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Recently, there has been a growing interest in adapting serial microcrystallo-

graphy (SMX) experiments to existing storage ring (SR) sources. For very small

crystals, however, radiation damage occurs before sufficient numbers of photons

are diffracted to determine the orientation of the crystal. The challenge is to

merge data from a large number of such ‘sparse’ frames in order to measure the

full reciprocal space intensity. To simulate sparse frames, a dataset was collected

from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was

continuously rotated about two orthogonal axes to sample a subset of the

rotation space. With the EMC algorithm [expand–maximize–compress; Loh &

Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of

the crystal can still be reconstructed even without knowledge of the orientation

of the crystal in any sparse frame. Moreover, parallel computation implementa-

tions were designed to considerably improve the time and memory scaling of the

algorithm. The results show that EMC-based SMX experiments should be

feasible at SR sources.

1. Introduction

The advance of serial femtosecond microcrystallography

(SFX) at X-ray free-electron lasers (XFELs) (Chapman et al.,

2011; Boutet et al., 2012) allows structure determination with

protein crystals whose sizes are too small for conventional

crystallography experiments. SFX is based on injecting a

sequence of randomly oriented microcrystals to intercept a

train of X-ray pulses. The tens of femtoseconds long pulse

width enables the photon scattering process to outrun the

radiation damage of the crystals, while the ultra-high bright-

ness of the pulses results in a sufficient number of resolvable

Bragg peaks collected by a fast-framing detector (Philipp et al.,

2008) for indexing. Using this concept of ‘diffract before

destroy’ (Neutze et al., 2000), a complete dataset can be

obtained given enough indexed data frames. SFX has the

advantage of rapid data collection owing to the high repetition

rate of the X-ray pulses and provides a promising means to

study proteins that do not readily form large single crystals.

Despite the success of SFX, the paucity of XFEL beamtime

has inspired interest in adapting serial microcrystallography

(SMX) experiments to storage ring (SR) sources (Gati et al.,

2014; Stellato et al., 2014; Heymann et al., 2014; Nogly et al.,

2015; Botha et al., 2015; Gruner & Lattman, 2015; Schubert et

al., 2016). Radiation damage cannot be outrun in the same

way at SR sources, thereby much more strongly limiting the

dose per protein that can be tolerated. The limit to the
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smallest usable crystal size in SMX is the ability to index each

data frame, since frames collected from very small crystals will

have so few diffracted photons that Bragg peaks will not be

obviously identifiable. Because successfully indexing a frame

usually requires at least 20–30 resolvable Bragg peaks, under

conventional processing schemes data frames that are too

weak to identify this number of Bragg peaks would be

discarded.

Instead of determining the orientation of each data frame

individually, the expand–maximize–compress (EMC) algo-

rithm (Loh & Elser, 2009) seeks to reconstruct a consistent

three-dimensional intensity model using all the data frames

simultaneously. The EMC algorithm treats the orientation of

each data frame as a probability distribution conditional on

the current model and iteratively updates the model by

maximizing the associated likelihood function. The validation

of its probabilistic modeling of orientations has been

demonstrated in many proof-of-concept experiments (Loh et

al., 2010; Philipp et al., 2012; Ayyer et al., 2014, 2015; Ekeberg

et al., 2015; Wierman et al., 2016), even in some cases where

the number of collected photons per frame is extremely low.

This success has motivated us to apply the EMC algorithm to

SMX to push the limit of usable crystal sizes.

This study is the latest of a series of proof-of-concept table-

top experiments with increasing complexity to test the

applicability of the EMC algorithm to SMX. We simulated the

data frames collected in an SMX experiment by taking a large

volume of data frames of very brief exposures from a large hen

egg white lysozyme (HEWL) crystal with a dim laboratory

X-ray source and a fast-framing mixed-mode pixel array

detector (MM-PAD) (Tate et al., 2013). In contrast to our

previous work (Wierman et al., 2016), where the crystal was

rotated about a single axis, the data frames used in this study

were collected from a crystal rotated about two orthogonal

axes continuously to sample a greater portion of the rotation

space. The crystal intensities were reconstructed using the

discrete three-dimensional rotation samples lying in this

rotation subset, so our method applies to randomly oriented

frames by replacing the rotation subset with the whole three-

dimensional rotation space. However, like the full exploration

of the rotation space, this rotation sampling results in a cubic

growth with resolution in the memory and time scaling of the

EMC algorithm, which makes the two-axis problem more

difficult than its single-axis counterpart. To remedy this

problem, we developed computing schemes that greatly

reduce the memory usage and computation time. With no

input information on the orientation of each data frame, the

EMC algorithm successfully reconstructed the Bragg reflec-

tions to 2.27 Å resolution. This result further paves the way for

EMC-based SMX experiments.

