate (DMAPP) with the prenyltransferase [22], i successively un-
dergoes cyclization to form intermediate ii, which then endures an intramolecular oxidative
ring-closure reaction, a pivotal step involving C-3−N-4 bond formation mediated by the cy-
tochrome P450 monooxygenase [23,24], and finally affording 1. Alternatively, intermediate
i occurs the oxidation attributable to indole oxidase catalyzation [10], Wagner–Meerwein
rearrangement, and methoxylation involving O-methyltransferase due to structurally own-
ing nucleophilic characteristics, to yield intermediate iii. Then, iii is regiospecifically
N-prenylated by DMAPP at the indole ring [17], forming intermediate iv, which consecu-
tively bears the aforementioned procedures, resulting in compound 2.
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2.2. Neuroprotection on SH-SY5Y Cells against Oxidative Stress

Compounds 1 and 2 contain carboline motifs incorporated into diketopiperazine units,
both of which are considered favorable templates for the drug scaffolds design [25]. As
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human dopaminergic cells, SH-SY5Y cells have been typically applied on neuroprotection
evaluation and molecular mechanism studies [26]. H2O2, a major ROS, is involved in neu-
rodegenerative maladies including PD, which has been universally used to insult neuronal
cells for the investigation of neuron injury under the oxidative stress condition [27,28]. The
cytotoxicities of 1 and 2 on SH-SY5Y cells were firstly examined using the CCK-8 assay, and
both compounds presented no cytotoxic activity with the concentration of 50 µM, whereas
the positive control tert-butylhydroquinone (TBHQ) showed such activity (Figure 6A).
The concentration of 50 µM thereby was adopted as the maximum one for isolates in the
subsequent neuroprotection assessments. Then, the protection from H2O2 injury on cells of
compounds was evaluated, and as shown in Figure 6B, both metabolites exhibited cytopro-
tective activity in dose-dependently on H2O2-induced cells, with 2 being more efficacious
at the concentration of 50 µM than TBHQ at 10 µM. The overexpression of intracellular
ROS plays a pivotal role in the proceeding of neuronal cells death via H2O2 insult [29].
DCFH–DA fluorescence staining and photography were carried out to assess the ROS level,
and as shown in Figure 6C,D, with the concentration of 50 µM, 2 restored the morphology
of H2O2-injured cells and attenuated the fluorescence intensity produced by ROS. As one
of the most plentiful endogenous antioxidants, GSH has an essential effect on ROS detoxi-
fication and redox homeostasis regulation [30]. The level of GSH was determined using
ELISA assay, and as Figure 6E shows, 2 promoted GSH concentration in a dose-dependent
manner toward H2O2-induced cells.
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from 5–50 µM; (C) compound 2 attenuated ROS accumulation in H2O2 insult SH-SY5Y cells: the
morphology changes and the fluorescent signals of the control (untreated), H2O2 insult, and H2O2

and 2 (10–50 µM) co-treated cells were captured by an inverted fluorescence microscope; (D) statistical
analyses of DCFH–DA fluorescence intensity on the ROS production; (E) the concentration of GSH
evaluation by ELISA. TBHQ was used as the positive control. H2O2 (350 µM) was adopted to insult
SH-SY5Y cells. #### p < 0.0001 vs. control group; ** p < 0.01, *** p < 0.001, and **** p < 0.0001 vs. H2O2

