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Sunlmar~ 

Previous studies with inhibitors of inducible nitric oxide synthase (iNOS) suggested that high- 
output production of nitric oxide (NO) is an important antimicrobial effector pathway in vitro 
and in vivo. Here, we investigated the tissue expression of iNOS in mice after infection with 
Leishmania major. Immunohistochemical staining with an iNOS-specific antiserum revealed that 
in the cutaneous lesion and draining lymph nodes (LN) of clinically resistant mice (C57BL/6), 
iNOS protein is found earlier during infection and in significantly higher amounts than in the 
nonhealing BALB/c strain. Similar differences were seen on the mRNA level as quantitated by 
competitive polymerase chain reaction. Anti-CD4 treatment of BALB/c mice not only induced 
resistance to disease, but also restored the expression of iNOS in the tissue. In situ, few or no 
parasites were found in those regions of the skin lesion and the draining LN which were highly 
positive for iNOS. By double labeling experiments, macrophages were identified as iNOS expressing 
cells in vivo. In the lesions of BALB/c mice, cells staining positively for transforming growth 
factor fl (TGF-~), a potent inhibitor of iNOS in vitro, were strikingly more prominent than 
in C57BL/6, whereas no such difference was found for interleukin 4 or interferon "y (IFN-3~). 
In vitro, production of NO was approximately threefold higher in C57BL/6 than in BALB/c 
macrophages after stimulation with IFN-% We conclude that the pronounced expression of 
iNOS in resistant mice is an important mechanism for the elimination of Leishmania in vivo. 
The relative lack of iNOS in susceptible mice might be a consequence of macrophage deactivation 
by TGF-/8 and reduced responsiveness to IFN-'y. 

C Ytokine-induced synthesis of nitric oxide (NO) 1 from 
t-arginine appears to be characteristic for mammalian 

organisms and was first described in routine peritoneal mac- 
rophages almost 10 yr ago (1). Since then, inducible nitric 
oxide synthase (iNOS), the enzyme which catalyzes the con- 
version of t-arginine and molecular oxygen to L-citrulline and 
NO, has been purified, cloned, and shown to be expressed 
by many other cells, e.g., fibroblasts, endothelial cells, hepa- 
tocytes, articular chondrocytes, cardiac myocytes, and keratino- 
cytes (2-4). Depending on the type of the producing cell, 
the site of release, and presumably also on the local NO con- 
centration, the generation of NO by iNOS may lead to di- 
verse consequences. Whereas iNOS is implicated in the 

1 Abbreviations used in this paper: AEC, 3-amino-9-ethylcarbazole; iNOS, 
inducible nitric oxide synthase; L-NMMA, N~-monomethyl-t-arginine; 
NADPH, nicotinamide adenine dinucleotide phosphate (reduced form); 
NO, nitric oxide; RT, reverse transcriptase. 

induction of hypotension and cardiovascular shock, the sup- 
pression of T lymphocyte responses and the damage of tissue 
during acute or chronic inflammatory reactions (for reviews 
see references 3 and 5), current data leave no doubt that NO 
also exerts a number of host-protective functions, including 
the destruction of tumor cells, metazoan and protozoan para- 
sites, fungi, bacteria, and viruses (6-8). Antimicrobial activity 
of macrophage-derived NO and/or subsequent oxidation prod- 
ucts is strongly suggested by three different sets of experimental 
evidence (6, 7). First, accumulation of nitrite as a measure- 
ment for the release of NO in cytokine-activated cell cultures 
parallels the killing of intracellular microbes. Conversely, para- 
site elimination was inhibited in the presence of N'~-mono - 
methyl-L-arginine (L-NMMA), a substrate analogue for iNOS. 
Second, NO or NO-generating compounds were shown to 
exert a direct cytotoxic effect on some pathogens. Third, ap- 
plication of L-NMMA caused clinical exacerbation of certain 
infections in mice along with a reduced urinary excretion of 
nitrite and nitrate. So far, however, only little is known about 
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the tissue expression, cellular distribution, and local activity 
of iNOS during the course of an infectious disease. 

An area of research directly related to the antimicrobial 
role of N O  is the analysis of the induction as well as suppres- 
sion of macrophage iNOS by cytokines (9, 10). In vitro, IFN-? 
appears to be the dominant iNOS-inducing agent in macro- 
phages, and synergizes with, but does not require the pres- 
ence of additional host-derived factors or microbial products 
(11). Similarly, TGF-B is unique within the group of cytokines 
shown to inhibit iNOS activity in macrophages. Compared 
to IL-4 (12, 13), IL-10 (14, 15), and IL-13 (16) (Bogdan, C., 
H. Thiiring, S. Stenger, and M. tLrllinghoff, manuscript in 
preparation), TGF-/3 is a markedly more potent inhibitor of 
the induction of iNOS when added simultaneously with the 
activator IFN-3' (17, 18). In addition, TGF-/~, but none of 
the other cytokines, is able to deactivate macrophages in the 
strict sense of the word, i.e., to reduce the amount of iNOS 
protein and to shut down its activity in fully activated mac- 
rophages (18). The question arises whether the presence of 
IFN-'y and TGF-3 also correlates with the up- and down- 
regulation of iNOS in vivo. 