This paper is organized as follows. In x2, we present the

details of the experiment, an overview of the EMC algorithm

and other aspects of the data processing. In particular, we

introduce a local update scheme to speed up the EMC algo-

rithm at high resolution. In x3, we examine the sparsity of the

data frames input to the EMC algorithm and the results of the

intensity reconstruction. In the appendices, we describe a

memory-efficient parallel implementation of the EMC algo-

rithm and quantify the speed-up of the local update scheme in

practice.

2. Materials and methods

2.1. Setup of rotation axes

In order to sample a greater portion of the rotation space

than a single rotation axis does (Wierman et al., 2016), two

orthogonal rotation axes were built by fixing the ’ rotation

stage (Newport URS100) perpendicularly to the  rotation

stage (Newport UE17CC), as schematically shown in Fig. 1. In

the present experiment rotations about the  axis bring the ’
rotation stage into alignment with the X-ray beam, so the  
rotation was limited to 18� to avoid blocking the beam and

collision with the detector. This limited angular range of  is

acceptable because, as described in x2.4.2, the solution to the

two-axis problem is readily generalized to full three-dimen-

sional rotations even over this limited angular range. Using a

microscope, the rotation axes were adjusted to intersect

perpendicularly and their intersection was centered within the

X-ray beam using a fluorescent fiber, whose position was

recorded for the subsequent sample centering.

2.2. Sample preparation

The protein crystallization technique followed is similar to

that described by Wierman et al. (2016). Lyophilized hen egg

white lysozyme powder (Sigma, Saint Louis, MO, USA) was

dissolved in deionized water to 25 mg ml�1 without further

purification. Crystals were grown at room temperature

(293 K) by the hanging-drop diffusion method by mixing 2 ml

of protein solution with 2 ml of reservoir solution containing

1.0 M sodium chloride and 0.1 M sodium acetate pH 4.5.

Crystals appeared after a few days of growth with dimensions

0.4 � 0.4 � 0.6 mm. Using a large-opening pipette fixed on

end with a small length of poly(ethylene terephthalate)
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Figure 1
A simplified schematic of the experimental setup with two orthogonal
rotation axes. The beam incidence is perpendicular to the  axis and the
MM-PAD, and the main beam is blocked by the beamstop. The crystal is
rotated in increments of 0.1� about the  axis, with the data frames
recorded by the MM-PAD when ’ traverses 360� continuously at each
value of  . The figure is not drawn to scale.



capillary (outside diameter = 864 mm, wall thickness =

25.4 mm; Advanced Polymers, Salem, NH, USA), a crystal was

then retrieved from the crystallization droplets and positioned

approximately 22 mm from one end of the capillary. This

provided enough remaining length of the capillary on the

opposite end to add a small amount of mother liquor solution

near the crystal to maintain hydration via vapor diffusion

during data collection. Mother liquor directly surrounding the

crystal was carefully removed from the 22 mm end of the

capillary with a paper wick (Hampton Research, Aliso Veijo,

CA, USA), and the ends of the capillary were sealed with

vacuum grease. The capillary containing the crystal was then

mounted on a Hampton Research pin base and attached to a

goniometer for data collection.

2.3. Data collection

The X-ray diffraction patterns were collected from the

capillary containing a single HEWL protein crystal centered at

the intersection of the two orthogonal rotation axes and illu-

minated by a 0.5 � 0.5 mm Cu K� X-ray beam (1.54 Å

wavelength). The X-rays were generated from a rotating

anode machine set to 36 kV and 50 mA (Rigaku RU-H3R)

and focused using Ni-coated Franks mirrors placed 1 m from

the sample with a divergence of 1 mrad and a flux of

107 photons per second. The beam incidence was perpendi-

cular to the  axis and the MM-PAD, and the sample-to-

detector distance was 60 mm. The center of the beam was

placed in one corner of the active area of the MM-PAD, giving

a resolution of 2.0 Å in the opposite corner. A pin-diode

beamstop was used to prevent the direct beam from striking

the MM-PAD during data collection.

