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Abstract: We investigated the optical spin Hall effect (OSHE) of the light field from a closed elliptical
metallic curvilinear nanoslit instead of the usual truncated curvilinear nanoslit. By making use of
the characteristic bright spots in the light field formed by the noncircular symmetry of the elliptical
slit and by introducing a method to separate the incident spin component (ISC) and converted spin
component (CSC) of the output field, the OSHE manifested in the spot shifts in the CSC was more
clearly observable and easily measurable. The slope of the elliptical slit, which was inverse along the
principal axes, provided a geometric phase gradient to yield the opposite shifts of the characteristic
spots in centrosymmetry, with a double shift achieved between the spots. Regarding the mechanism
of this phenomenon, the flip of the spin angular momentum (SAM) of CSC gave rise to an extrinsic
orbital angular momentum corresponding to the shifts of the wavelet profiles of slit elements in the
same rotational direction to satisfy the conservation law. The analytical calculation and simulation of
finite-difference time domain were performed for both the slit element and the whole slit ellipse, and
the evolutions of the spot shifts as well as the underlying OSHE with the parameters of the ellipse
were achieved. Experimental demonstrations were conducted and had consistent results. This study
could be of great significance for subjects related to the applications of the OSHE.

Keywords: surface plasmons; optical spin Hall effect; geometric phases; phase gradient

1. Introduction

The optical spin Hall effect (OSHE), a phenomenon originally demonstrated by the
spin-dependent transverse shifts of light reflected or refracted by a plane interface, has
attracted enormous interest and evoked many pioneering studies [1–6] since it was pro-
posed by Onoda as an analogy to the electron spin Hall effect [7]. Inherently, the OSHE
is a manifestation of the geometric phase in light propagation [8,9], which is originated
from the spin–orbit interactions (SOIs) of light [1,3] and has provided a novel route for the
spin-dependent manipulation of light field, such as generalized refraction [1], holography
with metasurfaces [10–12], and creation of specific beams or fields [13–16].

The OSHE is related to two types of geometric phases—the Rytov–Vladimirskii–Berry
(RVB) phase [8,17,18] and the Pancharatnam–Berry (PB) phase [9,19,20]. The former is
imposed on a light wave while its propagating direction is changed. It typically occurs
when light is reflected and refracted at a medium interface that is sharply inhomogeneous
but isotropic, where each angular spectral component in the light wave acquires a different
RVB phase, thereby forming an RVB phase gradient and providing a spin-dependent
real-space split of the light beam perpendicular to the plane of incidence. This split is
a direct demonstration of the OSHE but its small magnitude has been a challenge to
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measurements, for which different judicious schemes have been proposed such as weak
measurements [21–23] and multiple reflections of light in a cylindrical glass rod [24]. The
PB phase is related to the change in the polarization state of light, which may occur when
light propagates in anisotropic and inhomogeneous systems. Although the spatial variant
PB phase sets a phase gradient, it yields spin-dependent split of light waves and gives
rise to OSHE in momentum space. The shift between the light waves in different spin
components increases with the propagation of light, which renders the direct observation
and measurement of OSHE much easier and simpler. Furthermore, in current nanopho-
tonics, the manipulation of the PB phase has become the basic method in the design of
artificial metamaterials, in which the spatial distributions of the light fields are flexibly and
conveniently controlled by polarization variations, thereby providing typical examples
for the application of OSHE and SOIs [25–30]. The functionality of the PB phase and the
spin Hall effect in the nanostructure design of metamaterials have demonstrated wide
perspectives in compact and miniaturized engineering of nanophotonic devices, which is
of great importance for the development of optical communication, precision metrology,
quantum information processing, and so forth. [4,26–30].

Bliokh et al. proposed a semicircular metallic slit as the focusing plasmonic nanos-
tructure to demonstrate the OSHE [18]; this has overcome difficulties and inaccuracies in
observing and measuring small shifts in large-sized light fields in the previous observa-
tions of the effect in reflection and refraction at medium interfaces. Thereafter, plasmonic
curvilinear nanostructures have attracted great interest for investigating the characteristics
of OSHE in different regimes. Until now, various curvilinear nanostructures, such as
catenary slits [31], plasmonic chains [32], and PB phase metasurfaces [3,4,10–16], have been
used for applications. The key feature of nanostructures is their noncircular symmetry,
which is usually achieved by truncating a closed curvilinear nanoslit in such a way that
the spatially asymmetric shift of the spin-dependent light wavefield takes place in the
direction perpendicular to the axis of reflection symmetry of the structure. In regimes of
slit structures of closed curves with noncircular but reflection symmetry, the OSHE and the
transverse shifts in the directions of the reflection axis may occur, and novel characteristics
of the light field may be achieved correspondingly; however, they have rarely been studied
in such structures.

