
fnagi-14-975068 August 13, 2022 Time: 13:3 # 1

TYPE Original Research
PUBLISHED 18 August 2022
DOI 10.3389/fnagi.2022.975068

OPEN ACCESS

EDITED BY

Marta Losa Iglesias,
Rey Juan Carlos University, Spain

REVIEWED BY

Farwa Ali,
Mayo Clinic, United States
Chun-Ming Chen,
China Medical University Hospital,
Taiwan

*CORRESPONDENCE

Binbin Sui
reneesui@163.com
Tao Feng
happyft@sina.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Parkinson’s Disease and Aging-related
Movement Disorders,
a section of the journal
Frontiers in Aging Neuroscience

RECEIVED 21 June 2022
ACCEPTED 01 August 2022
PUBLISHED 18 August 2022

CITATION

Kou W, Wang X, Zheng Y, Zhao J,
Cai H, Chen H, Sui B and Feng T (2022)
Freezing of gait in Parkinson’s disease
is associated with the microstructural
and functional changes of globus
pallidus internus.
Front. Aging Neurosci. 14:975068.
doi: 10.3389/fnagi.2022.975068

COPYRIGHT

© 2022 Kou, Wang, Zheng, Zhao, Cai,
Chen, Sui and Feng. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Freezing of gait in Parkinson’s
disease is associated with the
microstructural and functional
changes of globus pallidus
internus
Wenyi Kou1†, Xuemei Wang1†, Yuanchu Zheng1, Jiajia Zhao1,
Huihui Cai1, Huimin Chen2, Binbin Sui3* and Tao Feng1,4*
1Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital
Medical University, Beijing, China, 2Department of Neurology, Beijing Hospital, National Center
of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing,
China, 3Tiantan Neuroimaging Center for Excellence, Beijing Tiantan Hospital, Capital Medical
University, Beijing, China, 4China National Clinical Research Center for Neurological Diseases,
Beijing, China

Background: Freezing of gait (FOG) is a common motor symptom in

advanced Parkinson’s disease (PD). However, the pathophysiology mechanism

of FOG is not fully understood. The purpose of this study was to investigate

microstructural abnormalities in subcortical gray matter and alterations in

functional connectivity of the nuclei with microstructural changes. In addition,

the correlations between these microstructural and functional changes and

the severity of FOG were measured.

Materials and methods: Twenty-four patients with FOG (PD-FOG), 22

PD patients without FOG (PD-nFOG), and 27 healthy controls (HC) were

recruited. FOG Questionnaire (FOGQ) and Gait and Falling Questionnaire

(GFQ) were assessed, and Timed Up and Go (TUG) tests were performed

in PD-FOG patients. All subjects underwent diffusion tensor imaging (DTI)

and resting-state functional MRI scanning. The DTI measures, including

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and

axial diffusivity (AD), were extracted and measured from basal ganglia,

thalamus, and substantia nigra. The nuclei with microstructural alterations

were selected as seed regions to perform the seed-based resting-state

functional connectivity.

Results: The MD and RD values of the right globus pallidus internus (GPi)

were significantly higher in patients with PD-FOG compared with PD-

nFOG patients and HC. In PD-FOG patients, the MD and RD values of

the right GPi were significantly correlated with the time of the TUG test

in both ON and OFF states. The MD values were also correlated with

the GFQ scores in PD-FOG patients. Resting-state functional connectivity

between the right GPi and left middle occipital gyri decreased significantly

in PD-FOG patients compared to PD-nFOG patients, and was negatively
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correlated with GFQ scores as well as the time of ON state TUG in PD-

FOG patients.

Conclusion: Microstructural alterations in the right GPi and functional

connectivity between the right GPi and visual cortex may be associated with

the pathophysiological mechanisms of FOG in PD patients.