insult group; ns means no statistical significance. Statistical analyses were evaluated with two-way or
one-way ANOVA; the values represent mean ± SD. All experiments were parallelly repeated three
times in triplicate.
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The activation of antioxidative genes of Nrf2, such as HO-1 and NQO1, predominantly
depends on the nuclear translocation of Nrf2 [31]. Based on the immunofluorescence
assay, the effect of 2 toward Nrf2 translocation in cells from the cytosol to the nucleus was
measured. The results showed that the 2-treated group distinctly increased translocation
of Nrf2 for the green fluorescence in the nucleus of cells (Figure 7A). Furthermore, Nrf2
expression in the cytosol, and the nucleus after cells treated with or without 2 was also
detected via Western blotting. The level of cytosolic and nuclear Nrf2 protein exhibited
the reverse trend in control and H2O2-insult groups, while consistent uptrend presented
after H2O2-induced cells were administrated 2 with the concentrations ranging from
10–50 µM (Figure 7B), which may be attributable to disturbance of Keap1–Nrf2 PPI by
2, releasing Nrf2 from ubiquitylation system. As phase-II detoxification enzymes, HO-1
and NQO1 are regulated by Nrf2, which is translocated into the nucleus and combines
ARE to activate genes transcription of the formers. The further assessments of protein and
mRNA expression on Keap1, HO-1, and NQO1 were measured using Western blotting
and qRT–PCR assays, respectively. The protein expression levels of both HO-1 and NQO1
were enhanced, the ones of Keap1 were suppressed, along with the consistent expression
trends of their mRNA levels, when H2O2-injured cells were treated with 2 (10–50 µM)
(Figure 7C–F). Taken together, against H2O2-induced oxidative stress in SH-SY5Y cells, 2
inhibited expression of Keap1, leading to nuclear translocation of Nrf2, then inducing HO-1
and NQO1 expression via Nrf2 activation, which resulted in a reduced level of ROS and an
augmented level of GSH, protecting cells from oxidative damage.
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Figure 7. (A) Compound 2 promoted the Nrf2 nuclear translocation in SH-SY5Y cells. Cells were
stained using DAPI and the Nrf2 antibody after being treated with 2 (50 µM) for 4 h. The represented
signals were detected using the fluorescence microscope; (B) further, 2 (10–50 µM) promoted the
protein expressions of Nrf2 in the cytoplasm and nucleus in H2O2 insult cells; (C) compound
2 enhanced the expressions of HO1 and NQO1 and inhibited the expression of Keap1. Protein
expression levels were determined using immunoblot methods; (D−F) effects of 2 promoting the
mRNA expression of Keap1, HO-1, and NQO1. Cells were treated using H2O2 (350 µM) or co-treated
using H2O2 (350 µM) with 2 (10–50 µM) for 24 h. The relative levels of mRNA were measured by
qRT−PCR analysis. In B−F, cells were cultivated using H2O2 (350 µM) or co-cultivated using H2O2

(350 µM) with 2 (10–50 µM) for 24 h. #### p < 0.0001 vs. control (untreated cells) group; * p < 0.05,
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** p < 0.01, *** p < 0.001, and **** p < 0.0001 vs. H2O2 insult group; ns means no statistical significance.
Statistical analyses were evaluated with one-way ANOVA. The values represent mean ± SD. All
experiments were parallelly repeated three times in triplicate.

2.3. Molecular Docking and Dynamics Simulation of 2–1X2R

The molecular docking approach is widely used to predict reliable binding dispositions
between ligands and target proteins. As shown by the aforementioned results, 2 may target
Keap1–Nrf2 PPI to modulate the Nrf2 signaling pathway, achieving neuroprotection toward
SH-SY5Y cells from oxidative stress. Computational docking and molecular dynamics
simulation, therefore, were carried out to predict the binding characteristics between 2
and Keap1 (PDB ID: 1X2R). The procedure of AutoDock 4.2.6 with MGLTools 1.5.6 (ADT)
was performed for the virtual docking, which showed that 2 presented a high negative
binding affinity (−8.46 kcal/mol), together with a low inhibition constant (Ki) (632.06 nM)
docking with 1X2R. The binding perspective of the 2–1X2R complex was visualized via
PyMOL Molecular Graphics System 2.4 and Discovery Studio 2020 (DS20). As shown in
Figure 8, 2 bonded with 1X2R in a non-covalent manner, forming typical hydrogen bonds
with amino acid residues of Val608, Val369, Val418, Val465, and Val467 along with the
respective distance of 2.1, 2.2, 1.8, 3.0, and 2.3 Å, and hydrophobically interacting with
residues of Cys513, Ala466, and Val420.
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To examine the stability of the docked 2–1X2R complex during physiological condi-
tions, the molecular dynamics simulation (MDS) program of DS20 was used to calculate
the root-mean-square deviation (RMSD) of the conformational stabilities over time and the
root-mean-square fluctuation (RMSF) of the protein backbone atoms. After 4 ps CHARMm
force field minimization and 200 ps of solvent equilibration, 2–1X2R still exhibited ther-
mal stability at 300 K from 204 ps to 2204 ps with the total energies from −59,517 to
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−59,919 kcal/mol. The average values of RMSD, RMSF, main-chain RMSF, and side-chain
RMSF of the complex were detected as 1.70, 0.98, 0.83, and 1.01 Å, respectively (Figure 9),
which illustrated the stabilization of the docked 2–1X2R with less conformational fluctua-
tions within a natural environment.
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3. Materials and Methods
3.1. General Experimental Procedures

