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Abstract

Alzheimer’s disease (AD) is the leading cause of dementia and has received considerable

research attention, including using neuroimaging biomarkers to classify patients and/or pre-

dict disease progression. Generalized linear models, e.g., logistic regression, can be used

as classifiers, but since the spatial measurements are correlated and often outnumber sub-

jects, penalized and/or Bayesian models will be identifiable, while classical models often will

not. Many useful models, e.g., the elastic net and spike-and-slab lasso, perform automatic

variable selection, which removes extraneous predictors and reduces model variance, but

neither model exploits spatial information in selecting variables. Spatial information can be

incorporated into variable selection by placing intrinsic autoregressive priors on the logit

probabilities of inclusion within a spike-and-slab elastic net framework. We demonstrate the

ability of this framework to improve classification performance by using cortical thickness

and tau-PET images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to clas-

sify subjects as cognitively normal or having dementia, and by using a simulation study to

examine model performance using finer resolution images.

Introduction

Alzheimer’s disease overview

Dementia has a long history as a scourge on the quality of life for aging persons, and in recent

decades has been a leading cause of death [1, 2]. The medical research community has thus

devoted considerable time and effort to understanding dementia’s leading cause, Alzheimer’s

disease (AD). In consequence, the understanding of AD, and dementia in general, has devel-

oped significantly in the last century, and is evolving still [1].

Biomarker research has progressed alongside an increased understanding of AD’s etiology.

AD pathology is characterized primarily by amyloid plaques and neurofibrillary tangles [2].

The amyloid cascade hypothesis proposes that amyloid deposits lead to abnormal tau protein

aggregation, which then lead to the neurofibrillary tangles that damage neurons and result in
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deficits in cognitive and functional ability [3, 4]. However, subsequent research casts signifi-

cant doubt on the viability of this hypothesis, specifically related to its temporal assumptions;

while alternative theories have arisen, a stable consensus about these theories is yet to be

achieved [5–7]. Given this uncertainty, temporal agnosticism is the current norm with respect

to biomarker-related risks [1, 8].

The popularity of the amyloid cascade hypothesis drove significant focus on amyloid-

pathology-related imaging approaches, but doubt surrounding the hypothesis’ validity, and

evidence that tau-pathology more closely aligns with disease severity, created an interest in

imaging approaches that capture tau protein pathology [9]. To date, Positron Emisson Tomog-

raphy (PET) imaging with the tracer [18F]AV-1451, or flortaucipir, is the most widely used

image modality for tau protein imaging. Another important biomarker, brain atrophy, pre-

dates the amyloid cascade hypothesis, indicates the extent of neurodegeneration, and is corre-

lated with both tau deposition and neuropsychological deficits [10]. Brain atrophy is not

confined to AD, and should generally not be used in isolation to diagnose AD, but nevertheless

patterns of brain atrophy have been useful in AD research [10].

Classification and model selection

The availability of neuroimaging-based biomarkers resulted in research on algorithmic

approaches to classification of, and prediction of progression to, MCI and AD [1, 11, 12].

Often the task is binary classification, i.e., imaging data is input to the algorithm/model, which

classifies the subject as having or not having the disease. For a given classification paradigm,

we must select the “optimal” model and provide an objective description of how well the

model distinguishes between subjects with or without the disease. These are related issues

since the criteria for the optimal model/classifier is how well the classifier classifies subjects it

has not yet seen. The general process, shown in Fig 1, divides data into “training” and “test”

sets. Subjects in the training set are used to fit the model, which is used to predict the classes

for subjects in the test set, after which we evaluate the classifier’s performance.

Many classifiers have tuning parameters that must be chosen by the investigator, and in

Bayesian contexts, tuning parameters usually correspond to the hyperparameters in prior dis-

tributions. Classification problems require wariness towards overfitting models, because to be

useful a model must generalize to new data. Thus, tuning parameter value choices should be

based on corresponding estimates of expected prediction error. Prediction error estimates can

be obtained via k-fold cross validation [13]. K-fold cross validation divides the subjects into k
independent sets, and fits the model k times, each time holding out a different set as the test

set. The average prediction error across the sets provides an estimate for the expected predic-

tion error, and parameter values that minimize the estimate of expected prediction error are

used to fit the classifier/model using all available data. Since many datasets have too small a

sample size to hold out a separate test set, and since k-fold cross validation provides estimates

of expected prediction error, it also allows for evaluating model performance while making use

of all available data to build the model.

Improvement in the accuracy of these algorithms has the potential to allow for earlier detec-

tion of MCI and/or AD, and if sufficiently accurate in predicting progression, may allow

researchers to identify patients who are at high risk for progression to AD. While many algo-

rithms used thus far have shown promise, statistical learning approaches continue to advance,

and it is beneficial to apply, extend, and evaluate these algorithms with respect to MCI/AD

classification. In this work we add to the classification literature by applying and evaluating the

performance of the spike-and-slab elastic net with spatially informative priors as a classifier.
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First, we review several relevant statistical methods that build up to the methods used in this

paper.

Penalized and Bayesian generalized linear models

Penalized generalized linear models are a useful approach to statistical learning, the most well-

known of which are the ridge, lasso, and elastic net; the latter compromises between the first

two [14, 15]. All three of these models have Bayesian interpretations, and the latter two are use-

ful for variable selection, because they tend to produce sparse solutions, i.e., applying the pen-

alty results in many, if not most, of the parameter estimates being zero which allows for

variable selection without resorting to null hypothesis significance testing (NHST). While

there are some exceptions, these models generally produce estimates under ill-posed data, i.e.,

when predictors outnumber subjects or observations [15].