In this study we evaluated the tissue expression of iNOS 
and cytokines during infection of mice with Leishmania major. 
We chose the model of murine cutaneous leishmaniasis for 
our in situ analysis because previous studies suggested an an- 
tileishmanial effect of N O  (19, 20). In vitro, leishmania repli- 
cate within nonactivated macrophages, whereas cytokine- 
stimulated macrophages restrict the growth of the parasite 
in a NO-dependent manner (21, 22). The immune response 
to L. major differs markedly in genetically resistant (e.g., 
C57BL/6) and susceptible mice (e.g., BALB/c) and leads to 
the expansion of Thl  or Th2 lymphocytes, respectively, fol- 
lowed by a divergent cytokine expression pattern in vivo 
(23-28). Treatment with neutralizing anticytokine antibodies 
and the transfer of L. major-specific Thl or Th2 cell lines 
suggest that the Thl  cytokine IFN-y confers protection, 
whereas the Th2 cytokine IL-4 (and IL-10) mediates fatal dis- 
ease (29-31). However, little is known how these cytokines 
actually act in vivo (32, 33). The expression of TGF-3 has 
not been compared in healing vs. nonhealing L. major-infected 
mice, but TGF-3 was shown to aggravate infections with 
other Leishmania species (34). 

Based on these observations, the L. major model appears 
to be particularly promising in order to address the following 
questions: (a) Do mice which clinically resolve the infection 
exhibit higher levels of iNOS in the skin lesion and the lym- 
phoid tissue as compared to susceptible mice? (b) Are macro- 
phages, which require N O  to kill leishmania in vitro, also 
an important source of iNOS in vivo? (c) Does resistance 
or susceptibility to disease correlate with the appearance of 
activating (IFN-qr) or deactivating (TGF-3, IL-4, and IL-10) 
cytokines in the tissue leading to a differential regulation of 
iNOS in situ? 

Materials and Methods 
Animals, Parasites, In Vivo Infection, and Treatment. Female 

BALB/c and C57BL/6 mice, weighing 16-18 g, were purchased 
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from Charles River Breeding Laboratories (Sulzfeld, Germany), 
housed in our own facilities, and used at 6-8 wk of age. Origin, 
in vivo passage, and in vitro propagation of the L. major isolate 
were reported in detail elsewhere (35, 36). Infections were performed 
with thoroughly washed stationary-phase L. major promastigotes 
after two to four in vitro subcultures. In some experiments, 
stationary-phase promastigotes were enriched for metacyclic para- 
sites by peanut-lectin agglutination of the noninfective procyclic 
organisms (37), but this did not lead to significant differences in 
the lesion development or the expression ofiNOS. Groups of three 
mice per experimental time point were inoculated intradermally 
at the base of the tail or into the hind footpad with 3-5 x 106 
parasites in 25 #1 of PBS. In three experiments, mice were infected 
bilaterally so that the tissue from one animal could be processed 
for both immunohistological and PCR analysis (see below). For 
induction of resistance, BALB/c mice were injected with 250/xg 
i.p. of monoclonal anti-CD4 Ab YTS 191.1 (ammonium sul- 
phate-precipitated ascites fluid in PBS) on day - 2, - 1, and 0 rela- 
tive to the infection, whereas control animals received PBS. 

Monitoring of the Course of Infection. At regular intervals after 
infection, the footpad swelling was measured with a metric caliper 
(35) or the tailbase skin lesions were scored according to the fol- 
lowing system: 0 = no visible lesion or healed scar, 1 = swelling 
<5 mm in diameter, 2 = swelling >5 mm in diameter, 3 = open 
lesion, <5 mm in diameter, and 4 = open lesion >5 mm in di- 
ameter. In addition to the clinical course of disease, we also moni- 
tored the parasite burden in the tissue of infected mice by a modified 
limiting dilution procedure as published earlier (35). 

Cytokines, Primary Abs, and other Reagents. Recombinant rou- 
tine IFN-'y (batch M3RD48; protein concentration 1.0 mg/ml; 
sp act 5.2 x 106 U/rag; LPS content <10 pg/ml) was a gift from 
Dr. G. Adolf (Ernst Boehringer Institut f/it Arzneimittelforschung, 
Vienna, Austria). Recombinant human IL-13 (protein concentra- 
tion 0.98 mg/ml; sp act 1.2 x 107 U/mg; LPS content <52 
pg/ml) was kindly provided by Amgen (Thousand Oaks, CA). 
Smooth strain LPS, prepared by phenol extraction from Escherichia 
coli 0111:B4, and Con A (lot 12H9408; LPS content 0.2 ng/ml at 
10 mg/ml) were obtained from Sigma Chemie (Deisenhofen, 
Germany). 

