
Large scale microbiome profiling in the cloud

Camilo Valdes1, Vitalii Stebliankin1 and Giri Narasimhan1,2,*

1Bioinformatics Research Group (BioRG), School of Computing and Information Sciences and 2Biomolecular

Sciences Institute, Florida International University, Miami, FL 33199, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Bacterial metagenomics profiling for metagenomic whole sequencing (mWGS) usually

starts by aligning sequencing reads to a collection of reference genomes. Current profiling tools

are designed to work against a small representative collection of genomes, and do not scale very

well to larger reference genome collections. However, large reference genome collections are cap-

able of providing a more complete and accurate profile of the bacterial population in a metagenom-

ics dataset. In this paper, we discuss a scalable, efficient and affordable approach to this problem,

bringing big data solutions within the reach of laboratories with modest resources.

Results: We developed FLINT, a metagenomics profiling pipeline that is built on top of the Apache

Spark framework, and is designed for fast real-time profiling of metagenomic samples against a

large collection of reference genomes. FLINT takes advantage of Spark’s built-in parallelism and

streaming engine architecture to quickly map reads against a large (170 GB) reference collection of

43 552 bacterial genomes from Ensembl. FLINT runs on Amazon’s Elastic MapReduce service, and is

able to profile 1 million Illumina paired-end reads against over 40 K genomes on 64 machines in

67 s—an order of magnitude faster than the state of the art, while using a much larger reference

collection. Streaming the sequencing reads allows this approach to sustain mapping rates of 55

million reads per hour, at an hourly cluster cost of $8.00 USD, while avoiding the necessity of stor-

ing large quantities of intermediate alignments.

Availability and implementation: FLINT is open source software, available under the MIT License

(MIT). Source code is available at https://github.com/camilo-v/flint.

Contact: giri@cs.fiu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction and background

Microbes are ubiquitous and a microbiome is a collection of

microbes that inhabit a particular environmental niche such as the

human body, earth soil and the water in oceans and lakes.

Metagenomics is the study of the combined genetic material found

in microbiome samples, and it serves as an instrument for studying

microbial biodiversities and their relationships to humans. Profiling

a microbiome is a critical task that tells us what microorganisms are

present, and in what proportions; this is particularly important as

many human diseases are linked to changes in human microbiome

composition (Haiser et al., 2013; Koeth et al., 2013; Wu and Lewis,

2013; Zhang et al., 2015), and large research projects have started

to investigate the relationships between the two (The Integrative

HMP iHMP Research Network Consortium, 2014).

A powerful tool for profiling microbiomes is high-throughput

DNA sequencing (Metzker, 2010), and whole metagenome sequenc-

ing experiments generate data that give us a lens through which we

can study and profile microbiomes at a higher resolution than 16S

amplicon-based sequencing analyses (Ranjan et al., 2016).

Advances in sequencing technologies have steadily reduced the

cost of sequencing and have led to an ever increasing number of ex-

tremely large and complex metagenomic datasets (Ansorge, 2009;

Caporaso et al., 2012). The resulting computational challenge is the

production of even larger intermediate results, and need for large

indexes of the reference genome collections (Vernikos et al., 2015),

making it impossible to process on commodity workstations or lap-

tops. Powerful multi-user servers and clusters are an option, but the

cost of higher processor speeds, greater storage volumes and huge

memory sizes are out of reach for small laboratories.

To deal with the barrage of sequencing data, distributed cloud

computing platforms and frameworks such as Amazon Web

Services (Amazon.com Inc., Amazon Web Services, 2018), Apache

Hadoop (Apache Hadoop, 2018) and Apache Spark (Apache Spark,

2018) have been used by researchers by taking advantage of parallel

computation and economies of scale: large sequencing workloads

VC The Author(s) 2019. Published by Oxford University Press. i13

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i13–i22

doi: 10.1093/bioinformatics/btz356

ISMB/ECCB 2019

https://github.com/camilo-v/flint
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz356#supplementary-data
https://academic.oup.com/

are distributed in a cloud cluster that is comprised of many cheap,

off-the-shelf compute nodes. These cloud-based solutions have been

successfully used for human genomics (Langmead et al., 2009a),

transcriptomics (Roberts et al., 2013) and more recently for metage-

nomics applications (Huang et al., 2018; Zhou et al., 2017).

Standard genomics and transcriptomics analyses for sequencing

datasets usually begin by aligning sequencing reads to a reference

genome (Trapnell and Salzberg, 2009; Wang et al., 2009), and pro-

ducing abundance counts (Trapnell et al., 2010); but in metage-

nomic analyses, the alignment step is performed against a collection

of reference genomes that can be extremely large, slowing down the

entire operation. The MapReduce model (Dean and Ghemawat,

2008) along with the Spark framework have been popular in speed-

ing up these crucial steps in the analysis of single-organism sequenc-

ing datasets, as researchers have framed the read-alignment and

quantification tasks in terms of map and reduce operations:

Langmead et al. used it to align human sequencing reads using the

Bowtie read-mapping utility (Langmead et al., 2009b) and searching

for single nucleotide polymorphisms (SNPs); while Roberts et al.

(2013) used it to speed up the quantification of human gene tran-

scripts by the expectation-maximization (EM) algorithm.

2 Approach

2.1 Spark and MapReduce
The MapReduce model was originally developed by Google (Dean

and Ghemawat, 2008), and most notably popularized by the

Apache Hadoop (2018) open-source project from the Apache foun-

dation (The Apache Software Foundation, 2018). The Apache Spark

(2018) project further expanded the Hadoop project, and intro-

duced new optimizations for calculation speeds, and programming

paradigms (Zaharia et al., 2012). The MapReduce model abstracts

away much of the boiler-plate programming details of developing

distributable applications, and frees scientists and developers to

focus their work on other critical, domain-specific, areas. The model

is composed of two distinct steps: the map() step, and the reduce()

step. Hadoop and Spark offer basic functions that can be used as the

building blocks of a distributed computing model: the map() func-

tion takes as input a pair of parameters that make up a tuple consist-

ing of a key and a value; while the reduce() function merges the

output of the map() function by coalescing tuples with the same key.