The elastic net avoids pitfalls of both the ridge and lasso. The ridge cannot provide auto-

matic variable selection because all parameter estimates are non-zero, and when the number

of predictors far outnumbers the number of subjects, the number of non-zero estimates

allowed from the lasso is capped at the number of subjects. A related issue is when predictors

are highly correlated, the lasso tends to choose one and discard the rest. In contrast, the elastic

net provides sparse solutions while leaving more parameter estimates non-zero, making it an

attractive approach when using images as predictors, since predictors often outnumber sub-

jects, and “relevant” predictors may spatially cluster and be highly correlated. While penalty

parameters, or prior distributions, must be chosen by the researcher, cross validation provides

a principled approach to penalty parameter selection.

While penalized models produce biased estimates, the trade-off is typically substantial

reduction in variance around the parameter estimates and predicted outcomes, which can

improve the generalizeability of the models. The elastic net framework is thus attractive for

Fig 1. This flow chart describes the basic process of building and evaluating a classifier.

https://doi.org/10.1371/journal.pone.0262367.g001
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both variable selection and prediction, and can be adapted to classification problems, e.g., by

applying classification rules to a penalized/Bayesian logistic regression. An interesting conse-

quence of the elastic net is that the sparse solutions produced by the initial model mean that

the classifier will remove “unnecessary” predictors/features during the model fitting process by

shrinking their estimates to zero, so that only a subset of the initial set of possible predictors/

features is used in the classifier; the automatic variable selection of elastic net models equates

to automatic feature selection in a statistical learning context.

The Bayesian interpretation of these models allows for useful extensions with respect to vari-

able selection. In particular, the spike-and-slab lasso combines the lasso penalty with a common

Bayesian approach to variable selection: the spike-and-slab prior, which models parameters as

arising from a mixture of two distributions, one each for parameters that are and are not rele-

vant to modeling the outcome of interest, respectively [16–19]. This approach extends the lasso

such that there is stronger shrinkage imposed on parameters that are irrelevant and weaker

shrinkage applied to relevant parameters, which allows the final estimates of relevant parame-

ters to remain relatively large, and drives estimates of irrelevant parameters to zero.

Outline

The elastic net is applicable to a wide range of problems, including imaging data, especially

since it can perform variable/feature selection when predictors are correlated and/or outnum-

ber subjects. The elastic net has been used in other AD classification studies [20–23]; however,

the combination of spike-and-slab priors with the elastic net framework is a relatively new

methodology, and to our knowledge it has not yet been explored in AD classification, or medi-

cal imaging more generally. The primary aim of this work is to demonstrate the utility of this

methodology as a classifier using medical images in general, and within AD in particular.

In previous work, we extended the spike-and-slab lasso to accommodate the elastic net pen-

alty and explicitly model dependence among predictors, and showed that both extensions con-

tributed to improved model performance [24]. This class of models contains (Bayesian)

logistic regression as a special case, and by using thresholding rules we can create a classifier.

That is, the parameter estimates from a logistic regression can produce estimated/predicted

probabilities of subjects having the disease. Thresholds are applied to the probabilities to clas-

sify subjects; e.g., we can classify subjects with predicted probabilities of disease above 0.5 as

having the disease.

In what follows, we demonstrate the classification utility of the spike-and-slab elastic net

with spatially structured priors by using the model to classify subjects as being cognitively nor-

mal or having dementia using data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). The outline is as follows: we briefly describe the ADNI data, discuss specific methods

and outcomes used for classification, review the statistical details relevant to understanding

the classifiers, and discuss several metrics used to evaluate classification performance. We then

use ADNI data to classify subjects’ disease status using cortical thickness and tau PET images

as predictors, and compare the results across several classifiers built from the methods pre-

sented in the preceding section. We also present a simulation study to examine the model per-

formance using higher resolution images. Finally, we discuss the implications of the results,

outline future research directions, and address limitations in the present study.

Materials and methods

ADNI details

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
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public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

As mentioned in the introduction, brain atrophy is a useful metric for studying AD. A

related measure is cortical thickness, which can be assessed in a cross sectional setting, whereas

true atrophy measures would require longitudinal measures. Cortical thickness measures have

been used as classification features throughout the literature [12]. However, cortical thickness

is not trivial to measure because the topology of the cortex is that of a densely folded 2D sheet,

and manual measurements are laborious and error-prone. In contrast, computational

approaches to “unfolding” the cortex can result in accurate assessments of cortical properties,

including cortical thickness. One such approach starts by segmenting white and grey matter

voxels, then estimates the white/grey boundary at the subvoxel level using a triangular tessella-

tion, and finally “inflates” that boundary out towards the pial surface to obtain the outer

boundary, minimizing metric distortions along the way [25, 26]. Accurate cortical thickness

measures are obtained by finding the distance between these two surfaces at a given point [27].

FreeSurfer software performs this whole procedure, resulting in a wide array of data, including

surface area, volume, and cortical thickness measures [28]. FreeSurfer-processed ADNI data is

available as summaries for brain regions specified by Desikan-Killiany atlas [29].

In addition to MRI, ADNI-3, the most recent renewal of the ongoing ADNI study, also has

[18F]AV-1451 Positron Emisson Tomography (PET) imaging. In fact, one of the motivations

of ADNI-3 was to incorporate “innovative technologies”, which includes a focus on tau PET

imaging [30]. In ADNI tau PET images have been processed with Freesurfer, and standardized

uptake value ratios (SUVR) summaries are available by regions of the Desikan-Killiany atlas.