KEYWORDS

Parkinson’s disease, freezing of gait, diffusion tensor imaging, resting-state fMRI,
microstructure, globus pallidus internus

Introduction

Freezing of gait (FOG), a common motor symptom in
Parkinson’s disease (PD), is described as a momentary, episodic
absence or marked reduction of forwarding movement of the
feet despite the intention to walk (Giladi and Nieuwboer,
2008; Nutt et al., 2011). It is a debilitating symptom that
severely affects the quality of life and increases the risk of
falls (Bloem et al., 2004; Moore et al., 2007). The prevalence
of FOG in patients with early PD is 21–27% (Giladi et al.,
2001; Tan et al., 2011). While in the later stages, this
number increases to 80% (Hely et al., 2008; Tan et al., 2011).
However, the pathophysiological mechanisms of FOG are not
fully understood.

Multiple brain regions in the basal ganglia circuit have been
suggested to be associated with FOG in PD (Lewis and Barker,
2009; Shine et al., 2013a). Of these, the output nuclei of the basal
ganglia, globus pallidus internus (GPi), play an important role in
the pathophysiological mechanisms of FOG (Lewis and Shine,
2016). It has been shown that beta desynchronization in the GPi
is detected from rest to gait initiation in PD patients with FOG
(PD-FOG) (Molina et al., 2020). Task-based functional MRI
has observed a significant decrease of brain activity in bilateral
GPi during episodes of freezing of gait (Shine et al., 2013a). In
resting-state functional MRI, the amplitude of low-frequency
fluctuation (ALFF) in bilateral globus pallidus was positively
correlated with FOG severity (Mi et al., 2017).

Despite several studies confirming the presence of
functional alterations of GPi in PD-FOG, a limited number of
studies have concentrated on the microstructural differences
between PD-FOG and PD patients without FOG (PD-nFOG).
The microstructure can be sensitively quantified using diffusion
tensor imaging (DTI), by detecting altered diffusion patterns of
water molecules in brain tissue (Mori and Zhang, 2006). Higher
mean diffusivity (MD) value was reported in basal ganglia
in PD-FOG than PD-nFOG group, but the microstructure
of certain nuclei in the basal ganglia has not been assessed
(Youn et al., 2015).

Several nuclei have been used as predefined seeds, for
instance, pedunculopontine, thalamus, and dentate nucleus

for seed-based resting-state functional connectivity (rs-FC)
analysis, and observed that their FCs were altered in PD-
FOG patients (Wang et al., 2016; Potvin-Desrochers et al.,
2019; Bharti et al., 2020). Network-level analysis showed
inter-network FC alterations, such as, sensorimotor network,
default mode network, frontoparietal network, and basal ganglia
network in PD-FOG patients (Canu et al., 2015; Bharti et al.,
2020). In this research, nuclei with microstructural alternations
were further used as seed regions for investigating seed-based
rs-FC alterations.

In the current study, we used the region of interest (ROI)-
based DTI technique to explore the microstructure of nuclei
in the basal ganglia circuit, including the bilateral caudate,
putamen, GPi, globus pallidus externa (GPe), thalamus, and
substantia nigra (SN) (An illustration of chosen ROIs is
displayed in Supplementary Figure 1). To further investigate
PD-FOG associated functional network alterations, nuclei with
microstructural changes were used as seeds for resting-state
fMRI analysis. In addition, a correlation analysis was performed
of the altered microstructure and functional connectivity with
the severity of FOG. The current study will help to understand
the pathogenesis of FOG in PD.

Materials and methods

Participants

Forty-six right-handed patients diagnosed with idiopathic
PD and 27 healthy controls (HC) were recruited from the
Department of Neurology, Beijing Tiantan Hospital, Capital
Medical University from April 2021 to December 2021. The
diagnosis of PD was according to the Movement Disorder
Society Clinical Diagnostic Criteria for PD (Postuma et al.,
2015). Twenty-four patients (13 female, mean age 62.6 ± 9.74)
who fulfilled the following conditions were categorized in
the PD-FOG group: (a) FOG Questionnaire (FOGQ) item 3
score ≥ 1 (Bloem et al., 2016), and (b) FOG were observed
by experienced movement disorders neurologists (Sunwoo
et al., 2013). Twenty-two PD patients (11 female, mean age
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63.8 ± 7.48) who did not fulfill the above criteria were
included in the PD-nFOG group. Patients with a diagnosis of
atypical parkinsonism were excluded. Exclusion criteria for all
subjects included age < 18, Mini-mental State Examination
(MMSE) score < 24, severe head tremor, deep brain stimulation
implantation, with any disorders affecting gait or balance other
than PD, or any contraindications for MRI scans.