HRESIMS data were collected on a Bruker micro TOF II and SolariX 7.0 spectrometer
(Bruker, Karlsruhe, Germany). Ultraviolet–visible (UV–Vis) absorption spectroscopy data
were measured using a Bruker Vertex 70 spectrometer (Brucker Co., Karlsruhe, Germany).
Infrared (IR) spectra were detected by a Fourier transform infrared spectrometer (Varian
Cary 50 FT-IR, Varian Medical Systems, Salt Lake City, UT, USA). Optical rotation measure-
ments were performed on a JASCO P-2200 digital polarimeter (JASCO, Tokyo, Japan) at
20 ◦C. ECD spectra were determined by a JASCO J-810 spectrometer (JASCO, Tokyo, Japan).
The Bruker AM-400 spectrometer (Brucker Co., Karlsruhe, Germany) was performed to
collect 1H NMR (400 MHz) and 13C NMR (100 MHz) data of compounds, whose chemical
shifts were obtained in ppm via referring to the solvent peaks (CDCl3, δH 7.24 and δC 77.23).
XRD data were recorded by a Bruker APEX DUO diffractometer (Brucker Co., Karlsruhe,
Germany) with graphite-monochromated CuKα radiation. Silica gel (200–300 mesh) and
reversed-phase C18 (RP-C18, spherical, 20 µM) were purchased from Santai Technologies,
Inc., Suzhou, China. Sephadex LH-20 was afforded by Beijing Solarbio Science and Tech-
nology Co., Ltd., China. Thin-layer chromatography (TLC) was fulfilled using silica gel 60
F254 (GF254) (Qingdao Haiyang Chemical Co., Ltd., Qingdao, China). The semi-preparative
high-performance liquid chromatography (HPLC) instrument (Waters 600, Milford, MA,
USA) was performed to repurify compounds 1 and 2 over a Shim-Pack GIST-C18 column
(5 µM, 10 × 250 mm, Shimadzu (Shanghai, China) Global Laboratory Consumables Co.,
Ltd., Shanghai, China).

3.2. Strain Material

Aspergillus ochraceus MCCC 3A00521, derived from the deep-sea water in the Pacific
Ocean, the voucher specimens of which were provided by Marine Culture Collection of
China. Penicillium sp. HUBU 0120, collected from the soil of Xishan Mountain, Kunming,
Yunnan Province, China in May 2018, the identification of which was accomplished refer-
ring to the morphological features, and the sequence analyses of the internal transcribed
spacer (ITS) region of the ribosomal RNA (rDNA) using ITS 1 and ITS 4, and the sequence
data of which were submitted to GenBank with the accession number MW463395. Based
on the BLAST consequences of ITS genes in NCBI, the phylogenetic tree of Penicillium
sp. HUBU 0120 was constructed via MEGA 7.0 software using the neighbor-joining (N-J)
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method (Figure S2). The inoculated fungus A. ochraceus MCCC 3A00521 was deposited in
the Strain Preservation Center, School of Life Sciences, Hubei University, China. The fungus
P. sp. HUBU 0120 was preserved in China Center for Type Culture Collection, Wuhan
University, China (preservation ID: CCTCC M2021412).