Since both cortical thickness and tau PET images can be reasonably expected to provide

information regarding AD status, in the present work we pursue two separate paths of analysis:

one using cortical thickness summaries as features, and the other using tau PET SUVR sum-

maries as features.

Statistical methods

Logistic regression arises from a generalized linear model (GLM) where outcomes are binary;

subject-specific probabilities of being in one class or the other can be extracted from such

models, and we can then apply thresholding rules to build a classifier. The mathematical form

of a GLM is as follows:

gðEðyijXiÞÞ ¼ Xiβ ¼ b0 þ
XJ

j¼1

xijbj ¼ Zi; i ¼ 1; . . . ;N ð1Þ

where for the ith subject, yi is an observed outcome and the yi’s are independent, Xi is 1 × (J
+ 1) vector of measured predictors, β is a (J + 1) × 1 vector of unknown parameters, and g(�) is

an appropriate link function. In this work, the outcome is disease class, e.g., whether the sub-

ject is cognitive normal (CN) or has dementia. We thus assume the outcome has a binomial

distribution and use logistic regression, so that g(�) is the logit function. The predictors are the

subject’s average cortical thickness or tau disposition measures for each region in Desikan-

Killiany atlas, which divides each hemisphere of the cerebral cortex into 34 regions. Thus, each

subject will have a single outcome indicating disease status, and sixty-eight predictors (J = 68),

one for each region of the Desikan-Killiany atlas.
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Spike-and-slab priors are a mixture of distributions. The wider distribution (slab) has large

variance to impose weak penalties and the narrower distribution (spike) has small variance to

impose strong penalties:

pðbjjgjÞ ¼ gjp1ðbjjgj ¼ 1Þ þ ð1 � gjÞp0ðbjjgj ¼ 0Þ ð2Þ

where γj is a binary indicator variable of model inclusion [16, 17]; i.e., γj = 1 indicates the jth

predictor should remain in the model and γj = 0 indicates it should not. The spike-and-slab

lasso combines spike-and-slab priors with the lasso penalty, which in Bayesian terms corre-

spond to double exponential distributions for p1 and p0 in Eq (2), and penalizes estimates for

“irrelevant” parameters more strongly than those of “relevant” parameters, which shrinks

more “irrelevant” parameter estimates to zero, while allowing “relevant” parameter estimates

to remain larger [19]. The original framework focused on linear models, but can be extended

and applied in other contexts; e.g., spike-and-slab lasso GLM’s are fit by using an Expectation-

Maximization Coordinate Descent algorithm [31, 32]. While there are other shrinkage priors

in the literature, most notably the horseshoe prior [33], we focus on the spike-and-slab lasso

and its extensions rather than the horseshoe prior. A primary reason is that there exist compar-

atively fast algorithms for fitting spike-and-slab lasso models, making them more attractive for

high-dimensional correlated data [19, 31]. Additionally, our focus is on incorporating spatial

information into these algorithms, which is both more naturally implemented in the spike-

and-slab framework, and given that adding such information necessarily adds computational

time it makes sense to focus on models for which model fitting is already relatively quick [24].

As discussed above, the lasso penalty may have downsides when predictors arise from

images, and as we show in prior work, the spike-and-slab lasso can be generalized to a spike-

and-slab elastic net prior [24]:

pðbjjgj; s0; s1Þ ¼ ENðbjj0; SjÞ

¼ ð1 � xÞexp � logð
ffiffiffiffiffiffiffiffiffi
2pSj

p
Þ �

b
2

j

Sj

 !

þ xexp � logð2SjÞ �
jbjj

Sj

 !
ð3Þ

where Sj = (1 − γj)s0 + γjs1, s1 is the slab scale, s0 is the spike scale, s1 > s0 > 0, and ξ 2 [0, 1].

The wider “slab” distribution allows parameters to take larger values, while the narrower

“spike” distribution shrinks estimates severely toward zero. A spike-and-slab ridge is obtained

when ξ = 0 and spike-and-slab lasso when ξ = 1. The γj 2 {0, 1} are indicator variables for

model inclusion, and are assigned a Bernoulli distribution with unknown probability of inclu-

sion given by θj.

Since we do not know a priori which predictors should remain in the model, it is necessary

to assign prior distribution(s) for the indicator variables, γj. In the simplest setting, we may

assume that the γj have a Bernoulli prior with global or predictor-specific probability of inclu-

sion θ or θj, respectively:

pðgjjyjÞ ¼ y
gj
j ð1 � yjÞ

1� gj ð4Þ

However, in spatial applications spatial information is often relevant to determining which

parameters affect an outcome; i.e., we expect relevant parameters to cluster spatially. For exam-

ple, many multiple testing procedures in neuroimaging explicitly make this assumption by tak-

ing into account the size, extent, and general properties of clusters of statistically significant
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voxels [34]. Unlike classical GLM’s, Bayesian GLM’s will provide solutions when predictors

are highly correlated, but will not incorporate spatial information into model selection unless

explicitly included in the prior distributions. It is conceivable to explicitly model correlation

among the parameters, βj, in their prior distributions, but a more computationally viable

approach is to model correlation among the prior probabilities of inclusion, θj, whose condi-

tional estimates affect the degree of shrinkage applied to parameters. Correlation among these

estimates mean that a given estimate for βj depends in part upon the shrinkage applied to its

neighbors’ estimates. A variant of Conditional Autoregressions (CAR) known as Intrinsic

Autoregressions (IAR) have been used to incorporate spatial information into a wide range of

practical applications, and can be used as a prior distribution on the logit probabilities of inclu-

sion [35–38]. Below is the prior distribution for the logit of probabilities of inclusion:

log pðcjjci; tÞ /
� t2

2

X

j�i

ðcj � ciÞ
2

 !