Demographic details including age, gender, and educational
years were obtained. The MMSE and Frontal Assessment
Battery (FAB) (Dubois et al., 2000) were acquired to assess
global cognitive function and executive function respectively.
Hamilton Anxiety Scale (HAMA) (Hamilton, 1959), Hamilton
Depression Scale (HAMD) (Hamilton, 1960), and Starkstein
Apathy Scale (SAS) (Starkstein et al., 1992) scores were also
collected. Disease severity was measured by the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) part III (Goetz et al., 2008) and Hoehn and Yahr
(H-Y) stage (Hoehn and Yahr, 1967) in the OFF medication
state, after a minimum of 12 h withdrawal of all anti-PD
medications. The accepted calculation protocol was used to
compute levodopa equivalent daily dose (LEDD) (Tomlinson
et al., 2010; Table 1). This study was approved by the
Ethics Committee of Beijing Tiantan Hospital, Capital Medical
University. All participants signed informed consent forms.

Assessment of freezing of gait

The severity of FOG was evaluated using the FOGQ (Bloem
et al., 2016) and Gait and Falling Questionnaire (GFQ) (Giladi
et al., 2000). PD-FOG patients also performed the Timed Up
and Go (TUG) test to assess gait. PD-FOG patients were
required to stand up from a standard chair, walk three meters

TABLE 1 Demographic and clinical characteristics.

PD-FOG PD-nFOG HC p

Age 62.6 ± 9.74 63.8 ± 7.48 63.8 ± 5.72 0.838

Gender
(male/female)

11/13 11/11 14/13 0.909

Educational years 9.3 ± 3.90 10.7 ± 4.56 10.96 ± 2.59 0.239

Disease duration 5.5 (4.25∼8.0) 5.5 (4.0∼10.0) 0.991

H-Y stage 3.0 (3.0∼4.0) 3.0 (2.4∼3.0) 0.066

MDS-UPDRS-III 39.71 ± 12.87 39.0 ± 14.41 0.861

LEDD, mg/d 900.0
(680.0∼1187.5)

880.125
(575.0∼1146.0)

0.674

MMSE 28 (26.25∼29) 28 (25.75∼29.25) 29 (28∼30) 0.085

FAB 16.0 (15.0∼17.0) 16.0 (14.0∼18.0) 0.759

HAMA 7.7 ± 4.71 8.4 ± 4.03 0.533

HAMD 6.0 (4.0∼13.0) 5.0 (3.5∼9.0) 0.26

SAS 9.23 ± 7.19 11.9 ± 9.44 0.134

Data are presented as mean ± SD for normal distribution and median (upper
quartile∼lower quartile) for non-normal distribution. H-Y stage, Hoehn-Yahr stage;
MDS-UPDRS, movement disorder society unified Parkinson’s disease rating scale;
LEDD, levodopa equivalent daily dose; MMSE, mini-mental state examination;
FAB, frontal assessment battery; HAMA, Hamilton anxiety scale; HAMD, Hamilton
depression scale; SAS, Starkstein apathy scale.

at a comfortable and safe speed, turn, walk back to the chair,
and sit down. Each subject completed the TUG test twice
in the OFF and ON states respectively. The test process was
recorded by the camera. Two observers timed the performance
according to the video, and the average duration was calculated
(Podsiadlo and Richardson, 1991).

Magnetic resonance imaging data
acquisition

Neuroimaging was acquired on a 3-Tesla magnetic
resonance (MR) scanner (Signa Premier, GE Healthcare,
Milwaukee) using a 48-channel-phased array head coil.
Scanning was performed during the OFF state for the patients.
All subjects were instructed to keep their heads still and eyes
open during scanning, but not to think or fall asleep.