A polyclonal anti-L, major antiserum was generated in rabbits 
(36) and generously supplied by Dr. H. Moll (Zentrum flit Infek- 
tionsforschung, W/irzburg, Germany). Rabbit anti-mouse iNOS 
IgG antibodies were raised against iNOS purified from the RAW 
264.7 cell line or against an octapeptide derived from the COOH 
terminus of routine iNOS and were kindly provided by Drs. Q.-w. 
Xie, C. Nathan (Cornell University Medical College, New York) 
(38) and Drs. J. R. Weidner and R. A. Mumford (Merck Research 
Laboratories, Rahway, NJ), respectively. For the immunohistolog- 
ical detection of TGF-3, we used both panspecific rabbit anti-TGF- 
3 IgG which neutralizes TGF-31, TGF-32, TGF-33, and TGF-35 
(AB-100-NA, lot BO 033041; R&D Systems, Inc., Minneapolis, 
MN), and a protein A-purified rabbit anti-TGF-31 antiserum which 
was generated against a peptide corresponding to amino acids 1-30 
of TGF-31 (generously provided by Drs. Kathy Flanders and Mike 
Sporn, National Cancer Institute, Bethesda, MD). The rat mAbs 
BM8 (IgG2a; pan-tissue macrophage), M1-70 (IgG2b; Mac-1 
[CDllb]), C1.A.3-1 (IgG2b; F4/80 antigen on monocytes and tissue 
macrophages), MOMA-2 (IgG2b; monocytes and macrophages), 
RB6-8C5 (IgG2b; GR-1 antigen on granulocytes), XMG1.2 (IgG1; 
anti-IFN-y), BVD4-1D11 (IgG2b; anti-IL-4), andJESS-2A5 (IgG1; 
anti-IL-10) were all purchased from Dianova Inc. (Hamburg, Ger- 
many). The rat mAbs YTS191.1 (IgG2b; anti-CD4), YTS169.4 
(IgG2b; anti-CD8), and anti-B220 were obtained from Serva Inc. 
(Heidelberg, Germany). 
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Isolation of Cells and Tissue, Cell Se~ration, and Cell Culture. For 
isolation of total RNA, organs from uninfected or infected mice 
were flash frozen in liquid nitrogen and stored at -70~ while 
the contralateral tissue samples were embedded in specimen molds 
(cryomold | using optimal cutting temperature (OCT) compound 
(Diatec, Hallstadt/Bamberg, Germany) and stored frozen for later 
immunohistological analysis. For quantification of the parasite load 
with the limiting dilution technique, single cell suspensions of LN 
and spleen or homogenates of the skin lesion were prepared as de- 
scribed (35). For tissue culture experiments, LN or spleen ceils were 
seeded into 96-well round-bottom microdilution plates (Nunc, Wies- 
baden, Germany) and restimulated in Click's ILPMI 1640 (sup- 
plemented with 10% heat-inactivated selected FBS [Sigma l, 2 mM 
glutamine, 10 mM Hepes, 13 mM NaHCO3, 100/zg/ml peni- 
cillin, and 160/~g/ml gentamicin [all other reagents from Seromed- 
Biochrom, Berlin, Germany]) with IFN-"/(20 ng/ml)/LPS (20 
ng/ml) or Con A (2.5 #g/ml) plus Ib l  (50 U/ml). In some experi- 
ments, T or B lymphocytes were depleted from spleen and LN sus- 
pensions by magnetic separation with a MACS column (Miltenyi 
Biotech, Germany) after incubation with anti-Thy 1.2 or anti-B220 
Abs coupled to magnetic particles, according to the manufacturer's 
instructions. The purity of the resulting T (B) cell-depleted and 
T (I3) cell-enriched population was checked by flow cytometry using 
a FACScan | from Becton Dickinson & Co. (Mountain View, CA). 
Thioglycollate-elicited peritoneal macrophages from BALB/c and 
C57BL/6 mice were prepared as published previously (18) and were 
cultured in R.PMI 1640 (Seromed-Biochrom) with 5% heat- 
inactivated FBS (Sigma). At the concentrations used in the tissue 
culture experiments, the LPS content of all reagents as well as of 
the supplemented media was ~< 10 pg/ml as determined with a 
colorimetric Limulus amebocyte lysate assay (Whittaker M.A. Bio- 
products, Walkersville, MD). 

Determination of NO2- Accumulation in Culture Supernatants, 
iNOS Enzyme Assay, SDS-PAGE, and Western Blot Analysis. For 
measurement of NOz- accumulation in culture supernatants, 
preparation of macrophage lysates, determination of iNOS enzyme 
activity, and detection of iNOS protein by SDS-PAGE and Western 
blot, we exactly followed previously published protocols (18). 

RNA Preparation and Competitive Reverse Transc@tase (RT)-PCR. 
Frozen organs were homogenized in 4 M guanidiniumisothiocyanate 
and total RNA was extracted as described (39). cDNAs were syn- 
thesized from 1 #g total RNA using 2.5 #M poly(dT)lz-18, 12.5 
U AMV reverse transcriptase, 0.5 mM of each dNTP, 5 mM 
MgC12, and 32 U RNAguard (all from Pharmacia, Freiburg, Ger- 
many) in a final reaction volume of 20/~1. PCR amplification of 
the cDNAs was carried out during 35 cycles (1 min denaturation 
at 95~ I min annealing at 58~ 1 min extension at 72~ with 
a DNA thermal cycler (model 480; Perkin-Elmer, Weiterstadt, Ger- 
many) in 40 #1 of a reaction mixture containing 10 mM Tris, pH 
8.3, 50 mM KC1, 2 mM MgClz, 400 #M of each dNTP, 1 U 
Taq DNA polymerase (all from Pharmacia), and 250 nM of up- 
stream and downstream oligonucleotide primer (Biometra, Grt- 
tingen, Germany). PCR-amplified samples were analyzed on a 1.5% 
agarose gel. 

An exact quantification of iNOS mRNA vs. B-actin mRNA 
in the various tissue samples was obtained by competitive PCR 
as described previously (40). Initially, each cDNA was individually 
amplified with ~-actin-specific primers in the presence of 10-fold 
serially diluted actin competitor of known molarity (see below) 
yielding similar band intensities of the control and cDNA frag- 
ment at a defined dilution of the competitor. Thereafter, twofold 
dilutions of the cDNA and a fixed concentration of competitor 
were coamplified, which led to the appearance of exactly equal band 

intensities for both fragments and, thus, to a precise quantification 
of the cDNA relative to the competitor. Subsequently, the same 
two-step procedure was performed with iNOS-specific primers using 
an iNOS competitor of known molarity (see below). Finally, the 
ratio was formed between the dilutions of the iNOS and/3-actin 
competitor required for equal band intensities of the respective 
cDNA and control fragments. All PCIL results presented in this 
study were repeated two to three times independently and are solely 
based on the competitive PCR technique. 