ð5Þ

where ψj = logit(θj) and j* i indicates the location/predictor i is a neighbor of location/predic-

tor j, i.e., the summation is over all the neighbors of location/predictor j. Note that in practice,

we often set τ = 1, which is the convention applied in this work [39]. The information from

Eqs (1), (3), (4), and (5) combine to form the following log joint posterior:

log pðβ; �; g;cjyÞ / ‘ðβ; �Þ
|fflfflffl{zfflfflffl}

log likelihood

�
XJ

j¼1

log ENðbjj0; SjÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
log prior for b

þ
XJ

j¼1

gjlog yj þ ð1 � gjÞlogð1 � yjÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
log prior for g

�
1

2

X

j�i

ðcj � ciÞ
2

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
log prior for cj¼logitðyjÞ

ð6Þ

The model described by Eq (6) can be fit with an Expectation-Maximization Coordinate

Descent algorithm described in prior work [24]. This framework for incorporating spatial

structure into variable selection can be computationally preferable to, e.g., imposing Ising or

Markov random field priors on the indicators, γj, because imposing spatial structure on the

(logit) inclusion probabilities allows for the E-step to remain essentially unchanged from what

it would be if there were no spatial structure. This is because, in effect, the IAR prior can be

viewed as spatially smoothing the inclusion probabilities, which is handled in the M-step; com-

plete details of the EM algorithm are described elsewhere [24]. Code for fitting the models is

possible using the R package ssnet, which we developed and is freely available on GitHub

(https://github.com/jmleach-bst/ssnet).

Classification and model evaluation

This work aims to examine the classification ability of spike-and-slab elastic net models. How-

ever, the user must select values for several “free” parameters. K-fold cross validation tech-

niques provide a principled way to make such choices, by providing reasonable estimates of

prediction error, as assessed by cross-validated estimates of metrics like model deviance,

mean-squared error, or area under the ROC curve (AUC) [13]. We fit the model for several
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values of each free parameter and compare their prediction error estimates, and then select the

model with the lowest prediction error estimates as the “best” model. Fig 2 details the imple-

mentation of k-fold cross validation used in this work.

The predicted outcomes obtained using parameter estimates from logistic regression are

probabilities, which we may be thresholded to classify subjects as either having or not having

the disease. In theory any value between zero and one can be used as a threshold, but in prac-

tice subjects are typically placed in the class for which they have the highest predicted probabil-

ity, e.g., subjects with probability of dementia greater than 0.5 are classified as having

dementia, and all others classified a cognitively normal. Note that in this application, the

assessment of model performance is not with respect to the properties of effect estimates, e.g,

odds ratios, but whether the post-threshold classification is accurate when applied to current

subjects as well as subjects the model has yet to see.

Assessing classifiers requires evaluation with respect to several metrics in order to avoid

being deceived. An obvious concern is the classifier’s accuracy, that is, what is the probability

that the algorithm correctly classifies a subject. However, this metric can be misleading, espe-

cially in situations where the sample sizes for each class are unbalanced. Thus, in addition to

Fig 2. This flowchart describes application of k-fold cross validation employed in this paper.

https://doi.org/10.1371/journal.pone.0262367.g002
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accuracy, it is important to estimate and consider several other metrics in evaluating classifica-

tion performance:

1. Sensitivity: the probability that the subject is classified as having the disease, given that the

subject has the disease.

2. Specificity: the probability that the subject is not classified as having the disease, given that

the subject does not have the disease.

3. Positive Predictive Value (PPV): the probability that a subject has the disease, given that the

subject was classified as having the disease.

4. Negative Predictive Value (NPV): the probability that the subject does not have the disease,

given that the subject is classified as not having the disease.

In the authors’ experience, PPV and NPV are often neglected, but neglecting these metrics

makes the same mistake as only reporting accuracy, because these metrics can also be deceiv-

ing, especially under unbalanced data. Unlike sensitivity and specificity, these two metrics

depend on the prevalence of the outcome, but nevertheless can provide useful information.

Ideally, all five metrics should be near one if the classifier is performing well.

It may also be desirable to evaluate classification performance with measures that evaluate

all four confusion matrix (true positives, false positives, true negatives, false negatives). The

Matthew’s correlation coefficient (MCC) has advantages over accuracy as well another com-

mon summary measure, the F1 score; the form of these metrics is as follows:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p ð7Þ

F1 ¼
2 � TP

2 � TPþ FPþ FN
ð8Þ

where TP is the number of true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives. All metrics described above should

be estimated within a cross-validation process because we are most concerned with estimating

the metrics’ values when applying the classifier to independent data. Therefore, it is important

to bear in mind that we will be assessing the models’ performance on two levels: the first is in

basic model selection, that is, regardless of the classification rule, how well do we predict the

initial model would generalize. Second, after applying the classification rule to create a classi-

fier, how well do we predict the classifier would classify new subjects? These two levels are the

heart of the present examination, with a particular focus on the latter, classification ability.