Magnetic resonance protocol included the following
sequences: 3D T1-weighted Magnetization Prepared
Rapid Gradient Echo (MPRAGE) sequence [echo
time (TE) = 2.2 ms, repetition time (TR) = 1952 ms,
voxel size = 1.0 mm × 1.0 mm × 1.0 mm, slice
space = 0.5 mm, matrix size = 256 × 256, slice number = 376];
DTI sequence (TE = 70 ms, TR = 3,236 ms, voxel
size = 2.0 mm × 2.0 mm × 2.0 mm, matrix size = 104 × 104,
slice number = 78, 64 diffusion-sensitizing gradients at a b-value
of 1,000 s/mm2 and three b = 0 images); T2∗-weighted blood
oxygen level-dependent (BOLD) sequence was carried out for
the resting state measurement (TE = 39 ms, TR = 1,000 ms,
voxel size = 2.4 mm × 2.4 mm × 2.4 mm, matrix size = 86 × 86,
65 axial slices, 330 brain volumes). Both DTI and BOLD
sequences were carried-out with the multiband accelerated echo
planar imaging (EPI), with the new ARC acquisition pattern.

Magnetic resonance imaging data
processing

Diffusion tensor imaging
FMRIB Software Library tools1 was used to process DTI

Imaging. The FMRIB’s Diffusion Toolbox was used to eliminate
the eddy current distortions and head movements from the
source diffusion data after it was translated to NIFTI format. The
voxel-wise maps of fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (RD), and axial diffusivity (AD) were
generated by applying the dtifit tool.

We extracted the ROI masks of the bilateral caudate,
putamen, and thalamus from the Harvard-Oxford probabilistic
atlas (Behrens et al., 2007). As the Harvard-Oxford atlas lacks
labels for bilateral GPi, GPe, and SN, the Amsterdam Ultra-
high field probabilistic atlas (Alkemade et al., 2020) was used to

1 www.fmrib.ox.ac.uk/fsl
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extract those masks. The probabilistic masks for each nucleus
were thresholded to a probability of 80% and resliced to
2 × 2 × 2mm3 (Supplementary Figure 1).

The T1-image was subjected to brain extraction using bet
and resliced to 2 × 2 × 2mm3. Each subject’s DTI maps were
co-registered to the subject’s T1 space using the flirt tool, and
the inverse transformation was obtained. The flirt and fnirt
tools were used to normalize the subject’s T1 image to Montreal
Neurological Institute (MNI) 152 standard space, and the
invwarp tool was used to calculate the inverse transformation of
T1 maps to standard space. Both inverse transformations were
combined by using the convertwarp tool. For each participant,
the applywarp tool was further used to co-register standard
space ROI masks to the subject space. To verify the accuracy
of placement, the ROI masks in the subject’s space were
overlayed on each subject’s DTI map. Two PD-FOG patients
were removed for poor registration. The mean MD, RD, AD,
and FA values within the ROIs were obtained by the fslstats tool
(Nagae et al., 2016).

Resting-state functional magnetic resonance
imaging

Resting-state functional MRI (rs-fMRI) datasets were pre-
processed using RESTplusV1.22 and SPM123 on the MATLAB
R2013b platform. DICOM data were converted to NIFTI
format. The first ten time points were removed. The remaining
images were corrected for slice timing and realigned to the
first volume for head motion correction. The head movement
standard was set to less than 3 mm (translation) or 3◦(rotation).
Data from one HC subject and two PD-FOG subjects were
excluded from the analysis due to excessive head movement.
The images were normalized to the MNI152 standard space of
3 × 3 × 3 mm3. The effect of six head movement measures,
as well as white matter and cerebrospinal fluid signals, was
removed using linear regression. Then the images were spatially
smoothed using a Gaussian kernel with a 6-mm full width
at half maximum. Next, the data were linearly detrended and
temporally bandpass filtered at a low frequency (0.01–0.08 Hz).
Nuclei with microstructural alterations in the PD-FOG group
compared with both the PD-nFOG and HC groups were
used as seed regions. The seed-based resting-state functional
connectivity (rs-FC) was performed using Pearson correlations.
Then the correlation coefficients were calculated by Fisher’s
Z transformation.