3.3. Fermentation, Extraction and Isolation

The co-cultured fungi of A. ochraceus MCCC 3A00521 and P. sp. HUBU 0120 were
inoculated in PDA culture plates at 25 ◦C for a week. The agar containing two fungi was
divided into small pieces and then subjected to sterilized Erlenmeyer flasks (150 × 500 mL),
which were pre-added with 100 g rice, 150 mL H2O, 0.8% NaCl, 0.5% KCl, and 0.8%
MgSO4, fermenting at 25 ◦C for 30 days. Then, the growing fungi were sequestered by
adding 150 mL EtOAc to each flask. The fermentation was extracted six times using
EtOAc (6 × 10 L) and then yielded a crude extract (400 g) under the vacuum evaporation.
Subsequently, the extract was subjected to a silica gel column (silica gel 4.0 kg, column
20 × 150 cm), eluting with petroleum ether, methylene chloride (CH2Cl2), and EtOAc,
in turn. The methylene chloride partition (100 g) was fractionated into seven fractions
(Fr1–Fr7) by column chromatography (CC) with silica gel (2.0 kg, 15 × 100 cm), eluting
with CH2Cl2−CH3OH (300:1 → 10:1). After being detected with TLC, the fraction Fr4
(10 g) was selected and partitioned into six subfractions of Fr4.1–Fr4.6 by the gradient
elution on the medium pressure liquid chromatography (MPLC, RP-C18, 5 × 50 cm) with
MeOH−H2O (10:90→ 100:0). The subfraction Fr4.4 (2 g) was subjected to the Sephadex
LH-20 CC (4 × 185 cm, MeOH) to obtain five subparts (Fr4.4.1–Fr4.4.5). The subpart Fr4.4.2
(400 mg) was obtained after removing the solvent using vacuum evaporation. Finally,
Fr4.4.2 was further repurified by HPLC (MeOH–H2O, v/v 45:55, 2.0 mL/min, 254 nm) over
a semi-preparative Shim-Pack GIST-C18 column to yield 1 (15 mg; retention time: 35 min)
and 2 (5 mg; retention time: 55 min).

Asperpenazine (1): light-yellow needle crystals; [α]20
D −283.4 (c 0.53, CH3OH); UV (CH3OH)

λmax (log ε) 227 (4.77) and 272 (4.03) nm; IR (KBr) νmax 3279, 3059, 2963, 1679, 1450, and
1327 cm–1; ECD λmax (∆ε) 216 (−12.16) and 269 (−3.62) nm (the experimental ECD spec-
trum was shown in Figure S3); 1H and 13C NMR data, see Table 1; HRESIMS: m/z 374.1903
[M + Na]+ (calcd for C21H25N3O2Na, 374.1839). HRESIMS, UV, IR, and NMR spectra of 1
were shown in Figures S4–S13.

Asperpendoline (2): greenish-yellow powder; [α]20
D +96.8 (c 0.24, MeOH); UV (CH3OH)

λmax (log ε) 238 (4.61) and 399 (3.73) nm; IR (KBr) νmax 3215, 2926, 1722, 1685, 1583, 1466,
1441, and 1319 cm–1; ECD λmax (∆ε) 237 (−8.63), 261 (+4.09), 334 (−5.63), and 382 (+6.90)
nm; 1H and 13C NMR data, see Table 1; HRESIMS: m/z 420.1897 [M + Na]+ (calcd for
C22H27N3O4Na, 420.1894). HRESIMS, UV, IR, and NMR spectra of 2 were shown in
Figures S14–S23.

3.4. Single-Crystal X-ray Data for Asperpenazine (1)

C21H25N3O2•H2O, M = 369.45, a = 8.9067(2) Å, b = 13.3081(3) Å, c = 15.9542(3) Å,
α = 90◦, β = 90◦, γ = 90◦, V = 1891.07(7) Å3, T = 100.(2) K, space group P212121, Z = 4, µ(Cu
Kα) = 0.706 mm−1, 20,318 reflections measured, 3708 independent reflections (Rint = 0.0294).
The final R1 values were 0.0283 (I > 2σ(I)). The final wR(F2) values were 0.0722 (I > 2σ(I)).
The final R1 values were 0.0284 (all data). The final wR(F2) values were 0.0723 (all data).
The goodness of fit on F2 was 1.100. Flack parameter = 0.08(4).