ADNI data analysis and simulation study details

General analysis approach. We explore the spike-and-slab elastic net as a classifier with

an application to data from the ADNI study, after which we further probe classification perfor-

mance with a simulation study. In both cases we fit two sets of models. The first set of models

is fit with the traditional lasso (ξ = 1), spike-and-slab lasso (SSL), and spike-and-slab lasso with

IAR priors on the inclusion probabilities (SSL-IAR). The second set of models is a halfway

compromise between the ridge and lasso (ξ = 0.5), resulting in what we refer to as the tradi-

tional elastic net (EN), spike-and-slab elastic net (SSEN), and spike-and-slab elastic net with

IAR priors on the inclusion priors (SSEN-IAR). Note that the traditional elastic net can be

obtained by maximizing only the first line of Eq (6), i.e., ‘ðβ; �Þ �
PJ

j¼1
log ENðbjj0; SjÞ, and

by simplifying the form of Sj from Sj = (1 − γj)s0 + γjs1 to a single penalty Sj = λ. Recall that
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including IAR priors on inclusion probabilities is how we explicitly model spatial structure;

thus, the three levels of models can be seen as gradually extending the elastic net from its tradi-

tional form to spike-and-slab form to a spike-and-slab form with an explicit modeling of spa-

tial structure. For a given model and set values of s1 and s0 we obtain model fits and prediction

error statistics via 5-fold cross validation.

Prior scale values, i.e., s1 and s0, must be selected in a principled way. The traditional models

have that s1 = s0, in which case a single parameter value must be chosen. We use the R package

glmnet to fit a grid of models and select the model whose scale parameter minimizes the

cross-validated deviance. When using spike-and-slab priors we use the R package ssnet to fit

models on a grid of spike priors, whose choice is discussed in subsequent sections, and select

the model that minimizes the cross-validated deviance. That is, we perform 5-fold cross valida-

tion to obtain parameter and prediction error estimates at each combination of values for s0

and s1, and then choose the values of s0 and s1 that minimize the prediction error as measured

by cross-validated deviance. While models are selected using deviance, we also report cross-

validated estimates of mean squared error (MSE), mean absolute error (MAE), area under the

ROC curve (AUC), and misclassification (MC) to enable comparison across models. Note that

misclassification is defined as 1

N

PN
i¼1

Iðjyi � ŷij > 0:5Þ where I(�) is an indicator function

whose value is 1 when the argument is true, and zero otherwise.

Classification is performed in each case by placing an observation in the class that has the

highest probability; e.g., when comparing CN and dementia, if the estimated probability is

>0.5, then the subject is classified as dementia. Classification performance estimates are

obtained within the cross validation process. We evaluate the classification performances of

each model using estimates for accuracy (AC), sensitivity (SN), specificity (SP), positive pre-

dictive value (PPV), negative predictive value (NPV), Matthews Correlation Coefficient

(MCC), and F1 score.

ADNI data analysis. Two cross sectional datasets from ADNI were employed for classifi-

cation, one containing cortical thickness measures and one containing standardized uptake

value ratios (SUVR) from tau PET images [40]. The cortical thickness data set included 273

subjects, of which 234 (85.71%) were cognitively normal (CN) and 39 (14.29%) had dementia.

The tau PET dataset included 303 subjects, of which 262 (86.47%) were cognitively normal

(CN) and 41 (13.53%) had dementia. For each data set, we evaluate the algorithm’s ability to

classify CN vs. dementia using cortical thickness or tau PET images as predictors. Each data

set has 68 predictors, i.e., one predictor for every region of the Desikan-Killiany atlas. For a

given model and set values of s1 and s0 we obtain model fits and prediction error statistics via

5-fold cross validation; since the resulting held-out sets were relatively small, we performed

5-fold cross validation 10 times each case in order to obtain more stable estimates.

For traditional lasso and elastic net we use the R package glmnet to select the penalty

parameter the minimizes cross-validated deviance, and for the spike-and-slab models use the

R package ssnet to fit models on a grid of spike priors, s0 = {0.01, 0.02, . . ., 0.5}, and slab pri-

ors, s1 = {1, 2, 3, 4, . . ., 10} and select the model that minimizes the cross-validated deviance.

Simulation study details. A limitation of the Desikan-Killiany atlas is that it is a relatively

coarse atlas, and the methodology described above can accommodate image resolutions much

finer than 68 predictors. The benefit of incorporating spatial information into the models may

be more obvious when using finer resolution images. In order to demonstrate and assess

model performance at higher resolutions, we performed a simulation study to examine classifi-

cation performance in a simulation study with similar imbalance in outcome, i.e., large per-

centages of subjects not having the event of interest, but at a much finer resolution. In contrast

to the ADNI data, which consists of 68 predictors, we simulate data with 1,600 predictors.
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Using the R package sim2Dpredictr (https://github.com/jmleach-bst/sim2Dpredictr) we

generated 2,500 simulated data sets with sample size N = 250. The dimension of the simulated

predictor images was 40 × 40, resulting in 1600 parameters/predictors. The 1600 × 1 parameter

vector, β, was generated in 40 × 40 two-dimensional space before vectorization, and a circular

region on 49 (3.06%) locations were selected to have non-zero values. We examined two levels

of non-zero parameter values, βj = 0.10 or βj = 0.05 if location j is in the specified circular

region and βj = 0 otherwise (j = 1, . . ., 1600). Subject images were generated on a 40 × 40 two-

dimensional lattice using a multivariate Normal distribution with means −1 or −1.25 for

parameter sizes 0.10 and 0.05 respectively, unit variance, and a correlation structure where for

any two locations on the 2D lattice the correlation between their values was equal to 0.90d,

where d is the Euclidean distance between the locations. The images were then vectorized into