Statistical analysis

Statistical analyses of demographic, clinical, and gait
assessments were performed in SPSS25. The significant level

2 http://www.restfmri.net/forum/RESTplus

3 http://www.fil.ion.ucl.ac.uk/spm

was set to p < 0.05. Shapiro-Wilk test was performed
for demographic and clinical data distribution. The detailed
p-values for the Shapiro-Wilk test are shown in Supplementary
Table 1. Gender differences among PD-FOG, PD-nFOG, and
HC groups were assessed by the Chi-square test. Independent
two-sample t-test was performed to evaluate the differences
in MDS-UPDRS-III, HAMA, and SAS scores between PD-
FOG and PD-nFOG patients. Differences in disease duration,
H-Y stage, HAMD, and FAB were assessed by the Mann-
Whitney U test. One-way analysis of variance (ANOVA) test
was performed to evaluate the differences in age, years of
education, and DTI measures (MD, RD, AD, FA) among
the three groups. The non-parametric Kruskal-Wallis H
test was performed to determine the differences in MMSE.
A significant result was followed by a pairwise Bonferroni
test to assess differences between the groups. Correlations
between imaging results and FOGQ as well as GFQ scores
were calculated using Pearson correlation. DTI measures and
rs-FC correlations with TUG tests were calculated using the
Spearman correlation.

Statistical analysis of the functional MRI data was performed
using SPM12. Voxel-wise differences among PD-FOG, PD-
nFOG, and HC groups were carried out using one-way ANOVA
(voxel threshold p < 0.01, clusters AlphaSim corrected p < 0.05).
To determine between-group rs-FC differences, independent
two-sample t-test was further performed within a mask showing
significant differences among the three groups (voxel threshold
p < 0.01, clusters AlphaSim corrected p < 0.01).

Results

Demographic information

A total of 73 subjects were included in this study: 24 in the
PD-FOG group (11 males and 13 females, 62.6 ± 9.74 years
old), 22 in the PD-nFOG group (11 males and 11 females,
63.8 ± 7.48 years old), and 27 in the HC group (14 males
and 13 females, 63.8 ± 5.72 years old). There was no
significant difference in age, gender, educational years, and
MMSE score among the three groups (Table 1). No significant
differences were seen between the PD-FOG group and the
PD-nFOG group in the disease duration, H-Y stage, MDS-
UPDRS-III score, LEDD, FAB, HAMA, HAMD, and SAS
scores (Table 1).

Comparison of diffusion tensor
imaging measures

Significant differences were observed in MD and RD
values of the right GPi among the three groups (MD,
F = 5.203, p = 0.008; RD, F = 6.652, p = 0.002). Pairwise
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FIGURE 1

Comparison of DTI Measures across groups. (A) MD value of the right GPi; (B) RD value of the right GPi; (C) AD value of the right SN; (D) FA
value of the right caudate. *p < 0.05. MD, Mean Diffusivity; RD, radial diffusivity; AD, axial diffusion; FA, fractional anisotropy; GPi, globus pallidus
internus; SN, substantia nigra; HC, healthy controls; PD-nFOG, PD patients without FOG; PD-FOG, PD patients with FOG.

comparisons showed that the MD value was significantly
higher in patients with PD-FOG compared to PD-nFOG
(p = 0.041) and HC groups (p = 0.010, Figure 1A). Higher
RD value was also found in PD-FOG patients as compared
to PD-nFOG patients (p = 0.033) and HC (p = 0.002,
Figure 1B). No significant differences were seen in FA
and AD values of the right GPi among PD-FOG, PD-
nFOG, and HC groups.

The one-way ANOVA testing showed significant differences
in the AD value of the right SN (F = 3.226, p = 0.046).
The AD value of the right SN was significantly higher in
patients with PD-FOG compared with the HC group (p = 0.005,
Figure 1C). No statistical difference in AD value of the right
SN between PD-FOG patients and PD-nFOG, or between PD-
nFOG and HC group.