Otigonucleotides and Competitor Plasmids. The following PCK 
primers were used: iNOS sense 5'-TCACGCTTGGGTCTTGTT- 
CACT-3' (bp position 161 ~ 182 of the murine macrophage iNOS 
sequence [38]), iNOS antisense 5'-TTGTCTCTGGGTCCTCTG- 
GTCA-3' (bp position 632 --~ 611), fl-actin sense 5'-CACCCG- 
CCACCAGTTCGCCA-3' (bp position 62 ~ 81 of the murine 
/3-actin sequence [41]), and fl-actin antisense 5'-CAGGTCCCG- 
GCCAGCCAGGT-Y (bp position 635 -'~ 616). The specificity of 
the 472-bp iNOS PCR product was confirmed by Southern blot 
hybridization with an internal antisense oligonucleotide probe (lo- 
cated at bp position 436 --~ 403 of the iNOS sequence) following 
standard protocols (42). The fl-actin competitor was generated by 
low-stringency (annealing 37~ 5 cycles; 60~ 30 cycles) PCK 
amplification of unrelated E. coli DNA with B-actin primers, which 
yielded a control fragment slightly larger in size than the fl-actin 
cDNA (700 vs. 574 bp), but flanked by the same fl-actin-specific 
sequences. The control fragment was cloned into the pSPT18 vector 
(Boehringer, Mannheim, Germany). The iNOS competitor plasmid 
was obtained by insertion of a 162-bp DNA fragment (isolated from 
a ~bX174 R.F DNA-HinclI digest [Pharmacia]) into the HinclI re- 
striction site (position 200) of the murine iNOS clone L1, which 
was kindly provided by Dr. Q.-w. Xie (38). Both competitor con- 
structs were shown to compete stochiometrically with plasmids 
containing the unmodified fl-actin or iNOS cDNA sequence. 

tmmunoenzymatic Sequencing of Tissue Sections. As published pre- 
viously (43), freshly cut cryostat sections (5/~m) were thawed onto 
gelatine-coated slides, air-dried for 60 min, and fixed in acetone 
(10 rain, -20~ The remaining OCT compound was washed 
off with PBS/0.05% Tween 20 and nonspecific binding sites were 
blocked by incubation in PBS containing 0.1% BSA and 20% FCS 
(30 min, room temperature) before the primary Ab of rabbit or 
rat origin (diluted in PBS/0.1% BSA) was added (1 h, room tem- 
perature or overnight, 4~ Subsequently, the sections were washed 
(three times for 10 min, with PBS/0.05% Tween 20), incubated 
with affinity-purified, biotin-conjugated F(ab')2-fragment donkey 
anti-rabbit IgG or mouse anti-rat IgG (Dianova) (1 h, RT), washed 
again, and overlayed with preformed streptavidin-biotin-peroxidase- 
complex (Dako, Hamburg, Germany) for 1 h at room tempera- 
ture. After a final wash, the labeling was visualized with 0.2 mg/ml 
3-amino-9-ethyl-carbazole (AEC; Sigma) and 0.015% HzO2 in 
acetate buffer (50 mM, pH 5.1). The development was stopped by 
rinsing with 50 mM Tris, pH 7.4/0.05% Tween 20. When the 
first-step Abs were omitted or replaced by preimmune serum or 
an irrelevant isotype-matched control Ab, no staining was obtained. 
Optimal Ab concentrations were determined in several series of 
pilot experiments. The sections were counterstained with hema- 
toxylin and mounted (Aquatex; Merck, Darmstadt, Germany). For 
semiquantitative evaluation of tissue sections, the number of posi- 
tively stained nucleated cells was determined by visual examination 
of 450 sections per organ (at least 5,000 cells counted, at a 
magnification of 400). 

Double Labeling of Tissue Sections. A combination of gold-silver 
immunostaining and immunoenzymatic labeling was performed 
exactly as published previously (43) except that we used streptavidin- 
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Figure 1. Expression of iNOS mKNA and protein after 
L. major infection. (A) BALB/c and C57BL/6 mice were 
bilaterally infected with L. major (3 x 106) into the hind 
footpads and the subsequent lesion development (mean in- 
crease of footpad thickness _ SD) was monitored. Where 
error bars are not visible, they fall within the symbols denoting 
the mean. Numbers on top of the symbols represent final di- 
lutions of footpad tissue yielding viable parasites in the lim- 
iting dilution analysis. (B-D) At designated time points after 
infection, groups of three mice were killed, iNOS mR.NA 
and ~-actin mRNA levels in the left skin lesion and popliteal 
LN were precisely quantitated by competitive KT-PCR of 
pooled KNA preparations (B and C), while the contralateral 
LN was processed for immunohistochemistry and the approx- 
imate number of cells staining positively for iNOS was visually 
determined (D). The data shown are representative for three 
similar experiments. 

biotin-peroxidase complex (with AEC as substrate) instead of 
streptavidin-biotin-alkaline phosphatase complex for the immunoen- 
zymatic labeling. 

NADPH Diaphorase Staining. For detection ofnicotinamide ade- 
nine dinucleotide phosphate (NADPH) diaphorase activity, acetone- 
fixed cryostat sections (5 #M) were incubated in 50 mM Tris buffer 
(pH 7.5), 0.5 mM nitroblue tetrazolium salt, 1 mM NADPH, and 
0.2% Triton X-100 (37~ 30 min) as published previously (44). 