The MapReduce model, and the Spark framework in particular,

have been employed in many DNA sequencing workflows for a

number of years now (Cattaneo et al., 2016; Guo et al., 2018). The

Crossbow project (Langmead et al., 2009a) from 2009 used Spark’s

MapReduce implementation to identify Single Nucleotide

Polymorphisms (SNPs) in human samples; eXpress-D (Roberts

et al., 2013) also used Spark to implement the expectation maxi-

mization (EM) algorithm for ambiguous DNA-fragment assignment.

Spark has also been used in metagenomic analyses (Guo et al., 2018)

for mapping sequencing reads against small reference databases and

for clustering metagenomes (Rasheed and Rangwala, 2013).

A natural approach to use the Spark framework for the analysis

of mWGS datasets is to partition the input of reads into smaller sub-

sets of reads to be processed by worker nodes in a Spark cluster.

This strategy works well when the dataset of reads is large. The limi-

tation of this strategy is that it does not scale to large collections of

reference genomes because a data structure (index) of the reference

collection of genomes must either be duplicated in each of the work-

er nodes, or multiple passes of the input can be used. Indexes built

from large reference collections using a k-mer based strategy are

often too large to be accommodated on a single commodity machine

on the cloud (Nasko et al., 2018). Fast k-mer based profiling strat-

egies have been used for profiling of mWGS datasets (Schaeffer

et al., 2015; Wood and Salzberg, 2014). But they trade-off speed for

enormous indexes. More recently, alternative index-building strat-

egies have been developed to allow the use of large collections of

references with k-mer based tools, albeit only at species-level resolu-

tions (Zhou et al., 2018), but were not designed for use with a

cloud-based infrastructure.

Zhou et al. developed MetaSpark (Zhou et al., 2017) to align

metagenomic reads to reference genomes. The tool employs Spark’s

Resilient Distributed Dataset (RDD) (Zaharia et al., 2012)—the

main programming abstraction for working with large datasets—to

cache reference genome and read information across worker nodes

in the cluster. By using Spark’s RDD, MetaSpark is able to align

more reads than previous tools. MetaSpark was developed with two

reference datasets of bacterial genomes: a 0.6 GB reference, and the

larger 1.3 GB from RefSeq’s bacterial repository. These reference

sets are small compared to the 170 GB reference set of Ensembl, and

because of MetaSpark’s use of an RDD to hold its index, it is unlike-

ly that MetaSpark can scale to use them: the contents of an RDD are

limited to available memory, and large reference sets would require

correspondingly large memory allocations. It is worth pointing out

the RDD memory limitations of MetaSpark in aligning reads: it

took 201 min (3.35 h) to align 1 million reads to the small 0.6 GB

reference using 10 nodes (Zhou et al., 2017).

SparkHit (Huang et al., 2018) was developed by Huang et al. as

a toolbox for scalable genomic analysis and also included the neces-

sary optimizations for the preprocessing. SparkHit includes a meta-

genomic mapping utility called ‘SparkHit-recruiter’ that performs

much faster than MetaSpark with similar sets of reference genomes.

SparkHit performs well with large dataset of reads and small refer-

ence genome sets—the authors profiled 2.3 TB of whole genome

sequencing reads against only 21 genomes in a little over an hour

and a half. The limitation of SparkHit is that it builds its reference

index using a k-mer strategy that does not scale to large collections

of reference genomes (Nasko et al., 2018), assuming that the refer-

ence database will change with each study that is analyzed. This as-

sumption, and the method of index building, makes SparkHit

unsuitable for profiling large metagenomic datasets against large

collections of reference genomes.

2.2 Streaming techniques
In order to process the large quantities of both input metagenomic

datasets, and the large collections of reference genomes to profile

against, new analysis paradigms are required that take advantage of

highly parallelizable cloud infrastructure, as well as real-time data

streams for consuming large input datasets.

LiveKraken (Tausch et al., 2018) was developed as a real-time

classification tool that improves overall analysis times, and is based

on the popular Kraken (Wood and Salzberg, 2014) method for

profiling metagenomic samples in Kraken-based workflows.

LiveKraken uses the same approach as the HiLive (Lindner et al.,

2017) real-time mapper for Illumina reads, but extends it to metage-

nomic datasets. LiveKraken can ingest reads directly from the

sequencing instrument in illumina’s binary basecall format (BCL)

before the instrument’s run finishes, allowing real-time profiling of

metagenomic datasets. Reads are consumed as they are produced at

the instrument, and the metagenomic profile produced by

LiveKraken is continuously updated. LiveKraken points the way to

future classification systems that use streams of data as input, but its

i14 C.Valdes et al.

limitation is that it uses a k-mer based reference index—in its publi-

cation, LiveKraken was tested with an archived version of RefSeq

(circa 2015) that only contained 2787 bacterial genomes. Since

then, RefSeq has grown to over 50k genomes in the latest release

(version 92), and creating a K-mer based index of it would require

substantial computational resources.