It is clear that, for nanoslits of smaller width, the SOIs of light with the slits change
the polarization states of light under circular polarization (CP) illumination [33], and the
output field generally contains the two CP components of opposite helicities. The one
with the same helicity as the incident light is referred to as incident spin component (ISC),
and the other with the opposite helicity is referred to as converted spin component (CSC),
which acquires a PB phase shift twice the local orientation angle of the nanoslit. The OSHE
occurs in the light field of the CSC owing to the acquired PB phase. Nevertheless, in
previous studies on the OSHE in curvilinear slits, the two components in output fields have
been analyzed as a whole without distinguishing them based on whether the effect occurs
or not. Obviously, with the two components separated and the nonexistence of OSHE in
ISC being considered, the characteristics of the transverse shifts and the nature of OSHE
occurring in such regimes could be better comprehended.

In this work, the OSHE in closed curvilinear nanoslit of centrosymmetry in metallic
films was investigated using an elliptical nanoslit as the sample. Using the characteristic
spots in the light field formed by the elliptical slit breaking the circular symmetry and by
introducing a method to separate the CSC and the ISC of the output field, the characteristic
shifts of the spots in the CSC reflecting the OSHE were clearly observable and easily
measurable. The shifts could be obtained quantitatively either by comparing the spots in
CSC with the corresponding unshifted spots in ISC or by comparing a centrosymmetric pair
of counterpart spots in the CSC field that were shifted in opposite directions. The varied
tangent slope of the curvilinear ellipse provided a geometric phase gradient in the CSC
field, which gave rise to shifts in characteristic spots demonstrating the OSHE. The slope
inversion in the reflection symmetric parts of the ellipse about the principal axes offered
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inverse geometric phase gradients, thereby causing the opposite shifts of the characteristic
spots in centrosymmetry with the shift between them doubled. To compensate for the flip
of the spin angular momentum (SAM), an extrinsic orbital angular momentum (OAM)
was generated by an element of the slit ellipse, while the shifts for the two elements of
reflection symmetry were in the same rotational direction around the ellipse circumference,
and the intersection point of the profiles shifted in the direction perpendicular to the axis of
reflection symmetry. Moreover, when the observation plane moved farther from the surface
of the metallic slit, the geometric phase gradient resulted in the transverse component
of the momentum, thereby yielding the linearly increased shifts of characteristic spots
with greater observation distance. A slower increase in the shifts was demonstrated in the
direction of the major axis because of the smaller geometric phase gradient compared to that
of the minor axis. The feasibility of the proposed method and the results were analytically
and experimentally demonstrated. The present work provides a new nanostructure regime
and route for investigating the OSHE.

2. Theoretical Analysis of OSHE Produced by an Elliptical Curvilinear Nanoslit
2.1. Plasmonic Wave Field Based on the Incident and Converted Spin Components

An elliptical curvilinear nanoslit in gold film on a silica substrate is depicted in
Figure 1; Figure 1a is a schematic of the nanoslit, Figure 1b is the magnified demonstration
of a slit element, and Figure 1c presents the scanning electron microscope image of a
practical sample. The width of the elliptical nanoslit is w, and the semimajor and semiminor
axes of the inner edge are a and b, respectively, as shown in Figure 1c. In the Cartesian
coordinate system, the ellipse is expressed by x2/a2 + y2/b2 = 1, and the corresponding
parametric representation is x = a·cosθ and y = b·sinθ with 0≤ θ ≤ 2π, as shown in Figure 1a.
The light field E(xp, yp) at a point p(xp, yp) on the film surface is the superposition of the light
fields excited by all the slit elements of the elliptical nanoslit with a continuously varying
orientation angle α. The element at the point s(xs, ys) in Figure 1b acts as an individual
scatterer of surface plasmon polariton (SPP) and can be treated as a birefringent wave
plate [34] with the Jones matrix.