The capillary and crystal were rotated about the  axis from

0 to 17.9� and then from �18.0 to �0.1� in increments of 0.1�.

At each value of  , the capillary and crystal were rotated by

360� about the ’ axis continuously at a constant angular

velocity of 0.5� per second. The MM-PAD collected images at

a framing rate of 4 ms per frame in each revolution of ’, which

gave an oscillation angle of 0.002� per frame. After the

average dark signal had been subtracted and the chip-to-chip

global response adjusted, pixel counts were thresholded to

avoid false positives. The thresholded pixel counts were then

quantized to photon counts by dividing with a known gain and

rounding to the nearest integer. Only counts from pixels with

at least one photon hit were recorded during data collection to

reduce the file size for storage and allow more images to be

recorded with the available disk space.

Owing to radiation damage and possible dehydration of the

crystal, we only kept the data frames recorded at  ranging

from 0 to 15.9� to pass on to processing. We also discarded

frames that did not record any photons, which was possibly

caused by glitches of the rotating anode. To simulate the signal

level of an SMX experiment, we further collapsed every 100

successive frames that did not contain any discarded frames,

since they were recorded when the crystal was rotated

continuously in ’ at a fixed value of  . We note that an

intensity reconstruction was attempted by collapsing every 30

successive frames, but the Bragg reflections could not be

reconstructed beyond 3 Å. The collapse of every 100 succes-

sive frames gave us 2:7� 105 frames with an average of 3000

photons per collapsed frame. These collapsed frames were

then passed to the EMC algorithm for intensity reconstruc-

tion, though their relative orientations were unknown to the

algorithm.

It was discovered after data had been collected and the

apparatus disassembled that the crystal was of poor quality.

The actual Bragg spot intensities obtained by summing adja-

cent frames with their known relative orientations cannot be

phased to produce a high-resolution structure even though the

Bragg peaks do extend to high resolutions. The goal of the

experiment, however, was not to solve the well known lyso-

zyme structure but rather to demonstrate that the EMC

approach can reconstruct the intensity map in the two-axis

case. Because the quality of the reconstructed intensities can

be assessed by comparing with the actual intensities, the goal

of the experiment could be met even though the crystal was of

poor quality for solving a structure.

2.4. Intensity reconstruction

2.4.1. EMC algorithm. The unoriented data frames were

merged into a three-dimensional intensity map iteratively with

the EMC algorithm (Loh & Elser, 2009). Each iteration of the

algorithm consists of three steps: expand (E), maximize (M)

and compress (C). Consider a reconstruction problem with

Mpix detector pixels, Mrot rotation samples, Mdata data frames

and N average photons per frame. Starting with an initial

intensity model WðqÞ, where q denotes the spatial frequency,

the E step calculates the average photon number Wij,

measured at pixel i from WðqÞ when the crystal has orientation

�j. With the data frames represented by Kik, the photon count

recorded at pixel i in frame k, the matrices Wij and Kik are

cross correlated in the M step to evaluate the conditional

probability PjkðWÞ that frame k was measured at crystal

orientation �j based on the current intensity model W.

Assuming Poisson statistics, PjkðWÞ is given by

PjkðWÞ ¼
wj

QMpix

i¼1 W
Kik
ij exp ð�WijÞPMrot

j¼1 ½wj

QMpix

i¼1 W
Kik
ij exp ð�WijÞ�

; ð1Þ

where wj is the fraction of the continuous rotation group

assigned to sample �j. The algorithm subsequently maximizes

the expectation value of the log-likelihood function over

PjkðWÞ by updating the model according to the rule

Wij ! W 0ij ¼

PMdata

k¼1 PjkðWÞKikPMdata

k¼1 PjkðWÞ
: ð2Þ

The C step maps W 0ij back to the reciprocal space to form a

new intensity map W 0ðqÞ to ensure consistency among all the

tomograms Wij calculated in the next iteration. The algorithm

then takes W 0ðqÞ as the initial intensity model WðqÞ of the next

iteration and repeats the iterations until WðqÞ ’ W 0ðqÞ.