More recently, a Spark streaming-based aligner has been devel-

oped that uses streams of data to map reads single reference

genomes. The tool, StreamAligner (Rathee and Kashyap, 2018), is

implemented with Spark and the Spark-streaming API, and uses

novel MapReduce-based techniques to align reads to the reference

genome of a single organism. Unlike other methods, it creates its

own reference genome index using suffix arrays in a distributed

manner that reduces index-build times, and can then be stored in

memory during an analysis run. By using the Spark streaming API,

StreamAligner can continuously align reads to a single reference gen-

ome without the need of storing the input reads in local storage, and

although StreamAligner has high performance when using a single

genome, there is no evidence if it can scale to metagenomic work-

flows where tens of thousands of genomes are used, and the foot-

print of the reference genomes are much larger than could be fit in

memory.

3 Materials and methods

A natural approach to using MapReduce for large metagenomic

analyses tasks is as follows. The map step divides the task of map-

ping the reads against a genomic index and the reduce step collects

all the hits to each genome and constructs the microbial profile of

the metagenomic sample. This approach works well when the same

copy of the full genomic index can be farmed out to each node in the

cluster. The approach fails when the index is too large to be pro-

vided to each cluster node or the collection of reads is too large for

each cluster node. Streaming the reads allows for arbitrarily large

collections of reads to be processed by each cluster node. Building

an index of a ‘shard’ of the reference genome database and provid-

ing each cluster node with a smaller index allows for much larger

reference databases to be used for mapping the reads (Fig. 1).

Our computational framework is primarily implemented using

the MapReduce model (Dean and Ghemawat, 2008), and deployed

in a cluster launched using the Elastic Map Reduce (EMR) service

offered by AWS (Amazon Web Services) (Amazon.com Inc.,

Amazon Web Services, 2018). The cluster consists of multiple ‘com-

modity’ worker machines (a computational ‘worker’ node), each

with 15 GB of RAM, 8 vCPUs (each being a hyperthread of a single

Intel Xeon core) and 100 GB of disk storage. Each of the worker

computational nodes will work in parallel to align the input

sequencing DNA reads to a ‘shard’ of the reference database

(Fig. 2); after the alignment step is completed, each worker node

acts as a regular Spark executor node. By leveraging the work of

multiple machines working at the same time, FLINT is able to align a

large number of reads to a large database of reference genomes in a

much more efficient manner than that achieved by using a single

powerful machine.

3.1 Cluster provisioning
A Spark (Apache Spark, 2018) cluster was created using the AWS

Console with the following software configuration: EMR-5.7.0,

Hadoop 2.8.4, Ganglia 3.7.2, Hive 2.3.3, Hue 4.2.0, Spark 2.3.1

and Pig 0.17.0 in the US East (N. Virginia) region.

The cluster is composed of homogeneous machines for both the

driver node and worker nodes, and each machine is an Amazon ma-

chine instance of type c4.2xlarge. These instances contain 8 vCPUs,

15 GB of RAM, 100 GB of EBS storage and each cost on average

$0.123 USD to run per hour on the ‘us-east’ availability zone on the

Spot (EC2 Spot Market, 2018) market as of this writing in January

2019. Newer instances (c5.2xlarge) are also available for use, but

their availability is infrequent in large numbers, in addition to hav-

ing a higher cost per hour to run.

Resilient Distributed Datasets (RDD) (Zaharia et al., 2012) are

robust programming abstractions that can be used to persist data

across a cluster of machines. We ingest reads from datastreams in

batches of 500 000 reads that are processed by our mapreduce pipe-

line. Reads are consumed either directly from their location in an

Amazon S3 bucket, or from a datastream source such as a Kafka or

Kinesis source. An RDD of the input read stream is created in the

master node that is then broadcasted out into all the worker nodes

in the cluster. The input RDD of reads is partitioned into sets of

reads that are each independently aligned to a reference genome par-

tition in each of the worker nodes.

3.2 A ‘double’ MapReduce
An obvious way to perform MapReduce for metagenomic analysis is

to have the Map function produce tuples of the form hg; 1i, for every

read r that is aligned to genomes g, while the Reduce function aggre-

gates all tuples of the form hg; 1i to obtain the abundance of genome

g in the sample being analyzed, effectively generating output tuples

of the form hg;AðgÞi, where AðgÞ is the reported abundance of gen-

ome g in the sample being analyzed.

Unfortunately, a read may align to multiple genomes. Instead of

counting a hit for every genome that the read aligns to, or counting

it for only one of the genomes that the read aligns to, we follow the

algorithm of Valdes et al. (2015), which assigns fractional counts

for the genomes that a read aligns to. In order to implement this, we

employ a novel double MapReduce steps, thus making it a multi-

stage operation. In the modified MapReduce, the Map function gen-

erates alignments in SAM format (Li and 1000 Genome Project

Data Processing Subgroup, 2009) by dispatching a subprocess of the

Bowtie2 aligner and produces tuples of the form hr; ðg;1Þi, for every

read r that is aligned to genomes g. All tuples for the same read are

aggregated by the first Reduce step to generate tuples of the form

hr; ðg; 1=CðrÞÞi. The second Map step generates contributions of

reads for a given genome, and the second Reduce step aggregates all

tuples of the form hg; ci to obtain the abundance of genome g in the

sample being analyzed, effectively generating output tuples of the

form hg;AðgÞi, where AðgÞ is the reported abundance of genome g

in the sample being analyzed obtained by aggregating all the frac-

tional contributions of reads that map to that genome. Note that all

intermediate tuples are stored in RDDs, one for each step.

3.3 Reference genome preparation
Before we can use the bacterial genomes in the cluster, they need to

be prepared. The process entails creating a Bowtie2 index for each

shard of the reference database, and specific details on this proced-

ure can be found in Section 2.1 of the supplementary manuscript.