Results 
L. major-infected Resistant Mice Express Higher Levels of iNOS 

mRNA and Protein in the Tissue Compared to Susceptible 
Mice. In three independent experiments, organs from L. 
major-infected BALB/c and C57BL/6 mice were analyzed for 
the expression of iNOS at various time points during the 
course of disease (Fig. 1 A). Low levels of iNOS m R N A  were 
already detectable by PCR in the lesions of both mouse strains 
1 d after infection, but not in the skin of naive mice (data 
not shown). As quantitated by competitive PCP, analysis (see 
Materials and Methods), the amount of iNOS m K N A  sub- 
sequently increased by a factor of up to 100 in the lesions 
of resistant C57BL/6 mice, but much less so in nonhealing 
BALB/c mice. Thus, peak levels of iNOS m R N A  were at 
least 6-10-fold higher in resistant animals (Fig, 1 B). Similar 
induction of iNOS m R N A  occurred in the draining LN 
leading to high and persistent expression of iNOS in the resis- 
tant, but not in the susceptible strain (Fig. 1 C). Although 
the exact time course varied from experiment to experiment, 
upregulation of iNOS m R N A  always correlated with the reso- 
lution of clinical disease (Fig. 1 A vs. Fig. 1, B and C). iNOS 
m R N A  was also found in the spleen of  infected animals, but 

Figure 2. Differential expression of iNOS in the skin lesions of resis- 
tant and susceptible mice. Mice were intradermally infected with L. major 
(3 x 106) at the base of the tail and the skin lesions were analyzed for 
the presence of iNOS by immunoperoxidase labeling of tissue sections 

as described in Material and Methods. (.4) C57BL/6, day 4 of infection. 
The inset shows a collection of iNOS-positive phagocytes within the sub- 
cutaneous inflammatory infiltrate. (B) BALB/c, day 4; (C) C57BL/6, day 
11; (D) BALB/c, day 11. x 100 (bar, 100 #m) in A-D; x 1,000 in the inset 
of A. 
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the levels were at ~10-fotd lower than in the regional LN 
(data not shown). 

In parallel to the quantitation of iNOS mKNA in total 
organs, we carried out immunohistology in order to localize 
and define the expression of iNOS protein in L. major-in- 
fected tissue. In the cutaneous lesion, iNOS protein was un- 
detectable at day 1 and 2 after infection in both strains of 
mice (data not shown), whereas it was regularly found in 
macrophage-rich mononuclear infiltrates of the dermis and 
subcutis of resistant mice from day 4 of infection onwards. 
Thereafter, iNOS was rapidly upregulated in resistant, but 
not in susceptible mice as visualized by low-power magnifica- 
tions of the respective skin sections (Fig. 2, A-D). A similar 
pattern was seen in the draining LN, where iNOS was also 
expressed earlier (day 10-12 of infection vs. day 16-18) and 
to a strikingly higher extent in the resistant strain (Fig. 3, 
A and B). A semiquantitative analysis based on the visual 
enumeration of positively stained cells per 5,000 nuclei re- 
vealed that the number of iNOS-positive cells in the LN of 
the healer strain exceeded the values in the nonhealing mice 
by a factor of >-3 at all time points of infection (Fig. 1 D). 
This approximation does not take into account our observa- 
tion that, despite equal developing times, the iNOS staining 
was always considerably more intense in sections from 
C57BL/6 mice (see Fig. 3, A vs. B). The specificity of the 
iNOS staining could be demonstrated by several methods (data 
not shown): (a) the staining obtained was completely blocked 
in the presence of 0.5-1.0 #g/ml of the iNOS peptide used 
for generating the polyclonal rabbit antiserum; (b) no iNOS 
protein was detected in skin and LN from uninfected mice 
or when using the respective rabbit preimmune serum; and 
(c) in vitro, immunocytochemical iNOS staining of macro- 

phages was only found after induction of iNOS mKNA and 
protein by IFN-3' or IFN-3,/LPS, but not in unstimulated 
cultures. 

Expression of iNOS in the LN Is Confined to Clusters of Mac- 
rophages. Between day 10 and 20 of infection, iNOS was 
exclusively found in the paracortical or medullary region of 
the LN, where it colocalized with macrophages as determined 
by staining of consecutive tissue sections (data not shown). 
These macrophages were comparably well recognized by the 
mAbs F4/80, MOMA-2, or Mac-1 (anti-CK3). Direct 
demonstration of iNOS in macrophages was possible by double 
labeling techniques (Fig. 3, C and D). At the same stage 
of disease, no iNOS was detectable in the follicles of the 
LN, although we did find isolated MOMA-2 + (F4/80-, 
Mac-1-) macrophages in the follicles as described previously 
(45; data not shown). However, at later time points of infec- 
tion, iNOS-positive macrophages appeared to infiltrate the 
follicular areas (Figs. 3 A and 4 A). Up to 50% of F4/80 + , 
MOMA-2 + , or Mac-1 § cells of the infected LN did not ex- 
press iNOS. On the other hand, '~20% of iNOS-positive 
areas failed to stain with the F4/80 Ab, but were picked up 
by anti-CK3 (Mac-l) as well as MOMA-2 (data not shown). 
These results indicate that all iNOS-positive cells are located 
within macrophage-rich regions but by far, not all macro- 
phages express iNOS at one time. 