J(α) = R(−α)

[
tu 0
0 tv

]
R(α), (1)

where tu = |tu|·exp(iϕu) and tv = |tv|·exp(iϕv) denote the transmission coefficients along
the two orthogonal principal axes, and R(.) is the rotation matrix.
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Figure 1. Schematic of a slit element of the elliptical gold nanoslit embedded on silica substrate. (a) Top view of the elliptical
nanoslit and the basic geometric parameters. (b) Magnified demonstration of the shifts of the surface plasmon polaritons
produced by an element. (c) Scanning electron microscope image of elliptical nanoslit etched using focused ion beam.

When the nanoslit is illuminated by CP light Eσ
in = [1− σi]T/

√
2 propagating along the

z-axis, the excited SPP wave field is linearly polarized (LP) in the direction perpendicular
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to the nanoslit element, as shown in Figure 1a,b, and the corresponding coefficients are
tu = 1 and tv = 1. Consequently, the output SPP wave is written as:

E(xs, ys) = J(α)Eσ
in =

1
2
√

2

[
1
σi

]
+

1
2
√

2

[
1
−σi

]
exp(i2σα). (2)

Here, σ = ±1 denotes the right- and left-handed circular polarization (RCP and LCP),
respectively. Obviously, the right side of Equation (2) includes two terms. The first one
is referred to as ISC, which has the same helicity as the incident light, and is denoted by
Eσσ(xs, ys) = [1 − σi]T/2√2 ; the second one is CSC, which is denoted by Eσ−σ(xs, ys) = [1
− σi]T exp(−i2σα)/2√2 and has an helicity opposite to the incident light. It can be noticed
that the CSC acquires a spin-dependent geometric phase Φ = 2σα, which is a phase shift
achieved in the cyclic transformation of the polarization state and corresponds to a closed
loop circuit on the Poincaré sphere in the geometry of the parameter space [9,35–37].

The slit element dl at point s(xs, ys) on the ellipse is regarded as a radiating source,
and the output wave E(xs, ys)dl can be obtained based on Equation (2). Hence, the wave
field it produces at point p(xp, yp) near the center of the ellipse can be written as [38]

dE(xp, yp) = −(i/
√

λspp) dl cos γE(xs, ys) exp(iksppρ) exp(iπ/4)/
√

ρ (3)

where ρ is the distance between p and s, cosγ the inclination factor, and kspp = 2π/λspp the
wave vector of the SPPs. From the geometry shown in Figure 1a, we get ρ = |R – r|, where
|R| = (a2cos2θ + b2sin2θ)1/2 is the radial distance from point s on the ellipse to the origin.
The infinitesimal length of the source can be expressed as dl = (a2sin2θ + b2cos2θ)1/2 dθ =
R’dθ. Thus, the wave field excited by the whole elliptical nanoslit can be calculated as the
integral along the closed trajectory of the ellipse.

E(xp, yp) = C
∫ 2π

0
dθR′ cos γE(xs, ys) exp(iksppρ)/

√
ρ, (4)

where C is a complex constant. Substituting Equation (2) into Equation (4), the wave field
E(xp,yp) at point p(xp, yp) can be written as

E
(
xp, yp

)
= Eσσ

(
xp, yp

)
+ Eσ−σ

(
xp, yp

)
, (5)

with

Eσσ(xp, yp) = C′
∫ 2π

0
dθR′ cos γ

[
1
σi

]
exp(iksppρ)/

√
ρ (6a)

Eσ−σ(xp, yp) = C′
∫ 2π

0
dθR′ cos γ

[
1
−σi

]
exp(iksppρ + Φ)/

√
ρ. (6b)

Here, Eσσ(xp, yp) and Eσ-σ(xp, yp) are the ISC and CSC of E (xp, yp), respectively.
Equations (6a) and (6b) indicate that the wave field E (xp, yp) indeed contains the ISC Eσσ(xp,
yp) and CSC Eσ-σ(xp, yp) of CP. Because the additional geometric phase Φ = 2σα in Equations
(6a) and (6b) varies along the ellipse with the variant tangential angle α, a nonuniform
gradient of this phase will arise, thereby resulting in a change in the wave vector k of the
CSC relative to the ISC. Thus, the CSC will experience a change in propagating directions
and a variation of spatial distribution, and when characteristic intensity distributions such
as bright or dark spots exist in the wave field, the spots in the CSC will separate from those
in the ISC. As a result, the two component fields of orthogonal circular polarization will
split, which is a typical manifestation of the OSHE.
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The wave field of Equation (2) can equivalently be expressed as the superposition of
two orthogonal LP components E(xs, ys) = Ex(xs, ys)x̂+ Ey (xs, ys)ŷ with the unit direction
vector (x̂, ŷ). Therefore, the LP components are:[