2.4.2. Reference intensity map, rotation sampling and
initial seeding. Although the relative orientations of the data
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frames were not passed to the EMC algorithm, we can use

them to construct a ‘reference’ intensity map to compare with

the reconstructed intensity map. The data frames were

mapped to the reciprocal space to form a three-dimensional

intensity map according to their relative orientations when

recorded. The reciprocal lattice of the crystal is embedded in

the intensity map and differs from the laboratory frame by a

global rotation Rg. We determined Rg by segmenting out the

Bragg peaks (Wierman et al., 2016) and then applying indexing

(Steller et al., 1997) to the peaks. The intensity map was

subsequently rotated by Rg to align with the laboratory frame,

and this aligned intensity map is what we call the reference

intensity map.

We generated the discrete rotation samples using quater-

nions (Loh & Elser, 2009), where the angular resolution

�� ’ 0:944=n is specified by the order n ¼ 1; 2; . . . . In this

study, we confined the rotation samples to those in the subset

of rotation space explored by the rotated crystal. The range of

the subset in the laboratory frame was found by applying the

global rotation Rg obtained above to the relative orientations

between the data frames, though we need to stress that the

orientation of each data frame within the subset was unknown

to the EMC algorithm. This choice of rotation samples makes

the solution to the two-axis problem directly applicable to the

randomly oriented frames in real SMX experiments, where the

rotation subset is replaced with the whole three-dimensional

rotation space.

We seeded the initial intensity map with small three-

dimensional Gaussian peaks of random height at each

predicted Bragg position, with the lattice constants given by

the indexing process mentioned above. In real SMX experi-

ments with a small beam, this information can be obtained

from indexing the pseudo-powder patterns. No symmetry was

imposed in either the seeding or the reconstruction process.

2.4.3. Local update scheme. Owing to the exhaustive search

in rotations, an EMC reconstruction is usually challenged by

its poor time and memory scaling, which are both proportional

to Mrot. Resolving peaks at high resolution becomes especially

difficult, since

Mrot / n3 / q3
max; ð3Þ

where qmax denotes the highest resolvable spatial frequency.

Here we propose an update scheme to speed up the EMC

algorithm at high resolution, and a parallel implementation

that alleviates the memory burden is discussed in Appendix A.

To understand how to speed up the EMC algorithm, we first

review how an EMC reconstruction converges in qualitative

terms. The peaks at low resolution of the intensity map are

reconstructed first owing to the strong diffraction signal at low

q. These low-resolution peaks hence give each data frame a

great preference for certain orientations, and the intensity

map is refined about these probable orientations to resolve

peaks at higher resolution. With improved signal-to-noise

ratio in the intensity map, the convergence gradually proceeds

from low q to high q. This observation shows that the intensity

reconstruction has a special feature of locality in orientations:

each data frame has high probabilities only at a handful of

orientations favored by the low-resolution peaks, while the

other orientations with negligible probabilities actually do not

contribute to the refinement of the intensity map. Restricting

the search to the vicinity of the probable orientations on a per-

frame basis can therefore significantly reduce the computation

time.

The computing scheme that we call the local update scheme

takes advantage of the locality in orientations to speed up the

convergence of the intensity reconstruction, and we hereafter

refer to the scheme discussed in x2.4.1 as the standard update

scheme. The local update scheme consists of two major parts:

the calculation of the probable orientation list and the

refinement of the intensity map. Starting with a converged

low-resolution intensity model WðqÞ and a coarse rotation

sampling f�jc
g of order nc, the local update scheme calculates

the probabilities PjckðWÞ according to equation (1). The

probable orientation list is represented by the binary matrix

Bjck with

Bjck ¼
1; if PjckðWÞ>"p;
0; otherwise;

�
ð4Þ

where "p is a pre-defined threshold.