Tissue Expression of iNOS Correlates with the Absence of 
Parasites and Colocalizes with NADPH Diaphorase Activity. To 
obtain more direct evidence for the antileishmanial function 
of NO, we stained consecutive sections of LN with anti-iNOS 
and anti-L, major antisera. As illustrated in Fig. 4, high ex- 
pression ofiNOS in resistant mice was paralleled by the absence 
of parasites in the same region (Fig. 4, A and B), whereas 

Figure 3. Expression of iNOS in the lymph node differs 
between resistant and susceptible mice and is found in mac- 
rophages. BALB/c and C57BL/6 mice were infected at the 
base of the tail and the inguinal LN were analyzed for the 
expression of iNOS and the presence of macrophages by 
one-color immunoperoxidase staining (A and B) or double 
labeling (C and D). (-4) C57BL/6, day 26 of infection, 
strong anti-iNOS staining; x 100, inset x 1,000. (B) BALB/c, 
day 26, weak anti-iNOS staining, areas of necrosis, x 100. 
(C and D) Double staining for F4/80 + macrophages (im- 
munoperoxidase labeling with substrate AEC and hematox- 
ylin counterstaining) and iNOS (immunogold-silver staining). 
Some macrophages, visualized under brightfield illumination 
(C) by the brownish AEC-label, also display iNOS (dark grains, 
which appear light blue-greenish under epipolarization illu- 
mination [D]). xl,000, bar, 10 #m. 
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Figure 4. Expression ofiNOS correlates with the absence 
of L. major parasites and the presence of NADPH diaphorase. 
Consecutive sections of LN from L. major-infected C57BL/6 
or BALB/c mice were analyzed for the presence of iNOS and 
L. major by immunoperoxidase staining at day 30 of infection 
(A-D) or iNOS and NADPH diaphorase at day 26 after in- 
fection (E and F). (A) C57BL/6, anti-iNOS. (B) C57BL/6, 
anti-L, major. (C) BALB/c, anti-iNOS. (D) BALB/c, anti-L. 
major. The inset shows three L. major amastigotes. (E) 
C57BL/6, anti-iNOS. (F) C57BL/6, NADPH diaphorase. 
x200 (A-D) or xl,000 (inset of A, E, and F, bar, 10/xm). 
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Anti-CD4 treatment induces clinical healing and restores ex- 
pression of iNOS in L. major-infected BALB/c mice. C57BL/6 mice were 

numerous parasites were detectable in the necrotic tissue 
of BALB/c mice lacking the expression of iNOS (Fig. 4, 
C and D). 

The ability of NOS to convert colorless tetrazolium salts 
and NADPH to purple formazan under t-arginine-free con- 
ditions has been used to localize constitutive NOS activity 
in neuronal tissue (44). We applied the same staining method 
to skin (data not shown) and LN sections of L. major- 
infected BALB/c or C57BL/6 mice and always found a per- 
fect match between the detection of iNOS protein and 
NADPH diaphorase activity (Fig. 4, E and/7). Areas nega- 
tive for iNOS were also negative for NADPH diaphorase. 
Although enzymes other than iNOS are known to act as 
NADPH diaphorases, this result is a further indication of 
the presence of activated cells expressing functional iNOS. 

infected with L. major into the right footpad along with BALB/c mice, 
which were intraperitoneally injected with PBS or anti-CD4 before infec- 
tion (see Materials and Methods). The clinical course of the infection was 
monitored (.4). At day 22 and 33 of infection, three mice of each group 
were killed, tissue sections of the popliteal LN were labeled with anti- 
iNOS/immunoperoxidase and the approximate number of iNOS + cells 
(B) was visually determined. One of two comparable experiments. 
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Figure 6. Cytokine expression 
in the skin of L. major-infected 
BALB/c and C57BL/6 mice. 
BALB/c and C57BL/6 mice were 
intradermally infected with L. major 
at the base of the till. At 2, 4, 8, 
and 16 d after infection, the skin le- 
sions were excised and processed for 
the detection of cytokines by one- 
color immunoperoxidase labeling. 
Micrographs repl~sent sections from 
8 d-infected mice. As the anti- 
IFN-3' and anti-Ib4 staining were 
indistinguishable in C57BL/6 and 
BALB/c lesions, the results for only 
one strain are shown. (/1) BALB/c, 
anti-IFN-% x200 (inset xl,000); 
(/3) C57BL/6, anti-IL-4, x200 (inset 
x 1,000); (C) BALB/c, anti-TGF-/3, 
x200 (inset xl,000); (D) C57BL/6, 
anti-TGF-/3, x200. Bars, 50 #M. 

Anti-CD4 Treatment Restores the Expression of iNOS in L. 
major-infected BALB/c Mice. Susceptible BALB/c mice can 
be rendered resistant to L. major by a number of therapeutic 
interventions (for a review see reference 46) including sys- 
temic application of anti-CD4 before infection (47). As ex- 
pected, anti-CD4-treated BALB/c mice exhibited a healing 
phenotype similar to that of C57BL/6 mice (Fig. 5 A). The 
clinical protection was accompanied by strikingly enhanced 
expression of iNOS both in the lesion (data not shown) and 
the LN (Fig. 5 B) which adds further evidence to the host- 
protective role of iNOS in L. major-infected mice. 

Inverse Expression of iNOS and TGF-/3 in the Lesions of Resis- 
tant and Susceptible Mice. Next, we attempted to identify 
cytokines that might be responsible for the reduced tissue 
expression of iNOS in BALB/c mice. We chose to analyze 
the primary site of infection, i.e., the cutaneous lesion, which, 
in contrast to the draining LN, has not yet been studied for 
the expression of cytokines during routine cutaneous leish- 
maniasis (for a review see reference 46). Using immunoen- 
zymatic labeling we found distinct infiltrates of IL-4 and IFN- 
3'-positive cells in L. major-infected skin at day 8, 12, and 
16, but not at day 2 or 4 of infection (Fig. 6, A and B). The 