1 × 1600 design vectors, Xi, for each of the i = 1, . . ., 250 subjects. Subject outcomes, yi, were

generated using a binomial distribution with mean (1 + 1/exp(Xi β))−1. Note that the non-zero

means used to generate the Xi were chosen to approximate the imbalance in outcomes seen in

the ADNI data, which is described above. The average percentage of “events” of interest for

scenarios where non-zero βj = 0.10 and βj = 0.05 was 13.84% (min: 7.20%, max: 21.60%) and

13.04% (min: 6.80%, max: 18.40%), respectively. Further details regarding the simulation

study and R code for reproducing results can be found at https://github.com/jmleach-bst/ssen-

classification-code.

Estimates of the prediction error and classification performance for a given model were

obtained using 5-fold cross validation. Optimal values for s0 and s1 were chosen from a grid of

possible values (s0 = {0.1, 0.2, 0.3, . . ., 0.1} and s1 = {1, 2}) using cross-validated values of

deviance.

Results

ADNI data analysis

Prediction error estimates for both cortical thickness and tau PET data are displayed in

Table 1; model fitness for cortical thickness was explored in other work, but this work did not

explore classification performance or utilize tau PET images, and we reproduce model fitness

estimates for cortical thickness here for completeness and due to their relevance to the current

work [24]. For the cortical thickness data SSEN-IAR has the lowest deviance and MSE, and

Table 1. ADNI: Prediction error estimates.

Model s0 s1 Cross-Validated Average

Dev. AUC MSE MAE MC

Cortical Thickness Lasso 0.002 0.002 90.32 0.952 0.046 0.094 0.063

SSL 0.270 7.500 73.59 0.969 0.035 0.067 0.050

SSL-IAR 0.260 6.000 70.87 0.972 0.035 0.069 0.049

EN 0.001 0.001 84.26 0.958 0.043 0.088 0.057

SSEN 0.260 10.000 71.96 0.970 0.036 0.077 0.051

SSEN-IAR 0.280 10.000 67.02 0.975 0.034 0.073 0.049

Tau PET Lasso 0.002 0.002 138.95 0.890 0.063 0.120 0.080

SSL 0.500 10.000 106.84 0.942 0.051 0.100 0.067

SSL-IAR 0.3700 8.000 119.73 0.919 0.055 0.104 0.073

EN 0.002 0.002 134.83 0.903 0.061 0.121 0.077

SSEN 0.270 10.000 118.36 0.919 0.054 0.114 0.070

SSEN-IAR 0.270 9.500 118.15 0.924 0.054 0.108 0.070

https://doi.org/10.1371/journal.pone.0262367.t001
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highest AUC, while SSL has the lowest MAE and misclassification. For the tau PET data, SSL is

best performing model for all five prediction error metric estimates. Classification perfor-

mance metrics are displayed in Table 2 and Fig 3, where we see that accuracy is high for all

models in both data sets. SSEN-IAR and SSL-IAR are tied for the highest accuracy, while SSE-

N-IAR has the highest specificity and PPV, and SSL-IAR has the highest MCC and F1. SSL

and SSL-IAR are tied for the highest NPV. In the tau PET data SSL had the best performance

with respect to accuracy, sensitivity, NPV, MCC, and F1, while SSEN had the best performance

with respect to specificity and PPV.

For these particular data sets we note that all models exhibited relatively good performance

in some respects, i.e., AUC near or above 0.90 before classification, and with accuracy,

Table 2. ADNI: Classification performance.

Model s0 s1 Cross-Validated Average

AC SN SP PPV NPV MCC F1

Cortical Thickness Lasso 0.002 0.002 0.937 0.669 0.982 0.864 0.947 0.726 0.753

SSL 0.270 7.500 0.950 0.751 0.983 0.883 0.960 0.786 0.811

SSL-IAR 0.260 6.000 0.951 0.756 0.984 0.886 0.960 0.791 0.816

EN 0.001 0.001 0.943 0.715 0.981 0.865 0.954 0.755 0.783

SSEN 0.260 10.00 0.949 0.731 0.985 0.891 0.956 0.778 0.802

SSEN-IAR 0.280 10.00 0.951 0.736 0.987 0.903 0.957 0.788 0.811

Tau PET Lasso 0.002 0.002 0.920 0.549 0.978 0.796 0.932 0.619 0.649

SSL 0.500 10.00 0.933 0.617 0.983 0.850 0.942 0.689 0.715

SSL-IAR 0.370 8.000 0.927 0.590 0.980 0.827 0.938 0.661 0.689

EN 0.002 0.002 0.923 0.541 0.983 0.831 0.932 0.632 0.656

SSEN 0.270 10.00 0.930 0.561 0.988 0.879 0.935 0.668 0.685

SSEN-IAR 0.270 9.500 0.930 0.598 0.983 0.845 0.940 0.675 0.700

https://doi.org/10.1371/journal.pone.0262367.t002

Fig 3. ADNI data classification performance when using cortical thickness measures (LEFT) or tau PET SURV

(RIGHT) as predictors/features.

https://doi.org/10.1371/journal.pone.0262367.g003
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specificity, and NPV above 0.90 after classification. However, the samples in both data sets

were unbalanced, with�85% of subjects in both data sets being cognitively normal. When we

examine metrics that are more sensitive to this imbalance, classification performance drops,

and these may be the more important metrics to consider. Specifically, sensitivity is never

above 0.76 or 0.62 and MCC is never above 0.80 or 0.70 for the cortical thickness and tau PET

data sets, respectively. We therefore draw more attention to these metrics, which for the corti-

cal thickness data are highest for SSL-IAR, and for the tau PET data are highest for SSL.