In the second part, the intensity map is refined using a fine

rotation sampling f�jf
g of order nf without calculating all the

elements of PjfkðWÞ. For each coarse rotation sample �jc
, we

define its neighborhood as the subset of rotation space that is

closer to �jc
than to any other samples, and assign the fine

rotation samples �jf
that lie in this subset as the neighbors of

�jc
. This mapping is stored as a matrix Cjc jf

, where

Cjc jf
¼

1; if �jf
is a neighbor of �jc

;
0; otherwise:

�
ð5Þ

The intensity map is then refined in the same way as in the

standard update scheme, with the exception that only the

entries of PjfkðWÞ that satisfy the conditions Bjck ¼ 1 and

Cjc jf
¼ 1 are calculated while the others are set as zero. We

hence restrict the calculation of PjfkðWÞ to the neighbors of the

probable coarse rotation samples in each data frame. The

probable orientation list, or equivalently the binary matrix

Bjck, is only recalculated after the intensity map converges to

allow a global search over all the coarse rotation samples. The

refinement then continues with the updated matrix Bjck. The

whole process terminates when the update of the probable

orientation list stops changing the intensity map.

Restricting the search in orientations saves a great amount

of computation because calculating the probability matrix is

the most time-consuming part of the EMC algorithm. A

simple estimate (see Appendix B) shows that the local update

scheme can achieve a speed-up by tens to hundreds of times in

practice. In addition, the matrices Bjck and Cjc jf
are both

sparse, so they barely add any burden to the memory usage.

Since the local update scheme places no special focus on the

Bragg peaks, it is also applicable to single-particle imaging.

The idea of our local update scheme is similar to the sparse

update scheme proposed by Neal & Hinton (1998), which

speeds up the expectation maximization algorithm by freezing

the probabilities of improbable values in most of the iterations
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and only updating them once every many iterations. The only

difference is the specific property of locality in our intensity

reconstruction application, which allows us to search in a finer

grid about the probable coarse rotation samples to refine the

intensity map at high resolution. Nonetheless, we need to

stress that the only reason to adopt the local update scheme is

to speed up the reconstruction at high resolution. The like-

lihood function maximized in each local update iteration

cannot exceed its counterpart when the whole rotation group

is explored.

2.5. Integration

After a converged intensity map had been obtained, the

reflections were summed over ellipsoidal windows centered at

each Bragg position and aligned with the reciprocal lattice. We

used the average of the neighboring voxels outside each

ellipsoidal window to estimate the background level of each

reflection. Reflections with their ellipsoidal windows inter-

secting the detector gaps or the boundary of the intensity map

were considered as partial peaks and rejected.

3. Results

3.1. Sparsity of data frames

To show the sparsity of the collapsed data frames described

in x2.3, we counted the number of peaks per frame with the

criterion that a peak has more than two connected pixels and

an average of no less than two photons per pixel. As shown in

Fig. 2, most of the frames do not have enough peaks to meet

the requirements of conventional indexing methods (at least

20–30), even with this generous criterion for peak finding.

Following the calculation by Holton (2009), we also esti-

mated the energy absorbed by the crystal over the exposure of

one collapsed frame, assuming that protein crystals have the

same mass energy absorption cross section as water. Our

calculation showed that an 8 mm3 crystal would have endured

a 0.2 MGy radiation dose if it had scattered the same number

of photons as our large HEWL crystal during this period. This

dose is within the lifetime of protein crystals at room

temperature if the radiation is delivered quickly (Owen et al.,

2012), so the signal level in our study should be comparable to

that in a real SMX experiment.

3.2. Intensity reconstruction

Given the 2:7� 105 collapsed frames, we started an EMC

reconstruction from the randomly seeded model described in

x2.4.2 using the standard update scheme and a rotation

sampling of order n ¼ 40. Only data up to 3 Å were used at

this stage because our goal was to quickly obtain a converged

intensity map at low resolution. After the intensity map had

converged, we took its probability distribution and assembled

all the data frames to form an intensity map using equation (2)

to include data up to 2 Å resolution. This intensity map was

then used as the initial model of the local update scheme using

rotation samplings of orders ðnc; nfÞ ¼ ð40; 60Þ for refinement.

research papers

J. Appl. Cryst. (2017). 50, 985–993 Ti-Yen Lan et al. � Reconstructing protein crystal intensities from sparse X-ray data 989

Figure 2
(a) Histogram of the number of peaks per collapsed frame, which is the
sum of 100 successive frames in the raw data. A patch with more than two
connected pixels and an average of no less than two photons per pixel is
identified as a peak. (b) A random selection of the collapsed frames, with
identified peaks marked with blue circles. The cross denotes the beam
center, and the resolution at the upper right corner is about 2 Å.