Briefly, the reference genomes are divided into smaller partitions

that are each independently indexed by Bowtie2. The index prepar-

ation step can take considerable computational resources and time

with a single machine. A parallel version of the indexing system can

greatly improve performance and will be completed in the next re-

lease of FLINT. Once the partitions have been indexed they are then

Large scale microbiome profiling in the cloud i15

copied to an Amazon S3 (2018) bucket that serves as a staging loca-

tion for the reference shards. The staging S3 bucket holds the index

so that worker nodes can copy it during their provisioning step and

the analysis can start; the S3 bucket is also public, and researchers

can download copies of the prepared indices for their use.

It should be noted that Ensembl’s bacterial genome collections

have grown only modestly in the last couple of releases to minimize

redundancy, and reference indices for new Ensembl releases can be

built relatively quickly with utility scripts provided by FLINT. The

cost of building a partitioned reference index is only accrued the first

time it is built for a cluster of a particular size, and as part of the re-

lease of the FLINT project, we are making available partitioned indi-

ces of Ensembl (v.41) of sizes 48, 64, 128, 256 and 512 which

should be useful for researchers employing clusters of those sizes.

These indices, along with the scripts necessary to build future ver-

sions, can be found at the GitHub repository.

We currently use minimal annotations that keep track of basic

attributes for each bacterial strain; these include taxonomic identi-

fiers, assembly lengths, etc. Future releases of the software will in-

clude a more robust annotations package that will contain data on

gram staining, pathogenicity and other properties.

FLINT uses a streaming model to quickly map a large number of

reads to a large collection of reference bacterial genomes by using a

distributed index. The Bowtie2 DNA aligner is used internally in

Spark worker nodes to align reads to the local partition of the refer-

ence index, by using a MapReduce that continuously streams reads

into worker nodes. Output alignments are parsed and tabulated by

worker nodes, and then sent back to master node as alignment tasks

finish. FLINT can be deployed on any Spark cluster, as long as the ne-

cessary software dependencies are in place; the partitioned reference

index for Ensembl’s 43k genomes is made available at the FLINT

website, and scripts are provided as part of the provisioning step

that copy the partitions into worker nodes.

4 Results and discussion

4.1 Comparison to existing tools
FLINT was evaluated by comparing abundance profiles generated

with FLINT to those provided by HMP and those generated by

Kraken (Wood and Salzberg, 2014). Note that Kraken is a k-mer

based algorithm to align reads to genomic sequences and is known

to be one of the most accurate ones (McIntyre et al., 2017).

We selected an anterior nares sample (SRS019067) with 528k

reads from the Human Microbiome Project (HMP) and analyzed it

with Kraken (2.0.7-beta) and FLINT and compared the results to

those provided by HMP in their community abundance profiles.

HMP reported 36.7% aligned reads using a bacterial database of

1751 genomes, while Kraken was able to classify 36% of the reads

Fig. 1. Overview of the FLINT System. Reference genomes are partitioned so that a large reference set is be distributed across a Spark cluster, and the number of

partitions matches the number of worker nodes. Samples are streamed into the cluster to avoid storage overheads as shards of 250k reads. Reads are aligned to

the distributed reference genomes using a double MapReduce pipeline that continually updates metagenomic profiles as samples are streamed into the cluster.

Read alignments are never stored, and are processed by each worker node as soon as they are produced

i16 C.Valdes et al.

using their RefSeq bacterial database of 14 506 genomes; in con-

trast, FLINT was able to align 81% of the reads using Ensembl’s 43k

bacterial genomes. The increase number of aligned reads is due to

the larger number of genomes in Ensembl—Kraken uses RefSeq’s

so-called ‘complete’ bacterial genomes, while Ensembl contains

many draft genomes that increases the probability for mapping a

read. FLINT also aligns reads with Bowtie2 directly to the bacterial

strain genomes, and does not apply lowest common ancestor (LCA)

assignment to reads as Kraken does, which should mitigate any

database diversity influences (genus, species and strain ratios) as

noted by Nasko et al. (Nasko et al., 2018). As shown in

Supplementary Figure S4, both FLINT and Kraken identify roughly

the same set of genera, but at the species level, FLINT identifies sig-

nificantly more species.

MetaSpark (Zhou et al., 2017) and SparkHit (Huang et al.,

2018) are spark-based methods with a cluster infrastructure similar

to FLINT but their lack of support for large genome references makes

direct comparison impossible. MetaSpark has a 201 min runtime for

Fig. 2. MapReduce workflow. Metagenomic samples can be streamed in from a distributed filesystem into the cluster were they are stored in an RDD. The first

Map step generates alignments through Bowtie2 and feeds its resulting pairs to the first Reduce step, which aggregates the genomes that a single reads aligns

to. The second Map step generates read contributions that are used in the second Reduce step to aggregate all the read contributions for a single genome. An

output abundance matrix is generated which contains the abundances for each genome

Large scale microbiome profiling in the cloud i17

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz356#supplementary-data

1 million reads with 10 nodes, profiled against a 0.6 GB reference of

bacterial genomes from NCBI. In comparison, FLINT takes 67 s to

profile 1 million paired-end reads against Ensembl’s 43 552 genomes

(170 GB) with 64 nodes.

4.2 Reference genome collections
To test the speed of our read alignment step, we downloaded a refer-

ence collection of bacterial genomes from the Ensembl Bacteria

(2018) repository (version 41). A total of 43 552 bacterial genomes

(strain level) were downloaded in FASTA format, accounting for 4.6

million individual FASTA assembly references. The collection

included reference sequences for fully assembled chromosomes and

plasmids, as well as containing sequences for draft-quality supercon-

tigs, the latter accounting for most of the reference files in the data-

base. The Ensembl bacterial genomes (v.41) were downloaded from

the public FTP site at ftp.ensemblgenomes.org. Ensembl stores the

FASTA files in ‘collection’ directories, and we recursively down-

loaded the ‘dna’ directory in each of the bacterial sub-folders. In

total, 4 672 683 FASTA files were downloaded, with a data foot-

print on disk of just over 170 GB, accounting for 43 552 bacterial

strains.