Significant differences were also reveled in FA value of
bilateral caudate (right caudate: F = 3.226, p = 0.046; left caudate:
F = 3.564, p = 0.034). Pairwise comparisons showed that the FA

value of the right caudate was significantly higher in patients
with PD-nFOG patients compared to HC (p = 0.040, Figure 1D).
No significant difference was shown in pairwise comparisons
in left caudate.

Detailed DTI measures (MD, RD, AD, FA) of bilateral
caudate, GPe, GPi, putamen, thalamus, and SN are shown in
Supplementary Table 2.

Diffusion tensor imaging measures
correlations with gait measures

There were significantly positive correlations between MD
values of the right GPi and GFQ scores (r = 0.451, p = 0.040),
and times of OFF state TUG (r = 0.452, p = 0.035) and
ON state TUG (r = 0.675, p = 0.001) in the PD-FOG group
(Figure 2). Significant positive correlations were also shown
between RD values of the right GPi and times of OFF state
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FIGURE 2

The MD value of the right GPi was positively correlated with GFQ scores (A), times of OFF state TUG (B), and times of ON state TUG (C) in the
PD-FOG group. The RD value of the right GPi was positively correlated with times of OFF state TUG (D) and ON state TUG (E) in the PD-FOG
group. MD, Mean Diffusivity; RD, radial diffusivity; GFQ, Gait and Falling Questionnaire; TUG, Timed Up and Go tests; GPi, globus pallidus
internus.

TUG (r = 0.445, p = 0.038) as well as ON state TUG (r = 0.647,
p = 0.001) in the PD-FOG group (Figure 2). No significant
correlation was found between DTI measures for other nuclei
and gait measures.

Comparison of seed-based resting
state functional connectivity

The right GPi was applied as the seed region in the
rs-FC analysis as its DTI measures demonstrated significant
differences between PD-FOG and PD-nFOG patients, and was
correlated with gait measures in PD-FOG patients.

One-way ANOVA tests showed that the right GPi exhibited
different functional connectivity with the right calcarine and
bilateral middle occipital gyri among the PD-FOG, PD-nFOG,
and HC groups (voxel threshold p < 0.01, clusters AlphaSim
corrected p < 0.05 and cluster size > 41 voxels, Figure 3A and
Table 2).

Pairwise comparisons found that PD-FOG exhibited
significantly decreased functional connectivity between the right
GPi and the left middle occipital gyrus compared to PD-
nFOG (voxel threshold p < 0.01, clusters AlphaSim corrected
p < 0.01 and cluster size > 33 voxels, Figure 3B and Table 2).
Interestingly, compared with the HCs, PD-nFOG subjects had
significantly higher connectivity between the right GPi and the
right middle occipital gyrus (voxel threshold p < 0.01, clusters
AlphaSim corrected p < 0.01 and cluster size > 41 voxels,

Figure 3C and Table 2). No significant differences were found
in rs-FC between the PD-FOG and HC groups.

Correlations between functional
connectivity and gait measures

In PD-FOG subjects, the connectivity between right GPi and
left middle occipital gyrus was negatively correlated with the
GFQ score (r = –0.513, p = 0.017, Figure 4A) as well as ON
state TUG (r = –0.462, p = 0.040, Figure 4B). No significant
correlation was detected between the right GPi connectivity to
the right calcarine and gait parameters.

Discussion

The present study applied a multimodal neuroimaging
strategy that included DTI and rs-fMRI techniques in the PD-
FOG, PD-nFOG, and HC groups. The results demonstrated
that the MD and RD values in the right GPi were significantly
higher in patients with PD-FOG compared to PD-nFOG and
HC, and were positively correlated with the severity of gait
dysfunction. Our results also revealed that the FC between the
right GPi and the left middle occipital gyrus was reduced in
PD-FOG patients compared with PD-nFOG subjects, and it was
associated with worse gait performance. These findings suggest
the altered microstructure in the GPi and decreased connectivity
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FIGURE 3

Comparison of Seed-Based Resting State Functional Connectivity. (A) Comparison of rs-FC among three groups (voxel threshold p < 0.01,
clusters AlphaSim corrected p < 0.05 and cluster size > 41 voxels); (B) Comparison of rs-FC between PD-FOG and PD-nFOG (voxel threshold
p < 0.01, clusters AlphaSim corrected p < 0.01 and cluster size > 33 voxels); (C) Comparison of rs-FC between PD-nFOG and HC (voxel
threshold p < 0.01, clusters AlphaSim corrected p < 0.01 and cluster size > 41 voxels).

between the GPi and visual cortex might play a key role in the
pathogenesis of PD-FOG.