Simulation study

Table 3 displays deviance, mean squared error (MSE), mean absolute error (MAE), area under

the ROC curve (AUC), and misclassification (MC) for each of the six modeling approaches

described above. Table 3 displays average prediction errors for each model over the 2,500 sim-

ulations. For the larger effect size (non-zero βj = 0.10), all models perform reasonably well

(AUC >0.90), but the spike-and-slab elastic net with IAR priors is best performing model

across all metrics with the highest AUC and lowest MSE, MAE, and MC. Note the average

model deviance for SSEN-IAR is also much lower than the competing models. As expected,

the smaller effect size (non-zero βj = 0.05) results in decreased model performance for all mod-

els, but we see that again SSEN-IAR is the best fitting model across all metrics and in particular

is the only model with AUC>0.90 (see Table 3). Note also that the traditional models (lasso

and EN) did not outperform their spike-and-slab counterparts on any metric included in

Table 3. Table 4 and Fig 4 display average metrics of classification performance over the 2,500

simulations. SSEN-IAR is again the best performing model across all metrics for both parame-

ter sizes. Accuracy, specificity, and NPV are all near or above 0.90 for all models at both

parameter sizes. However, the simulations were generated such that in the vast majority of

cases the percentage of “events” in a data set was no greater than 20%, which means that accu-

racy, specificity, and NPV may mislead us regarding model performance. Model differences in

sensitivity, MCC, and F1 score show greater disparity across models, where we see that models

that include IAR priors on logit probabilities of inclusion, and specifically SSEN-IAR, signifi-

cantly outperform the other models. At the larger parameter size (non-zero βj = 0.10), SSE-

N-IAR and SSL-IAR have sensitivities of 0.7717 and 0.7141, respectively, while other models

range from 0.5203 to 0.6564. Similarly, with respect to MCC, SSEN-IAR and SSL-IAR have

values of 0.7774 and 0.7305, with other models ranging from 0.5963 to 0.6831. SSEN-IAR is

Table 3. Simulation study: Average prediction error estimates.

Model s0 Cross-Validated Average

s1 Dev. AUC MSE MAE MC

βj = 0.10 Lasso 0.022 0.022 99.91 0.940 0.061 0.126 0.086

SSL 0.080 1.000 84.14 0.957 0.051 0.103 0.070

SSL-IAR 0.100 1.000 74.333 0.967 0.045 0.089 0.061

EN 0.037 0.037 97.78 0.943 0.060 0.124 0.083

SSEN 0.070 1.000 87.16 0.954 0.053 0.110 0.073

SSEN-IAR 0.100 2.000 63.47 0.976 0.038 0.072 0.051

βj = 0.05 Lasso 0.035 0.035 142.11 0.847 0.086 0.172 0.116

SSL 0.060 1.000 129.33 0.876 0.078 0.154 0.105

SSL-IAR 0.090 1.000 119.92 0.898 0.072 0.138 0.097

EN 0.061 0.061 140.91 0.851 0.085 0.172 0.115

SSEN 0.050 1.000 132.600 0.868 0.080 0.160 0.107

SSEN-IAR 0.100 2.000 102.24 0.937 0.060 0.104 0.081

https://doi.org/10.1371/journal.pone.0262367.t003
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also the only model to achieve an F1 score�0.80. Similar patterns are observed at the smaller

parameter size (non-zero βj = 0.05), but again performance decreases compared to the larger

parameter size. SSEN-IAR has a sensitivity = 0.611 (other models range from 0.2119 to

0.4532), MCC = 0.617 (other models range from 0.324 to 0.505), and F1 score = 0.659 (other

models ranging from 0.307 to 0.541). While SSEN-IAR was the best performing model with

respect to PPV at both parameter sizes, model performance was more similar across models

(non-zero βj = 0.10 and βj = 0.05 ranged from 0.792 to 0.844 and 0.664 to 0.720, respectively).

Note also that the traditional models (lasso and EN) did not outperform their spike-and-slab

counterparts on any metric except specificity, where all metrics were tightly clustered around

0.97-0.98.

Table 4. Simulation study: Average classification performance.

Model s0 Cross-Validated Average

s1 AC SN SP PPV NPV MCC F1

βj = 0.10 Lasso 0022 0.022 0.916 0.520 0.978 0.792 0.928 0.596 0.622

SSL 0080 1.000 0.930 0.656 0.973 0.797 0.947 0.683 0.717

SSL-IAR 0100 1.000 0.939 0.714 0.975 0.821 0.956 0.731 0.762

EN 0037 0.037 0.917 0.525 0.979 0.805 0.929 0.605 0.629

SSEN 0070 1.000 0.927 0.622 0.975 0.803 0.942 0.666 0.697

SSEN-IAR 0100 2.000 0.949 0.772 0.977 0.844 0.964 0.777 0.805

βj = 0.05 Lasso 0035 0.035 0.884 0.212 0.984 0.664 0.894 0.324 0.307

SSL 0060 1.000 0.895 0.355 0.975 0.674 0.911 0.434 0.456

SSL-IAR 0090 1.000 0.903 0.453 0.969 0.685 0.923 0.505 0.541

EN 0061 0.061 0.885 0.207 0.985 0.673 0.893 0.325 0.302

SSEN 0050 1.000 0.893 0.314 0.978 0.680 0.906 0.408 0.415

SSEN-IAR 0100 2.000 0.919 0.611 0.964 0.720 0.944 0.617 0.659

https://doi.org/10.1371/journal.pone.0262367.t004

Fig 4. Simulation study classification performance when non-zero parameters are equal to 0.05 (LEFT) or 0.10