Ex(xs, ys)
Ey(xs, ys)

]
=

[
1
σi

]
+

[
1
−σi

]
exp(iΦ). (7)

The wave field E(xp, yp) in the CP components Eσσ(xp, yp) and Eσ-σ(xp, yp) of
Equations (6a) and (6b) can also be written directly as Cartesian coordinate components
as follows:

Ex(xp, yp) =
∫ 2π

0
dθR′ cos γ[1 + exp(iΦ)] exp(iksppρ)/

√
ρ (8a)

Ey(xp, yp) =
∫ 2π

0
dθR′ cos γ[1− exp(iΦ)]σi exp(iksppρ)/

√
ρ. (8b)

The above equations indicate that each of the LP components Ex (xp, yp) and Ey (xp, yp)
of the field E(xp, yp) is the addition of the corresponding components in the ISC and CSC,
with CSC being imposed on the geometric phase. Owing to the shift in the CSC intensity
distribution related to this phase, the superposition of ISC and CSC may spatially average
the shift of the component fields Ex(xp, yp) and Ey(xp, yp). This results in a diminished
displacement in the LP component fields in comparison with that in CSC.

2.2. Characteristic Spot Shifts Depending on the Geometric Phase Gradient

The direct solutions of light fields in the above equations are unachievable for elliptical
slit, but based on these equations, the light field shifts due to the geometric phase can
be analyzed physically and numerically. The gradient of the phase of the light field is
related to the wave vector k, which also represents the photon momentum. Thereupon,
the geometric phase gradient ∇Φ from the elliptical slit provides an additional transverse
component ∆kσ in the momentum k of CSC and is directly written as [39]

∆kσ = ∇Φ = ∂xΦ x̂ + ∂yΦ ŷ, (9)

where ∂x and ∂y denote the derivatives with respect to x and y, respectively. With the tan-
gential angle α = π/2 − arctan[a2x/(b2y)], the derivative of Φ is simply expressed as ∂x(y)Φ
= 2σ∂x(y)·α. Thus, the geometric phase gradients of the CSC in parameter representation
are obtained.

∂xΦ = −2σb sin θ/(a2 sin2 θ + b2 cos2 θ) (10a)

∂yΦ = 2σa cos θ/(a2 sin2 θ + b2 cos2 θ). (10b)

It follows that:

∆kσ = [−2σb sin θ/(a2 sin2 θ + b2 cos2 θ)]x̂ + [2σa cos θ/(a2 sin2 θ + b2 cos2 θ)]ŷ (11)

The influence of the additional momentum ∆kσ on the propagation and consequently
on the spatial distribution of the light field is analyzed in two aspects. First, in the gold–air
interface, the change in the propagating direction due to the momentum change ∆kσ in
the wavelet excited by a slit element at azimuth θ causes the superposed field of all the
wavelets to exhibit the whole-field in-plane shifts in the interface. Second, for the light
distributions at a transverse plane away from the interface, ∆kσ provides an additional
transverse deflection for the wavelet from a slit element and thus gives rise to additional
transverse shifts δ

(z)
ex and δ

(z)
ey increased with distance z linearly, with the subscript as the

notion of a slit element. The shift of the light field exiting from the element includes
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two parts: the initial shifts corresponding to δx and δy at the interface, and δ
(z)
ex and δ

(z)
ey

increasing with z by δ
(z)
e = ∆kσ·z/k0 = δ

(z)
ex x̂+ δ

(z)
ey ŷ [39]. From Equation (11), we get:

δ
(z)
ex = [−2σb sin θ/(a2 sin2 θ + b2 cos2 θ)](λ0/π)z (12a)

δ
(z)
ey = [2σa cos θ/(a2 sin2 θ + b2 cos2 θ)](λ0/π)z. (12b)