In our study, higher MD and RD values were detected in
PD-FOG patients and positively correlated with FOG severity.
The MD value provides a measure of overall diffusivity (Pelizzari
et al., 2019), and an increased MD value usually represents broad
cellular damage, for example, atrophy, impaired cellularity,
edema, or necrosis (Zhang and Burock, 2020). On the other
hand, the RD value is determined by the average of the
two smaller eigenvalues of water molecule diffusion (Pelizzari
et al., 2019), and elevated RD value represents de- or dys-
myelination, changes in the axonal diameters or density (Zhang
and Burock, 2020). Previous study also observed higher MD
and RD values in the globus pallidus in PD patients of
the postural instability and gait difficulties (PIGD) subtype

compared to controls, and the MD value in the globus
pallidus showed a positive correlation with motor severity in
the PIGD group (Nagae et al., 2016), in consistency with
our finding. Recently, Lench et al. (2022) using diffusion
kurtosis imaging approach observed that PD patients with dopa-
resistant FOG had higher RD value for the right GPi compared
to those with dopa-responsive FOG, further supporting the
link between GPi microstructure change and FOG in PD.
In conclusion, the MD and RD changes in the right GPi
may contribute to FOG in PD and may serve as an imaging
biomarker of PD-FOG. However, the postulation needs to
be further tested.

Globus pallidus internus is a crucial component of the
neural network that is closely linked with FOG. It has been
observed that the GPi and substantia nigra pars reticulata (SNr)
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TABLE 2 Comparison of functional connectivity between PD-FOG,
PD-nFOG, and HC group.

Brain regions MNI coordinate (mm) p Cluster size
(voxel)

x y z

Three Groups

Calcarine_R (AAL) 24 –57 12 <0.05 53

Occipital_Mid_L (AAL) –36 –90 24 <0.05 46

Occipital_Mid_R (AAL) 33 –84 33 <0.05 41

PD-FOG vs. PD-nFOG

Calcarine_R (AAL) 24 –57 12 <0.01 33

Occipital_Mid_L (AAL) –24 –90 33 <0.01 40

PD-nFOG vs. HC

Occipital_Mid_R (AAL) 33 –87 30 <0.01 41

AAL, automated anatomical labeling; NMI152, Montreal neurological institute 152; HC,
healthy controls; PD-nFOG, PD patients without FOG; PD-FOG, PD patients with FOG.

serve as output nuclei of the basal ganglia and provide inhibitory
afferent connections to the pedunculopontine nucleus (PPN)
and thalamus that control gait (DeLong, 1990). The “cross-
talk” model assumes that a considerable loss of dopamine in
the striatum in PD patients causes increased firing rate within
GPi and SNr GABAergic neurons. Under situations of motor,
cognitive, and limbic information overload, GPi and SNr may
cause paroxysmal inhibition of the thalamus and PPN, resulting
in freezing episodes (Lewis and Barker, 2009; Shine et al., 2013b).
In line with our study, several previous neuroimaging studies
supported the globus pallidus being involved in the pathogenesis
of FOG (Shine et al., 2013a; Peterson et al., 2014; Vercruysse
et al., 2014; Mi et al., 2017).