Creating the Bowtie2 index for the bacterial genomes is a one-

time operation as the index can be reused across cluster deploy-

ments. With a 64 worker-node cluster, we created 64 reference

shards, each having a size of 2.6 GB on average. The total sequential

indexing time for the 64 shards was 1d 20 h 4 m 33 s on a single ma-

chine, but we also used an LSF cluster (IBM Spectrum LSF., 2019)

that indexed the 64 shards in parallel, and brought down the total

indexing time to just over 3 h.

Existing metagenomic profiling tools such as MetaSpark and

SparkHit use an archived version of RefSeq as their reference

genomes database—MetaSpark’s RefSeq bacterial references was

for 1.3 GB of size. Given the fact that the Ensembl database used by

FLINT is roughly ten times larger, we looked into how a metagenomic

profile could be different by looking at how many genomes are iden-

tified by using a large or small reference collection. To do this we

randomly selected 1 M reads from an HMP anterior nares sample

(SRS015996) and aligned its reads using Bowtie2 to two genome ref-

erence indices: the large collection created from the 43k Ensembl

bacterial genomes, and the small collection created from 5591 bac-

terial representative and reference genomes from NCBI’s Genomes

(RepNG). We investigated how many clades are identified by both

references, and Figure 3 displays the results. Figure 3 shows a phylo-

genetic tree [created with the Interactive Tree Of Life (iTOL) visual-

ization tool (Letunic and Bork, 2016)] showing the differences in the

phylogenetic diversity of the taxa identified in the anterior nares

sample. Genomes are called as ‘present’ by selecting only those

genomes that have an average coverage greater than 80% along

their genomic sequence. Nodes at the inner level of the figure repre-

sent the phylum taxonomic level, while nodes in the outer rings are

at the species level. Green branches represents the clades identified

by both references, blue branches represent clades identified by

Ensembl, and red branches are clades identified by the RepNG refer-

ence set. Note that the number of clades identified by Ensembl at the

higher Class and Genus taxonomic levels outnumber those identified

when only using the RepNG subset.

4.3 Experimental setup
As mentioned earlier, the computational framework is primarily

implemented using the MapReduce model (Dean and Ghemawat,

2008), and deployed in a cluster launched in Amazon Web Services

(Amazon.com Inc., Amazon Web Services, 2018) Elastic Map

Reduce (EMR) service. The cluster consists of multiple worker

machines (i.e. a computational ‘worker’ node), each with 15 GB of

RAM, 8 vCPUs (each being a hyperthread of a single Intel Xeon

core) and 100 GB of disk storage. Each of the worker computational

nodes will work in parallel to align the input sequencing DNA reads

to a shard of the reference database; after the alignment step is com-

pleted, each worker node acts as a regular Spark executor node. By

leveraging the work of multiple machines working at the same time,

we are able to align millions of reads to the over 43k reference

genomes in a much more efficient manner than either using only a

single machine with considerable computational resources, or using

other parallel computation approaches. Benchmarking tests were

performed in Spark clusters of size 48, 64 and 128 worker nodes, all

deployed in Amazon’s EMR service for very low costs.

4.4 Measuring accuracy using simulated datasets
To get a measure of the accuracy of FLINT’s read-alignment pipeline,

and to test the robustness of the streaming infrastructure, we simu-

lated synthetic Illumina reads using the InSilicoSeq (Gourlé et al.,

2018) metagenomic simulator. We created three replicate dataset

groups to test the accuracy of the overall pipeline, and to verify that

the streaming system would not introduce any duplicate artifacts, or

that the reduce steps in the Spark cluster would not exclude any of

the output alignments. Each replicate group consists of 12 datasets

ranging from a dataset with 1 read to a dataset with 1 million reads,

created with a log-normal abundance profile, and using the default

error model for the HiSeq sequencing instrument available in

InSilicoSeq. Specific details on the simulation protocol, cluster con-

figuration and detailed results for each replicate set are available in

the Supplementary Materials.

Table 1 outlines the results for the synthetic HiSeq datasets.

Dataset evaluations were performed on a 64 worker-node cluster in

AWS, with each worker node containing 8 vCPUs and 15 GB of

Fig. 3. Phylogenetic tree of taxa identified by Flint using 43k Ensembl bacterial

genomes (blue), and 5k NCBI’s Genomes references (red) with an input of 1 M

randomly selected reads from the HMP anterior nares sample (SRS015996).

Genomes are identified if the average coverage in their genomic sequence is

80% or more

i18 C.Valdes et al.

http://ftp.ensemblgenomes.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz356#supplementary-data

memory. FLINT achieves good performance with the HiSeq dataset

achieving 99% sensitivity across all three HiSeq replicates.

Alignment times on the 64 node Spark cluster using the database of

over 43k Ensembl bacterial genomes show that 1 million reads are

aligned in just over 1 min with no loss of sensitivity. The

‘Alignments’ column contains the number of alignments that are

produced as output for each dataset—these output alignments are

not stored by the system, but rather they are processed as soon as

they are generated by the worker nodes in the cluster.

4.5 Human metagenomic samples
After verifying the performance of the FLINT system on simulated

datasets, we tested the capabilities of the system on real metage-

nomic samples from the Human Microbiome Project (HMP)

(Human Microbiome Project Consortium, 2012), which was gener-

ated using an Illumina-based sequencing system. We therefore

expected a comparable performance with the HMP data as with the

synthetic dataset.