3.5. Cytotoxicity and Cytoprotection Evaluation

The SH-SY5Y cell line was kindly provided by the Institute of Materia Medica, the
Chinese Academy of Medical Sciences, and Peking Union Medical College. The cytotoxicity
and cytoprotection of compounds on SH-SY5Y cells treated with or without H2O2 were
determined using a CCK-8 assay. The detailed experiments were described in previous
studies [14,16]. The CCK-8 kit was purchased from Beyotime Biotechnology Co., Ltd.,
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Shanghai, China. Briefly, inoculated cells in 96-well plates were treated without or with
H2O2 (350 µM) or being co-treated with H2O2 (350 µM) and compounds with designated
concentrations in the incubator under 5% CO2 at 37 ◦C for 24 h. As cells grew to 75%
confluence, the CCK-8 solution (10 µL) was then added and cultivated for 2 h. The envision
2104 multilabel reader (PerkinElmer, Waltham, MA, USA) was used to measure the optical
density (OD) at 450 nm of each well. The cell viabilities were evaluated via the formula:

Cell viability% = [OD(experimental group) − OD(blank)]/[OD(control group) − OD(blank)]
× 100% (means ± SD, n = 3).

3.6. ROS Level Evaluation

The intracellular ROS level of cells was determined by the ROS assay kit (Beyotime
Biotechnology Co., Ltd., Shanghai, China) with the DCFH–DA as the probe [32], according
to the protocol afforded by the manufacturer. After being treated without or with H2O2
(350 µM), or co-treated with H2O2 (350 µM) and 2 (10, 25, and 50 µM) for 24 h, cells
were washed and then stained with a diluted DCFH–DA solution in dark for 20 min. A
fluorescence microscope was used to observe and photograph cells. The value of integrated
OD for each group was recorded for the expression of the fluorescence intensity.

3.7. GSH Level Evaluation

The GSH produced in cells was assessed through the GSH ELISA assay kit (ELK
Biotechnology Co., Ltd., Wuhan, China), following the protocol provided by the manufac-
turer. The procedures in this assay were executed as previously described [16].

3.8. Nuclear Translocation of Nrf2

The microscopy immunofluorescence staining method was used in the Nrf2 translo-
cation assay. Firstly, cells were cultured with or without 2 (50 µM) for 24 h, fixed with
paraformaldehyde (4%) for 20 min. Then, cells were successively permeabilized using 0.1%
Triton X-100, washed by PBS, and blocked with BSA (bovine serum albumin, 5%). After
being treated with the primary antibody Nrf2 (Wuhan Sanying Biotechnology Co., Ltd.,
Wuhan, China) and secondary antibody (Wuhan Sanying Biotechnology Co., Ltd., Wuhan,
China), cells were lastly stained by DAPI (Beyotime Biotechnology Co., Ltd., Shanghai,
China). The photographs of cells were captured under the fluorescence microscope.

3.9. Western Blotting

The procedures of cells cultivation and treatment were identical to the above men-
tioned. The radioimmunoprecipitation (RIPA) assay was carried out to yield the lysates
of cells, which were then centrifugated at 12,000 rpm for 5 min to obtain the supernatant
for immunoblot analyses. The total protein concentrations were measured by the BCA kit
(Aspen Biotechnology Co., Ltd., Wuhan, China) according to the instruction provided by
the manufacturer. The procedures of the electrophoresis and Western blotting analyses
referenced the reported literature [33].

3.10. Quantitative Real-Time Reverse Transcriptase—Polymerase Chain Reaction (qRT−PCR)

Cells treated without or with H2O2 (350 µM) alone or co-treated with H2O2 (350 µM)
and 2 with doses ranging from 10–50 µM for 24 h and then harvested in TRIpure total RNA
extraction reagent (ELK Biotechnology Co., Ltd., Wuhan, China). The cDNA was probed
after reverse transcription via the EntiLink™ Reverse Transcriptase kit (ELK Biotechnology
Co., Ltd., Wuhan, China) with the oligo(dT)12–18 primers. The primers in this research were
synthesized by Wuhan Jin-Kai-Rui Biological Engineering Co., Ltd., Wuhan, China. The
primer information is shown in Table S2. According to the protocol of the EnTurboTM SYBR
Green PCR SuperMix kit (ELK Biotechnology Co., Ltd., Wuhan, China), the qRT−PCR
experiments were performed on a StepOneTM Real-Time PCR detection system (Life Tech-
nologies Corp., Carlsbad, CA, USA).
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3.11. Molecular Docking