Figure 3
The average signal-to-noise ratio of the integrated reflections from the
converged intensity maps at different stages of the reconstruction. The
increase of hI=�Ii at high q indicates the reconstruction of high-resolution
peaks. The 2.27 Å resolution determined by CC* is marked by the black
dashed line.



Different pairs of orders ðnc; nfÞ with increasing angular

resolutions were sequentially used in the local update scheme

to extend the peak convergence to high resolution.

Fig. 3 shows the average signal-to-noise ratio hI=�Ii of the

integrated reflections from the converged intensity maps at

different stages of the reconstruction. We first see that hI=�Ii

dropped at low resolution while it remained at similar levels at

high resolution when moving from the standard update

scheme of n ¼ 40 to the local update scheme of ðnc; nfÞ = (40,

60). The lack of improvement at high resolution indicates that

the current angular resolution of the local update scheme still

cannot resolve high-resolution peaks. On the other hand, the

inclusion of data beyond 3 Å slightly disrupted the original

probability distribution, which in turn reduced hI=�Ii at low

resolution. The improvement of hI=�Ii when increasing the

angular resolutions signals the reconstruction of high-resolu-

tion peaks and justifies the local update scheme.

With the converged intensity map from the local update

scheme of ðnc; nfÞ = (60, 150) as our final intensity recon-

struction, Fig. 4 compares the slices of the reconstructed and

reference intensity maps perpendicular to the k axis of the

reciprocal lattice. Although we did not impose any symmetry

in the process of seeding or reconstruction, the converged

intensity map still follows the reflection condition 0k0 : k ¼ 2n

required by the space-group symmetry P43212 of the HEWL

crystal (Hahn, 2006), which demonstrates the success of the

EMC reconstruction. We note that the discrepancy between

the two intensity maps in high-resolution peaks is consistent

with the low signal-to-noise ratio at high resolutions (see

Fig. 3). Because the photons contributing to the high-resolu-

tion shells were mostly collected by the upper left corner of

the MM-PAD (Fig. 1), the resulting lower signal-to-noise ratio

made the orientation reconstruction more challenging in this

region.

A further comparison is shown in the scatter plot of the

integrated reflections from the reconstructed and reference

intensity maps (Fig. 5), which excludes the reflections with the

signal-to-noise ratio I=�I < 2. The linear correlation of the

reflections shows the consistency of the two intensity maps.

Using

R ¼
P
hkl

jFref � Freconstj=
P
hkl

Fref; ð6Þ

where Fref and Freconst are the structure factors calculated from

the reference and reconstructed intensity maps, respectively,

we quantify the discrepancy between the two sets of integrated

reflections as R ¼ 21%, where the reflections with I=�I < 2 are

also excluded. This larger discrepancy than R ¼ 4:7%
obtained by Wierman et al. (2016) could be caused by the

adverse influence of the background scatter and the explora-

tion of a much larger rotation subset than a single rotation

axis. By summing the total photon counts of both the inte-

grated and the partial peaks, we estimated the fraction of

photons coming from the background and diffuse scatter as

�90%. We expect to improve the quality of our reconstruction

and push the limit to sparser data frames by reducing the

background scatter and using a larger detector to gain more

information to assist orientation reconstruction.

Another way to assess the quality of the reconstruction is

through the calculation of CC�, the correlation coefficient of

the observed reflections with the underlying true signal

(Karplus & Diederichs, 2012). We first randomly separated the

symmetry-related reflections of each unique reflection into

two subsets and then calculated the correlation coefficient

CC1=2 between the average intensities of the two subsets in

different resolution shells. Under the assumption that the

errors of the two subsets are independent, identically
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Figure 4
Slices of the reconstructed and reference intensity maps in the hl plane at
constant values of k of the reciprocal lattice. Even without imposing any
symmetry in the process of seeding or reconstruction, the converged
intensity map still follows the reflection condition 0k0 : k ¼ 2n required
by the space-group symmetry P43212 of the HEWL crystal (see insets).
The 2.27 Å resolution determined by CC� is marked by the arcs in white.
The mapping into reciprocal space transforms the detector gaps (Tate et
al., 2013) into curves.