Figure 7. Induction of iNOS in BALB/c and 
C57BL/6 macrophages. Thioglycollate~elicited mac- 
rophages from BALB/c and C57BL/6 mice were cul- 
tured in medium alone or stimulated with various con- 
centrations of IFN-3t (A) or IFN-~/(10 rig/m1) + LPS 
(10 ng/ml) (B). After 48 h, accumulation of NO2- 
in the culture supernatants was measured. (B) Total 
cell lysates from unstimulated or activated macrophages 
were processed for determination of iNOS enzyme ac- 
tivity, subjected to 7.5% SDS-PAGE (20 #g pro- 
tein/lane), ar d immunoblotted with an iNOS-spedfic 
antiserum (18). (~)  Position of the typical iNOS dou- 
blet (ca. 130 kD). One of three similar experiments. 
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level of expression, however, was absolutely comparable in 
BALB/c and C57BL/6 mice (data not shown) despite the 
striking differences in the amount of iNOS described above. 
In contrast, the lesions of BALB/c mice contained a greatly 
increased number of cells staining positively for TGF-13 (Fig. 
6, C and D). By the same immunohistological method, we 
were unable to find IL-10 in the cutaneous infiltrates. These 
results suggest that BALB/c mice do not lack IFN-7 for the 
induction of iNOS and implicate TGF-/3 as a potential down- 
regulator of iNOS in the cutaneous lesion of BALB/c mice. 

Poor Induction of iNOS in BALB/c, but Not in C57BL/6 
Macrophages after Stimulation with IFN-7 Alone. Previously, 
it was reported that BALB/c macrophages release lower 
amounts of NO as compared to C57BL/6 cells after stimula- 
tion with IFN- 7 plus LPS (48). As BALB/c macrophages 
respond poorly to LPS (49), and LPS is not a stimulus in- 
volved in the activation of macrophages during an infection 
with L. major, we investigated the expression of iNOS in 
macrophages from both species after activation with IFN-7 
in the absence of LPS. At optimal concentrations of IFN-7 
(10 or 20 ng/ml) accumulation of NO2- by BALB/c mac- 
rophages was 2.9 (_0.5)-fold lower than in respective 
C57BL/6 cultures (mean _ SEM of 17 experiments) (Fig. 
7 A). Accordingly, the expression of iNOS protein and en- 
zyme activity was strikingly reduced in BALB/c macrophages 
activated by IFN-3' alone, but could be at least partially re- 
stored after costimulation with IFN- 7 and LPS (Fig. 7 B). 
It is possible that the hyporesponsiveness of BALB/c macro- 
phages to IFN-',/contributes to the reduced expression of 
iNOS in BALB/c mice in vivo. 

Discuss ion  

Antimicrobial activity of NO in vivo was previously sug- 
gested by reports which either documented high urinary ex- 
cretion of nitrate in resistant mice infected with bacteria (50, 
51) or L. major (20), or demonstrated progressive disease in 
animals treated with t-NMMA (19, 20, 52-54), an inhibitor 
of both the constitutive and inducible type of NOS. Fur- 
thermore, by Northern blot or nonquantitative PCR anal- 
ysis, iNOS mRNA was detected in tissue after the infection 
of mice with toxoplasma, listeria, or viruses (54-56). In this 
study we resorted to immunohistological techniques and com- 
petitive PCR analysis to characterize the cellular distribu- 
tion of the cytokine-regulated isoform of NOS and to reliably 
quantitate iNOS mRNA in L. major-infected tissue. This 
combined approach provided novel evidence for an an- 
timicrobial function of NO in vivo. First, in the skin lesions 
and draining LN of mice resistant to L. major iNOS protein 
was expressed earlier and in much higher amounts when com- 
pared to tissue from susceptible mice. Similarly, the peak iNOS 
mRNA levels in resistant mice exceeded those in nonhealing 
animals by a factor of at least 6-10. Second, induction of re- 
sistance in BALB/c mice via anti-CD4 treatment was paral- 
leled by enhanced tissue expression of iNOS indistinguish- 
able from the pattern seen in the healer strain C57BL/6. Third, 
in situ, no or only few parasites were detected in infiltrates 
of macrophages strongly positive for iNOS, whereas large 

numbers of parasites were found in iNOS-negative regions. 
Expression of iNOS coincided locally with the presence of 
NADPH diaphorase activity. The appearance of NADPH 
diaphorase in the tissue might be due to iNOS itself (57), 
but could also result from other enzymes, e.g., NADPH ox- 
idase, which is known to be upregulated in activated macro- 
phages. In fact, coexpression of iNOS and NADPH oxidase 
in L. major-infected macrophages in vivo could be advanta- 
geous to the host as NO and reactive oxygen intermediates 
can lead to the generation of trans-peroxynitrite and finally 
yield the highly toxic hydroxyl-radical (58). 