The molecular docking study on the binding dispositions between 2 and Keap1 (PDB
ID: 1X2R) was performed using AutoDock 4.2.6 with MGLTools 1.5.6 (ADT). The details
of the docking procedures were delineated in our previous research [14]. The coordi-
nates of grid box size were determined via the AutoGrid program and designated at
126 × 126 × 126 (x, y, and z) points, centered at x, y, and z dimensions of
−23.558 × −4.445 × 12.356, as well as the grid spacing set at 0.375 Å. The docking between
2 and 1X2R was executed using the default parameters of the ADT program.

3.12. Molecular Dynamics Simulation

The approach of the MDS on 2–1X2R was shown in detail in a reported study [14]. The
standard dynamics module in DS20 was carried out. The 2–1X2R complex was assigned a
CHARMm force field. Then, the solvation module for the complex was performed using the
default parameters to simulate a natural physiological environment. Finally, the standard
dynamics cascade program was performed under an equilibration time of 200 ps and a
production time of 2000 ps with 32 processors. Other parameters were set as default values
of the program.

4. Conclusions

In the present study, two novel prenylated indole alkaloids asperpenazine (1) and
asperpendoline (2), with diketopiperazine motifs, were discovered from the co-cultivated
fungi of A. ochraceus MCCC 3A00521 and P. sp. HUBU 0120. In particular, 2 possessed an
unprecedented skeleton, incorporating the indoline into the diketopiperazine motif to forge
a scarce skeleton of pyrimido[1,6-a]indole. The plausible biogenetic pathway suggested
that the indole oxidase catalyzation, Wagner–Meerwein rearrangement, methoxylation,
and regiospecific N-prenylation should be involved. Furthermore, compound 2 exhibited
promising neuroprotective effects on SH-SY5Y cells from oxidative damage, which may be
attributable to 2 non-covalently binding with Keap1, resulting in the nuclear translocation
of Nrf2 to activate the expression of HO-1 and NQO1, then attenuating the ROS accu-
mulation and enhancing the GSH level. Computational molecular docking and dynamic
simulation analyses demonstrated that 2 formed typical hydrogen and hydrophobic bonds
with residues of Keap1, presenting less fluctuation of RMSD and RMSF during a general
physiological circumstance. Thus, compound 2 will shed light on the skeleton design of
novel neuroprotective drugs non-covalently bonding with Keap1–Nrf2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md20030191/s1, Figure S1: The co-cultured and the fermentation of fungi, Figure S2: Penicil-
lium sp. HUBU 0120 and the phylogenetic tree of ITS genes, computational details of 2, Figure S3: The
experimental ECD spectrum of 1, Table S1: Deviations between the calculated and the experimental
13C NMR chemical shifts for 2, Table S2: Primer information of Keap1, HO-1, NQO-1, Histone H3,
and β-Actin, Figures S4–S23: HRESIMS, UV, IR, 1H NMR, 13C NMR, DEPT 135, HSQC, HMBC,
1H–1H COSY, and NOESY spectra of compounds 1 and 2, and X-ray crystallographic data of 1 in CIF
format were also included. References [34–36] are cited in the supplementary materials.
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Abbreviations

DEPT Distortionless enhancement by polarization transfer
HSQC 1H detected heteronuclear single quantum coherence spectroscopy
HMBC 1H detected heteronuclear multiple bond connectivity spectroscopy
1H–1H COSY 1H–1H chemical shift correlated spectroscopy
NOESY Nuclear overhauser effect spectroscopy
ORTEP Oak ridge thermal ellipsoid plot
CCK-8 Cell counting kit-8
DCFH–DA 2,7-Dichlorodihydrofluorescein diacetate
ELISA Enzyme-linked immunosorbent assay
DAPI 4′,6-Diamidino-2-phenylindole
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