Figure 5
Scatter plot comparing the integrated reflections from the reconstructed
and reference intensity maps. Reflections with the signal-to-noise ratio
I=�I < 2 are excluded from the plot. The linear correlation shows the
agreement between the two intensity maps.



distributed and free from the errors of the true signal, the

value of CC� can be estimated from

CC� ¼
2CC1=2

1þ CC1=2

� �1=2

: ð7Þ

The distribution of CC� as a function of spatial frequencies is

shown in Fig. 6, with the error bars estimated by repeating the

random separation of reflections 1000 times. The large error

bar in the highest-resolution shell shows the low correlation

between the intensities of the two subsets, which is consistent

with the low signal-to-noise ratio at high resolution. We

determine the resolution of the reconstructed reflections as

2.27 Å by a threshold CC� ¼ 0:5. This choice is consistent with

the resolution where the average signal-to-noise ratio of our

final reconstructed intensity (the black curve in Fig. 3) drops

to 2. We note that the value of the correlation coefficient is

dominated by the stronger peaks in each resolution shell.

Therefore, CC* can still have moderate values at high reso-

lutions even if some low-signal peaks are not resolvable, as

indicated by the discrepancy between the two intensity maps

in high-resolution peaks in Fig. 4.

4. Conclusion

The results of this study show that the limit to the usable

crystal sizes in current SMX experiments could be relaxed by

employing the EMC algorithm. Because the algorithm

leverages the data redundancy arising from the common arcs

between pairs of diffraction patterns, the intensity recon-

struction is feasible even though each frame may not contain

sufficient information to be oriented individually. The

computing schemes we have developed in this article further

alleviate the computational requirements of the EMC recon-

struction, which makes EMC-based SMX experiments more

practical.

The fact that the EMC algorithm was able to reconstruct the

actual X-ray intensity incident on the detector, irrespective of

crystal quality, illustrates the generality of the algorithm. The

algorithm has no ‘knowledge’ of what is being reconstructed.

Everything in the detected X-ray field – background, diffrac-

tion spots, diffuse scatter etc. – is reconstructed.

Several issues remain to be addressed to put EMC-based

SMX experiments into practice. In contrast to the randomly

sampled crystal orientations in real SMX experiments, the

data frames in this study were taken from a crystal rotated

continuously. From our past experience, this difference in

orientation sampling should not affect the EMC reconstruc-

tion as long as the random orientation sampling size is large

enough. We estimate that 105–106 data frames are required,

which amounts to a data collection time of within a day when a

10% single-crystal hit rate and an exposure time of 10 ms per

frame are assumed.

In this paper we used a large single crystal in various

orientations to emulate the data expected from multiple small

crystals. The obvious next step towards practical application of

the method is to try the EMC algorithm on data from multiple

small crystals. It will be necessary to experimentally determine

the severity of difficulties arising from sources including

varying crystal diffraction quality and occasional multiple

crystals in the beam. We expect to incorporate metrics such as

the normalized surprise function (Munke et al., 2016) into the

EMC algorithm to estimate the reliability of each frame based

on the current intensity model and reject frames containing

multiple lattices. To tackle the frame-to-frame crystal size

variation, the EMC algorithm also needs to calculate the

relative contribution of each frame to the intensity model

iteratively. As indicated by Loh et al. (2010), the intensity

model could be updated by maximizing the likelihood func-

tion with respect to the relative crystal sizes and the crystal

orientations alternately, with the cost of doubling the

computation time.

The last issue is the background scatter. In principle, the

EMC algorithm is able to deal with stable background by

modifying the conditional probability calculation. However,

background reduction by improving the experiment becomes

necessary when the frame-to-frame variation in background is

significant. With the above issues considered, the analysis of

SMX data would involve first reconstructing a low-resolution

intensity map using the standard EMC update scheme, and

then refining the high-resolution peaks using the local update

scheme because of its computational efficiency.