From a network perspective, we found a decreased
FC between the GPi and the visual cortex in PD-FOG
patients compared with PD-nFOG patients. Motor-visual

information transfer plays important role in motor control.
It has been demonstrated that visual functional deficit
impacted gait impairment in PD (Stuart et al., 2017).
Interestingly, the FC between the right GPi and the visual
cortex in PD-nFOG was increased compared with PD-
FOG and HC. In PD-nFOG patients, visual input may
compensate for impaired motor control, which may be
sufficient to prevent FOG development. In PD-FOG patients,
however, the compensatory mechanism was absent, possibly
resulting in the development of FOG. In line with this
finding, FOG can be overcome by external visual cueing
in clinical observation (Ferraye et al., 2016). Furthermore,
previous structural imaging studies revealed severer visual
cortical atrophy in PD-FOG patients compared with PD-
nFOG patients (Tessitore et al., 2012a; Pietracupa et al.,
2018), and a decreased functional connectivity within the
visual network (Tessitore et al., 2012b; Canu et al., 2015;
Ruan et al., 2020). Theoretically, more severe structural and
functional alterations in the GPi-visual cortex may interrupt
the integrity of motor-visual information transfer and diminish
the compensation by visual input. In the current study,
the higher FC between the right GPi and the visual cortex
was associated with better gait performance, supporting the
compensatory mechanism of GPi-visual cortex connectivity in
gait control in PD patients.

Notably, the current study showed alterations mainly in
the right hemisphere of PD-FOG patients, which is consistent
with a growing body of literature demonstrating that the right
hemisphere appears to be selectively affected in FOG (Fling
et al., 2013; Peterson et al., 2014; Bharti et al., 2020; Lv et al., 2021;
Song et al., 2021; Lench et al., 2022). The laterality of imaging
abnormalities in PD-FOG patients is likely related to the fact
that the right hemisphere plays a strong role in visuospatial
function in right-handed subjects (Joseph, 1988). As mentioned
above, the visual function may be a compensatory mechanism.

FIGURE 4

The connectivity between right GPi and left middle occipital gyrus was negatively correlated with the GFQ score (A) as well as times of ON state
TUG (B). GFQ, Gait and Falling Questionnaire; TUG, Timed Up and Go tests.
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Therefore, those with microstructural damage to the right GPi
and dysconnectivity between GPi and the visual cortex may be
more susceptible to FOG. Future research should investigate
gait performance in predominantly left- or right-side affected
PD patients, and assess the relationship between the laterality
of symptoms and the asymmetry of imaging changes.

There are some inconsistencies between our observation
and previous DTI studies investigating subcortical
microstructure change in PD-FOG. Youn et al. (2015) observed
a higher MD value in the thalamus in PD-FOG, compared
with PD-nFOG patients. However, our study did not find
alterations in caudate, putamen, GPe, and thalamus between
PD-FOG and PD-nFOG patients. It might be due to variances
in the participants involved. Differences in brain atrophy and
pathological changes across patients may affect DTI parameters.
More studies with larger sample sizes are needed to identify DTI
patterns underlying PD-FOG patients. In our finding, there was
an increase in the AD value of the right SN in PD-FOG patients
compared with HC, but no significant correlation was found
between the AD value of the right SN and the severity of FOG.
The microstructural change in SN has been rarely investigated
between PD-FOG and PD-nFOG patients in previous studies.
The role of SN in the pathophysiology of PD-FOG warrants
further investigation.

There are some limitations in our study. The present
case-control study does not reflect longitudinal alterations in
microstructure and FC. In our future study, the collection of
follow-up data would provide more valuable information about
longitudinal alterations in microstructure and FC. Besides, the
relationship between the laterality of FOG and asymmetry of
imaging alterations should be investigated. In addition, our
relatively small sample size restricted the generalizability of the
results and prevented us from performing a study of subtypes
of FOG. Further large-sample, multicenter studies are required
to confirm the generalizability of the results and investigate
the distinct mechanisms between the subtypes of FOG in
Parkinson’s disease.

In conclusion, the microstructural abnormalities of the right
GPi were observed in PD-FOG patients and were positively
associated with the gait measures. The FC between the right GPi
and visual cortex was reduced in PD-FOG patients, compared
with PD-nFOG patients, and was negatively related to the gait
measures as well. Our findings suggest that microstructural
alterations in the right GPi and reduced FC between the right
GPi and visual cortex maybe associated with the pathological
mechanism of FOG in PD patients.
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