In vitro, many cell types exhibit iNOS activity after ex- 
posure to cytokines (3) suggesting that in vivo, widely spread 
expression of iNOS might follow a strong inflammatory 
stimulus. Studying the skin and LN of L. major-infected mice, 
we did not find universal expression ofiNOS. The epidermis 
of the skin lesion was always negative for iNOS, and so were 
structurally intact follicles of the LN. After double labeling 
of sections from L. major-infected LN, macrophages could 
be identified as iNOS-positive cells. In contrast, B220 + B 
and iNOS § cells were clearly separate cell populations lo- 
cated in distinct areas of the LN. Despite repeated attempts, 
we have also been unable to demonstrate expression ofiNOS 
by Thyl + T lymphocytes, which were freshly isolated from 
naive or L. major-infected mice and (re-) stimulated in vitro 
(data not shown; C. Bogdan, et al., manuscript in prepara- 
tion). These results do not exclude the possibility that cer- 
tain T cell clones grown in vitro might release NO as reported 
recently (59, 60). Restricted expression of iNOS is further 
suggested by our competitive PCR data. Based on the crude 
assumption that reverse transcription and subsequent PCR 
amplification are equally efficient for iNOS and /~-actin 
mRNA, there are 1-10 iNOS mRNA molecules per 1t3 s 
/3-actin mRNA molecules in L. major-infected LN of resis- 
tant mice (Fig. 1 C). In contrast, the respective values for 
IL-4 or IFN- 7 mRNA are roughly 1,000-fold higher (Gessner, 
A., personal communication). Whether iNOS is induced in 
granulocytes, NK, dendritic, or Langerhans cells during the 
course of infection with L. major, is not yet known. From 
day 30 of infection onwards, isolated iNOS-positive cells were 
regularly detected in the spleen and liver, but not in the pan- 
creas, kidney, heart, or lung of BALB/c and C57BL/6 mice 
(data not shown). This finding might reflect the spread of 
low numbers of parasites to these organs as recently observed 
even in resistant animals (Laskay, T., A. Diefenbach, M. R61- 
linghoff, and W. Solbach, manuscript in preparation). Within 
the time period investigated (~<day 41) the limited expres- 
sion of iNOS protein in spleen and liver was similar in L. 
major-infected BALB/c and C57BL/6 mice, but the BALB/c 
organs were loaded with parasites, presumably due to the 
insufficient "iNOS barrier" in the primary lesion and the 
draining LN (data not shown). 

Two potential mechanisms for the differential regulation 
of iNOS in resistant and susceptible mice were identified which 
might act in concert. First, in vitro, the inducibility of iNOS 
protein and activity by IFN-7 alone is much lower in BALB/c 
than in C57BL/6 macrophages. This observation extends ear- 
lier studies, where BALB/c macrophages were found to be 
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hyporesponsive to LPS or IFN-'y/LPS (48, 49). Second, in 
vivo, we noted a much more prominent expression of TGF-3 
in the lesions of nonhealing BALB/c when compared to resis- 
tant C57BL/6 mice. In the past, m R N A  studies or restimu- 
lation experiments demonstrated that L. major-infected 
BALB/c mice maintain increased levels of IL-4 and, to a con- 
siderably lesser extent, also of IL-10 in the lymphoid tissue 
(23-28). TGF-3, IL-4, and IL-10 were all show to suppress 
the production of N O  by cultured macrophages (12-15, 17, 
18). Using immunohistological techniques we succeeded in 
detecting cytokines in the dermal infiltrates after L. major 
infection; this has not yet been reported. Data presented here 
suggest that IL-4, which was found at comparable levels in 
the infected skin of BALB/c and C57BL/6 mice, is not respon- 
sible for the downregulation of iNOS in the cutaneous le- 
sions of BALB/c mice. Furthermore, BALB/c mice do not 
lack IFN-3' at the primary site of infection. In contrast, the 
different amount of iNOS protein in the lesions of suscep- 
tible and resistant mice correlated well with high or low level 
expression of TGF-3, respectively. Our study provides evi- 
dence that TGF-3 downregulates iNOS in vivo, a function 
that might underlie the previously reported disease-promoting 
effect of TGF-3 (34). In vitro, TGF-3 suppresses iNOS pro- 
tein, but not iNOS mRNA if added to already activated mac- 
rophages (18). This unique function of TGF-3 might explain 
the strikingly different expression of iNOS protein in the 
skin of BALB/c and C57BL/6 mice at day 4-12 of infection 
(Fig. 2), when the levels of iNOS mKNA were still similar 
in the lesions of both strains (Fig. 1 C). It should be noted 
that the situation might be different in the LN where we 
could not reliably document the expression of TGF-3. In- 
stead, we found persistent levels of IL-4 mR.NA in infected 
BALB/c, but not in C57BL/6 mice, whereas the expression 
of IFN-3' mKNA was comparable in the LN of both strains 

of mice (data not shown). This finding confirms a recent re- 
port by Reiner et al. (28) and leaves the possibility that IL-4 
(and perhaps also IL-10) contributes to the reduction ofiNOS 
in the LN of L. major-infected BALB/c mice as described 
in our present study. 

During the kinetic analysis of L. major-infected mice we 
found significant amounts ofiNOS expressed in the skin and 
draining LN of resistant mice even after the cutaneous le- 
sions were clinically almost completely healed (Figs. 1 and 
3). Our preliminary data suggest that iNOS persists in the 
tissue of long-term infected resistant mice along with very 
small numbers of parasites (Bogdan, C., S. Stenger, H. 
Thiiring, and M. R611inghoff, manuscript in preparation). 
Live parasites have repeatedly been isolated from cured mice 
(61-63) and might represent a permanent signal for the local 
induction of iNOS. This could be part of a finely tuned 
host-parasite relationship, where the persistence of Leishmania 
is required for the maintenance of host immunity while simul- 
taneous expression of iNOS prevents uncontrolled parasite 
replication and reduces the level of T cell activity (64-67). 

In summary, the experiments presented here provide novel 
information about the regulation of iNOS in vivo. First, the 
amount of iNOS in the skin lesion and the lymphoid tissue 
of L. major-infected mice correlates inversely with the clin- 
ical course of disease. Second, macrophages are the predomi- 
nant if not the only cell population devoted to the produc- 
tion of NO in the LN. Third, in situ areas rich in iNOS 
are devoid of parasites. Fourth, increased levels of TGF-3 in 
the tissue (and perhaps also hyporesponsiveness to IFN-'y) 
might account for the reduced expression of iNOS in sus- 
ceptible mice. Our current studies are focussed on the regu- 
lation of TGF-3 in order to understand its differential ap- 
pearance in resistant and susceptible mice. 
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