APPENDIX A
Memory-efficient parallel implementation

Here we describe a memory-efficient parallel implementation

of the EMC algorithm, which is applicable to both the stan-

dard and local update schemes. The memory usage of the

EMC algorithm is dominated by the matrices PjkðWÞ and

Wij=W 0ij, with sizes of Mrot �Mdata and Mpix �Mrot, respec-

tively. Since Mrot / q3
max, the required memory rapidly
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Figure 6
The distribution of CC� as a function of spatial frequencies. The
resolution of the reflections is determined as 2.27 Å by a threshold
CC� ¼ 0:5. The error bars are estimated by repeating the random
separation of reflections 1000 times, while the ups and downs in CC�

result from the binning in resolution shells.



becomes intractable, for example, hundreds of terabytes (TB),

even to resolve peaks at moderate resolutions (Ayyer et al.,

2016).

However, only a small portion of the entries of PjkðWÞ are

significant according to our discussion in x2.4.3, so we can treat

PjkðWÞ as a sparse matrix to reduce the required memory. This

amounts to the fact that a given data frame only has non-

negligible probabilities at a small fraction of the orientations,

unless the signal level is as weak as only several photons per

frame. In our implementation, we distribute blocks of data

frames (ranges in k index) to different processors, each of

which holds the same copy of the intensity map WðqÞ. The

algorithm strides through the Mrot rotations in steps of size

Mstep and calculates Wij and RjkðWÞ in each step. Here we

define RjkðWÞ as

RjkðWÞ ¼ wj

QMpix

i¼1

W
Kik
ij exp ð�WijÞ; ð8Þ

and each processor dynamically updates the value of

maxj RjkðWÞ when walking through all the orientations. From

the inequality

PjkðWÞ ¼
RjkðWÞPMrot

j¼1 RjkðWÞ
	

RjkðWÞ

maxj RjkðWÞ
; ð9Þ

the entries of RjkðWÞ are saved only when the ratio

RjkðWÞ=maxj RjkðWÞ exceeds the pre-defined threshold "p,

and this condition is checked for all the saved entries every

time the value of maxj RjkðWÞ is updated. After going through

all the rotation samples, the algorithm calculates the signifi-

cant values of PjkðWÞ by normalizing the saved entries of

RjkðWÞ over orientations. Subsequently, we update the tomo-

grams W 0ij also in steps of size Mstep over all the orientations,

and map W 0ij back to the copy of the updated intensity map

W 0ðqÞ held by each processor after each step. Finally, W 0ðqÞ is

reduced among all the processors to complete the iteration.

As a result, the memory scaling of PjkðWÞ and Wij=W 0ij is

reduced to Np Mdata and Mpix Mstep, respectively, where Np

denotes the average number of probable orientations per

frame and is governed by the threshold "p and the signal level.

The memory usage can be limited to only tens of gigabytes

even when using an extremely fine rotation sampling, since the

dominant memory scaling is independent of qmax.

APPENDIX B
Speed-up of the local update scheme

The most time-intensive part of a standard EMC update is to

calculate the probability matrix PjkðWÞ, which is proportional

to Mrot. In a local update scheme with Mcoarse and Mfine rota-

tion samples, this proportionality becomes Np Mfine=Mcoarse,

where Np is the average number of the probable coarse

rotation samples per frame and Mfine=Mcoarse is the average

number of neighbors each coarse rotation sample has.

Consider a local update scheme that recalculates the most

probable orientation lists Bjck every Niter iterations. The speed-

up is given by

Niter Mfine

Mcoarse þ Niter Np Mfine=Mcoarse

; ð10Þ

where the numerator is the time proportionality for Niter

iterations of standard updates using the fine rotation sampling,

and Mcoarse in the first term of the denominator denotes the

proportionality for the recalculation of Bjck.

The number of rotations that samples the rotation space

with order n is given by Mrot ¼ 10ð5n3 þ nÞ. Consider a local

update scheme that uses Niter ¼ 10 and rotation samplings of

orders ðnc; nfÞ = (60, 150). Assume that a chosen value of "p

leads to Np ’ 100. Equation (7) gives a speed-up of 156 times.
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