4.6 Cluster benchmarks
Before testing the system with full human metagenomic samples, we

ran a benchmark of randomly sampled paired-end reads from a

HMP anterior nares sample (SRS015996) to confirm our previous

observations on the synthetic datasets. Each of these read datasets

was then processed through the FLINT system running on a 64

worker-node cluster in AWS. Table 2 presents the runtimes for each

of the datasets, and FLINT can process 1 million reads in about 67 s.

4.7 Full human samples
We analyzed 173 million paired-end reads from three HMP samples

sequenced from anterior nares (SRS019067, 528k reads), stool

(SRS065504, 116 M reads), and supragingival plaque (SRS017511,

56 M reads). These paired-end reads represent samples with varying

levels of metagenomic diversity. For the purposes of analysis and the

comparison of our execution pipeline, we created diversity classes

defined by the number of unique genera present in each sample. To

obtain our diversity classes, we analyzed 753 HMP samples for their

abundance profiles and surveyed the number of unique genera as

reported in the community abundance profiles provided by HMP

(see Supplementary Materials for details); we then selected

representative samples that contained 133 unique genera (high di-

versity class), 60 unique genera (medium diversity class) and 8

unique genera (low diversity class). The reasoning for using these

samples was to test the performance of the FLINT system in samples

with varying degrees of metagenomic diversity. We speculated that

low diversity samples would contain reads from a relatively small

number of organisms, and therefore the alignment system would not

spend too much time finding their genomes of origin. In contrast,

the high diversity samples would contain reads from a large number

of organisms, and the alignment system would spend more time and

resources locating their origins.

Table 3 contains the results from running the three samples

through the FLINT system. The sample with the biggest number of

paired-end reads, sample SRS065504 with 116 million paired-end

reads, was profiled against Ensembl’s 43k genomes in about

105 min. The sample with the second largest number of paired-end

reads, i.e. sample SRS017511 with 56 million paired-end reads, was

profiled against the 43k genomes in about 94 min; while the sample

with the lowest number of paired-end reads was profiled in 53 s.

Note that the sample with 116 million paired-end reads was proc-

essed in about 10 min more than the sample with 56 million paired-

end reads—this sample with 56 million reads is the sample that

contains the highest number of unique genera (highest metagenomic

diversity, 133 versus 60 in the larger sample). Since more alignments

were found, the reads required more time to be processed.

4.8 Streaming performance
The samples in Table 3 were streamed into the cluster through

Spark’s streaming engine. The entire sample is never ingested all at

once, but rather, we stream in shards of each sample so that we do

not overrun the cluster with so much data that it would cause a clus-

ter failure. To find the ideal number of reads that we could use a size

of a stream shard, we looked at the results in Table 2 and Figure 4.

Figure 4B displays a logarithmic curve of the alignment times for all

12 sizes of the paired-end read datasets, and while we can align

1 million reads in about 67 s, doing so creates so many alignments

that each of the Spark executor processes running in each worker

node could run out of memory. We looked for the ‘knee-in-the-

curve’ in Figure 4B, marked by the vertical magenta line, and identi-

fied a size of 250k paired-end reads as a good trade-off between

Table 1. HiSeq synthetic datasets

Reads Alignments Time Alignment rate (%) % Sensitivity

1 1 2 s 344 ms 100 100

10 23 2 s 400 ms 100 100

100 172 2 s 376 ms 100 100

1000 1356 2 s 455 ms 100 100

5000 8592 2 s 517 ms 90 98

10 000 23 791 3 s 193 ms 94 99

50 000 74 543 5 s 138 ms 96 100

100 000 103 835 8 s 320 ms 93 99

250 000 187 349 15 s 788 ms 95 100

500 000 275 917 29 s 18 ms 93 97

750 000 513 954 45 s 91 ms 95 99

1M 617 933 1 m 14 s 713 ms 96 99

Note: Average alignment times and alignment rates for three synthetic

datasets aligned against Ensembl’s 43k bacterial genomes. Sensitivity is the

proportion of paired-end reads that were mapped correctly to the genome

from which they were generated. Evaluations were performed on a 64 work-

er-node Spark cluster.

Table 2. Initial cluster benchmarks

Paired-end reads Alignments Time (ms) Memory (GB)

1 0 2 s 320 ms 4

10 36 2 s 422 ms 4

100 902 2 s 336 ms 4

1000 9252 2 s 316 ms 4.3

5000 53 918 2 s 455 ms 4.5

10 000 106 160 2 s 700 ms 4.9

50 000 538 594 5 s 437 ms 5.2

100 000 1 006 122 8 s 318 ms 5.8

250 000 2 349 518 17 s 164 ms 6.4

500 000 5 327 040 33 s 950 ms 7.6

750 000 8 439 356 50 s 880 ms 9.5

1M 10 710 420 1 m 7 s 609 ms 10.3

Note: Average alignment times in a 64 worker-node cluster for a set of

randomly selected reads from a HMP anterior nares sample. The number of

alignments column contains the output alignments that are generated by each

set of reads; these alignments are processed as soon as they are produced and

are not stored, therefore minimizing the local storage requirements necessary

for profiling metagenomic samples.

Large scale microbiome profiling in the cloud i19

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz356#supplementary-data

shard size and cluster performance. When we analyzed the three

HMP samples in Table 3 we set the streaming shard size to 250k

reads, and 2 shards were created for the anterior nares sample (low

diversity, 500 k reads), 234 shards were created for the stool sample

(medium diversity, 116 M reads) and 113 shards for the supragingi-

val plaque sample (high diversity, 56 M reads).