(RIGHT).

https://doi.org/10.1371/journal.pone.0262367.g004
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Discussion

In this work we have applied the spike-and-slab elastic net as a classifier, and demonstrated its

utility using an analysis of subjects from the ADNI study, where we classified subjects who are

cognitively normal or have dementia using several imaging modalities from ADNI data. We

also used simulation study to demonstrate that including spatial information in the variable

selection process for higher resolution images can further improve classification performance.

While this is not the first paper to apply the elastic net to neuroimaging data related to AD, it

is to our knowledge the first attempt to apply the spike-and-slab prior framework to classifica-

tion in AD data; an additional novelty is the explicit modeling of spatial information within

the spike-and-slab elastic net framework, which we initially developed and explored in other

work [24].

The classification accuracy estimates obtained using ADNI data are often comparable to

that of other classification methods in the literature, which suggests that the presented algo-

rithms may prove useful in wider contexts [12]. The models using spike-and-slab priors tended

to outperform traditional models with respect to accuracy, specificity, PPV, and NPV, but the

difference across models within a classification scenario was often relatively small. The clearest

benefit of the spike-and-slab elastic net framework was with respect to sensitivity and MCC,

which given the imbalance in the data are arguably the more important metrics to consider.

Nevertheless, the traditional models never outperformed their spike-and-slab counterparts,

demonstrating that the spike-and-slab framework may have broader potential as a tool for

using medical images for classification.

There are limitations related to the data used in the current study, several of which point

towards ways in which model performance may be improved. Many classification approaches

use atlases to reduce the dimension of the predictors/features [12]. However, given the ability

of the presented class of models to handle high dimensional spatial data, restricting analyses to

data averaged within each region of the Desikan-Killiany atlas, which reduces thousands of

measurements to 68 per subject, may reduce the effectiveness of the models used in this work.

While dimension reduction is necessary to fit many models in the first place, variants of the

elastic net can handle situations where there are many more predictors/features than subjects,

and the addition of the IAR prior on logit inclusion probabilities can also incorporate spatial

information into variable/feature selection. Another concern with atlas use is that important

and relevant neural effects may follow spatial patterns that do not conform to the atlas used. In

this case, effects would not be detectable after reduction to the atlas, harming model

performance.

We have addressed these limitations in part by examining the classification performance

using simulated data with finer resolution (1600 vs. 68 predictors) and similar outcome imbal-

ance to the ADNI data. In the simulated data the spike-and-slab elastic net with IAR priors

was uniformly the best performing model in all scenarios, and especially noticeable compared

to its competitors with respect to metrics that better account for imbalance in outcome distri-

bution, e.g, MCC, sensitivity, and F1 score. These results suggest that for finer resolution

images we may expect spike-and-slab models with IAR priors on logit inclusion probabilities

to significantly outperform both traditional elastic net models and spike-and-slab elastic net

models without spatially structured priors, and that the model may be broadly useful for classi-

fication of clinical outcomes using medical images in contexts other than AD.

Despite our intuitions regarding dimension reduction, algorithms that use reduced features

tend to perform better than those based on voxel or vertex level data [41]. However, even if

vertex or voxel level data is too noisy to improve performance, there are a wide range of

dimension reduction methods available, including multi-modal approaches to atlas creation
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[42]. It is also possible that a finer resolution dimension reduction would improve model per-

formance, and take greater advantage of these methods’ strengths. Given that the spike-and-

slab elastic net framework is specifically designed to handle “noisy” situations, we may reason-

ably expect the difference in performance between the spike-and-slab and traditional elastic

net to be larger as the number of variables/features increases as the effect sizes of respective

regions decreases, which was the case in our simulation study. More flexible approaches to

dimension reduction may also yield different, and potentially more relevant, feature sets for

tau PET imaging and cortical thickness data sets, which may also improve model performance.

We also restricted analysis to cross sectional data, but it would useful to perform a study to

determine whether the algorithm could predict whether subjects would progress from cogni-

tively normal to dementia using longitudinal data. Longitudinal prediction is almost certainly

a more difficult classification problem, and our simulation results, e.g., the better performance

of SSEN-IAR for smaller effect sizes, suggest that the spike-and-slab framework may be a better

candidate for longitudinal prediction than the traditional elastic net models.

While there are limitations to the current study, the spike-and-slab elastic net models

tended to outperform the traditional elastic net models across several metrics, noticeably

improved sensitivity and MCC estimates, and showed comparable classification accuracy to

other algorithms in the literature. A simulation study further demonstrated scenarios where

spike-and-slab models with spatially structured priors could markedly improve classification

performance. In addition, there are many future directions for extending the model, including

more flexible dimension reduction as a step before applying the spike-and-slab elastic net,

which may allow one to create a feature set that better exploits the strengths of the model, or

longitudinal prediction of disease development.
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