4.9 Cloud costs
All experiments were conducted in Amazon’s Elastic MapReduce

service (EMR) (Amazon EMR, 2018) and used the ‘c4.2xlarge’ ma-

chine instance type. These machines contain 8 vCPUs, 15 GB of

RAM and 100 GB of EBS storage; at the time of the experimental

runs, each machine cost $0.123 USD in the Amazon’s Spot market

(EC2 Spot Market, 2018). All results reported here were obtained

on a cluster of 65 total machines (64 worker-nodes, 1 master node)

with a cost of $0.123 USD per node, for an overall cluster cost of

$8.00 per hour.

5 Conclusion

In this work we have shown how large metagenomic samples com-

prising millions of paired-end reads can be profiled against a large

collection of reference bacterial genomes in a fast and economical

way. Our implementation relies on the freely available Spark

Table 3. HMP sample analysis

Diversity class Unique genera Sample ID Paired-end reads Alignment execution time Streamed shards Avg. alignments per stream shard

Low 8 SRS019067 528 988 0 h 0 m 53 s 2 1 763 227

Medium 60 SRS065504 116 734 970 1 h 45 m 30 s 234 1 471 036

High 133 SRS017511 56 085 526 1 h 34 m 51 s 113 1 535 626

Note: Diversity classes were established based on the number of unique genera in 753 HMP samples. Three samples were selected from each diversity class and

analyzed in a 64 worker-node cluster. Alignment execution time measures the total time to align all the sample reads against Ensembl’s 43k bacterial genomes.

The streamed shards are the number of 250k read sets that are streamed into the cluster, and the average alignment per shard is the average number of alignments

produced by each shard.

Fig. 4. Initial Benchmarks. (A) The running time for 12 paired-end read datasets in a 64 worker-node cluster. These 12 datasets were used to estimate the optimal

number of reads that a 64 worker-node cluster could handle without any memory pressure, or network issues. Note that while 1 million paired-end reads can be

mapped in 67 s against 43k bacterial strains, it is not ideal as the cluster’s memory is overwhelm with alignments. (B) The logarithmic running time of the 12 data-

sets, and the 250k paired-end read dataset was chosen as a good trade-off between speed and resource availability

i20 C.Valdes et al.

framework to distribute the alignment of millions of sequencing

reads against Ensembl’s collection of 43k bacterial genomes. The

reference genomes are partitioned in order to distribute the genome

sequences across worker machines, and this allows us to use large

collections of reference sequences. By using the well-known Bowtie2

aligner under the hood in the worker-nodes, we are able to maintain

fast alignment rates, without loss of accuracy.

To date, profiling metagenomic samples against thousands of

reference genomes has not been possible for research groups with ac-

cess to modest computing resources. This is due to the size of the ref-

erence genomes and the financial costs of the computing resources

necessary to employ them. By using distributed frameworks such as

Spark, along with affordable cloud computing services such as

Amazon’s EMR, we are able to distribute a large collection of refer-

ence genomes (totaling 170 GB of reference sequence, and 4.6 mil-

lion assembly FASTA files) and use a MapReduce strategy to profile

millions of metagenomic sequencing reads against them in a matter

of hours, and at minimal financial costs, thus bringing sophisticated

metagenomic analyses within reach of small research groups with

modest resources.

FLINT is open source software written in Python and available

under the MIT License (MIT). The source code can be obtained at

the following GitHub repository: https://github.com/camilo-v/flint.

The repository includes instructions and documentation on provi-

sioning an EMR cluster, deploying the necessary partitioned refer-

ence genome indices into worker nodes, and launching an analysis

job. Supplementary Materials, simulation datasets and partitioned

reference indices can be found in the FLINT project website at http://

biorg.cs.fiu.edu/.

Acknowledgments

The authors would like to thank Eric S. Johnson and John Flynn at the

Computer Science Department’s IT Support group for their help with manag-

ing the reference genomes datasets, and to the members of the Bioinformatics

Research Group (BioRG) for valuable feedback on the project. Also helpful in

obtaining initial results was The High Performance Group (HPC) group at

FIU’s Division of Information Technology.

Funding

This work was supported in part by Amazon’s ‘AWS Cloud Credits for

Research’ program, awarded to CV. The work of GN was supported by

National Institute of Health (award 580 number 1R15AI128714-01),

Department of Defense (contract number 581 W911NF-16-1-0494) and

National Institute of Justice (award number 582 2017-NE-BX-0001).

Conflict of Interest: none declared.

References

Amazon Elastic MapReduce, EMR. (2018) https://aws.amazon.com/emr (16

November 2018, date last accessed).

Amazon Simple Storage Service, S3. (2018) https://aws.amazon.com/s3 (16

November 2018, date last accessed).

Amazon Web Services, AWS. (2018) https://aws.amazon.com/ (17 October

2018, date last accessed).

Ansorge,W.J. (2009) Next-generation DNA sequencing techniques. New

Biotechnol., 25, 195–203.

Apache Hadoop. (2018) http://hadoop.apache.org (17 October 2018, date last

accessed).

Apache Spark. (2018) http://spark.apache.org (17 October 2018, date last

accessed).

Caporaso,J.G. et al. (2012) Ultra-high-throughput microbial community ana-

lysis on the Illumina HiSeq and MiSeq platforms. ISME J., 6, 1621–1624.

Cattaneo,G. et al. (2016) MapReduce in computational biology – a synopsis.

In: Federico,R. et al. (eds) Advances in Artificial Life, Evolutionary

Computation, and Systems Chemistry. Springer, Cham., pp. 53–64.

Dean,J. and Ghemawat,S. (2008) MapReduce: simplified data processing on

large clusters. Commun. ACM, 51, 107–113.

EC2 Spot Market. (2018) https://aws.amazon.com/ec2/spot (16 November

2018, date last accessed).

Ensembl Bacteria. (2018) https://bacteria.ensembl.org/index.html (15 October

2018, date last accessed).

Gourlé,H. et al. (2018) Simulating Illumina metagenomic data with

InSilicoSeq. Bioinformatics, 35, 521–522.

Guo,R. et al. (2018) Bioinformatics applications on Apache Spark.

GigaScience, 7, giy098.

Haiser,H.J. et al. (2013) Predicting and manipulating cardiac drug inactiva-

tion by the human gut Bacterium Eggerthella lenta. Science (New York,

NY), 341, 295–298.

Huang,L. et al. (2018) Analyzing large scale genomic data on the cloud with

Sparkhit. Bioinformatics (Oxford, England), 34, 1457–1465.

Human Microbiome Project Consortium (2012) A framework for human

microbiome research. Nature, 486, 215–221.

IBM Spectrum LSF. (2019) https://www.ibm.com/support/knowledgecenter/

en/SSWRJV/product_welcome_spectrum_lsf.html (20 March 2019, date

last accessed).

Koeth,R.A. et al. (2013) Intestinal microbiota metabolism of L-carnitine, a nu-

trient in red meat, promotes atherosclerosis. Nat. Med., 19, 576–585.

Langmead,B. et al. (2009a) Searching for SNPs with cloud computing.

Genome Biol., 10, R134.

Langmead,B. et al. (2009b) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, R25.

Letunic,I. and Bork,P. (2016) Interactive tree of life (itol) v3: an online tool for

the display and annotation of phylogenetic and other trees. Nucleic Acids

Res., 44, gkw290.

Li,H. et al. and 1000 Genome Project Data Processing Subgroup. (2009) The

Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford,

England), 25, 2078–2079.

Lindner,M.S. et al. (2017) HiLive: real-time mapping of Illumina reads while

sequencing. Bioinformatics (Oxford, England, 33, 917–319.

McIntyre,A.B.R. et al. (2017) Comprehensive benchmarking and ensemble

approaches for metagenomic classifiers. Genome Biol., 18, 182.

Metzker,M.L. (2010) Sequencing technologies – the next generation. Nat.

Rev. Genet., 11, 31–46.

Nasko,D.J. et al. (2018) RefSeq database growth influences the accuracy of

k-mer-based lowest common ancestor species identification. Genome Biol.,

19, 165.

Ranjan,R. et al. (2016) Analysis of the microbiome: advantages of whole gen-

ome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res.

Commun., 469, 967–977.

Roberts,A. et al. (2013) Fragment assignment in the cloud with eXpress-D.

BMC Bioinformatics, 14, 358.

Rasheed,Z. and Rangwala,H. (2013) A map-reduce framework for clustering

metagenomes. In: 2013 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum, May 20–24, 2013.

IEEE Computer Society, Washington, DC, USA, pp. 549–558.

Rathee,S. and Kashyap,A. (2018) StreamAligner: a streaming based sequence

aligner on Apache Spark. J. Big Data, 5, 8.

Schaeffer,L. et al. (2015) Pseudoalignment for metagenomic read assignment.

arXiv.org.

Tausch,S.H. et al. (2018) LiveKraken – Real-time metagenomic classification

of Illumina data. Bioinformatics (Oxford, England).

The Apache Software Foundation. (2018) https://www.apache.org. (17

October 2018, date last accessed).

The Integrative HMP iHMP Research Network Consortium. (2014) The inte-

grative human microbiome project: dynamic analysis of microbiome-host

omics profiles during periods of human health and disease. Cell Host

Microbe, 16, 276–289.

Large scale microbiome profiling in the cloud i21

https://github.com/camilo-v/flint
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz356#supplementary-data
http://biorg.cs.fiu.edu/
http://biorg.cs.fiu.edu/
https://aws.amazon.com/emr
https://aws.amazon.com/s3
https://aws.amazon.com/
http://hadoop.apache.org
http://spark.apache.org
https://aws.amazon.com/ec2/spot
https://bacteria.ensembl.org/index.html
https://www.ibm.com/support/knowledgecenter/en/SSWRJV/product_welcome_spectrum_lsf.html
https://www.ibm.com/support/knowledgecenter/en/SSWRJV/product_welcome_spectrum_lsf.html
https://www.apache.org

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–515.

Trapnell,C. and Salzberg,S.L. (2009) How to map billions of short reads onto

genomes. Nat. Biotechnol., 27, 455–457.

Valdes,C. et al. (2015) Detecting bacterial genomes in a metagenomic sample

using NGS reads. Stat. Interface, 8, 477–494.

Vernikos,G. et al. (2015) Ten years of pan-genome analyses. Curr. Opin.

Microbiol., 23, 148–154.

Wang,Z. et al. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat.

Rev. Genet., 10, 57–63.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Wu,G.D. and Lewis,J.D. (2013) Analysis of the human gut microbiome and

association with disease. Clin. Gastroenterol. Hepatol., 11, 774–777.

Zaharia,M. et al. (2012) Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing. In: 9th USENIX Symposium on

Networked Systems Design and Implementation, pp. 15–28.

Zhang,Y. et al. (2015) Metagenomics: a new way to illustrate the crosstalk be-

tween infectious diseases and host microbiome. Int. J. Mol. Sci., 16,

26263–26279.

Zhou,W. et al. (2018) ReprDB and panDB: minimalist databases with max-

imal microbial representation. Microbiome, 6, 15.

Zhou,W. et al. (2017) MetaSpark: a spark-based distributed processing tool to

recruit metagenomic reads to reference genomes. Bioinformatics (Oxford,

England), 33, 1090–1092.

i22 C.Valdes et al.

	btz356-TF1
	btz356-TF2
	btz356-TF3