To comprehend the overall effect of the phase gradient ∇Φ on the shift of light
intensity distributions and the characteristic spots, we plotted the curves of gradients ∂x
Φ and ∂yΦ along the elliptical nanoslit as a function of azimuth θ in Figure 2a, which
are calculated based on Equations (10a) and (10b). The basic characteristics of the curves
for ∂xΦ and ∂yΦ are noticeable. In a comparatively large range of θ, the curve of ∂xΦ
remains nearly negative and positive constant values in the intervals [0, π] and [π, 2π],
respectively, corresponding to the upper and lower halves of the ellipse, respectively, with
the corresponding momentum demonstrated by the red arrows on the ellipse in Figure 2b.
The curve of ∂yΦ has positive and negative values in the intervals [–π/2, π/2] and [π/2,
3π/2], respectively, corresponding to the right and left halves of the ellipse, respectively;
on both sides of the midpoint of each interval, the curve increases and decreases linearly
symmetrically, and the momentum is indicated by the blue arrows in Figure 2b.
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Subsequently, as an example, we observe the most obvious characteristic spot P1
focused by the right half of the elliptical slit, which yields the phase gradient ∂yΦ in the
upward direction, as indicated in Figure 2b. The gradient ∂yΦ, as the additional momentum
component, is added to the primary momentum of the wavelet from the element on the
elliptical slit and causes the propagation direction of the wavelet to change upward. As a
result, the characteristic spot P1, as the overall superposition of the wavelets from the right
half of the ellipse, shifts upward; this is demonstrated in Figure 2b and can be observed in
the following sections. Similarly, for the characteristic spot P2 formed by the focusing of
the lower half of the ellipse, the additional momentum component corresponding to the
phase gradient ∂xΦ in the rightward direction is added to the primary momentum of the
wavelet from the slit, thereby causing the propagation direction of the wavelet to change
rightward and the spot P2 to shift rightward thereupon. Furthermore, the phase gradient
on either the left or the upper half of the ellipse causes the shift of the spot in a direction
opposite to that of the counterpart spot P1 or spot P2, respectively.

Based on the above analysis, it can be inferred that, in contrast to OSHE in semicircular
slit with a single spot shifting along the diameter, the OSHE in the elliptical slit exhibits the
opposite shifts in pairs of counterpart spots along the major and minor axes, respectively,
and thus the effect becomes more obvious and more easily observable.
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3. Simulations and Discussions

To illustrate the OSHE in the elliptical nanoslit, we first performed simulations using
the finite-difference time domain (FDTD) as an accurate numerical method to achieve the
light field. The thickness of the gold film was 200 nm, and the parameters of the elliptical
nanoslit shown in Figure 1c were a = 3 µm, b = 2 µm, and w = 100 nm. The CP light with a
wavelength of 632.8 nm illuminated the sample at the normal incidence. For comparison
and physical analysis, we also conducted numerical integral calculations of the wave fields
of the elliptical nanoslit based on Equations (6a)–(8b). In the FDTD performance, the
simulation area was set to 6.4 µm × 5 µm × 4 µm, with a minimum mesh cell size of 5 nm.
We proposed an algorithm that numerically mimicked a polarization filter composed of
a quarter-wave plate and a polarizer, through which LCP and RCP fields are separated
and ISC and CSC are obtained. In the numerical integral calculations, the CP components
Eσσ(xp, yp) and Eσ-σ(xp, yp) as well as the LP components Ex(xp, yp) and Ey(xp, yp) of the
wave field distributions at the interface z = 0 were calculated directly.

3.1. Centrosymmetric Spot Shifts of OSHE Related to the Noncircular Symmetry of Elliptical Slit

Unlike the semicircular nanoslit with noncircular symmetry but reflection symmetry
about the central axis perpendicular to the diameter, the elliptical nanoslit is a structure
with noncircular symmetry but reflection symmetry about the y- and x-axes simultaneously,
thereby leading to the geometric phase gradients in both x- and y-directions, respectively.
Thus, the characteristic spots shifting in the x-direction (white circles) and others shifting
in the y-direction (red circles) occur simultaneously in transmission images, as shown in
Figure 3(b1–d4). Figure 3 depicts the intensity images of the ISC, CSC, x-component, and y-
component of the transmitted light fields obtained with the numerical integral calculations
based on Equations (6a)–(8b) as well as FDTD at the gold–air interface z = 0 under the
illumination of the RCP and LCP, respectively. The white dashed horizontal and vertical
lines are drawn to designate the x- and y-axis, respectively. The ISC and CSC intensity maps
inside the ellipse exhibit bright spot-like distributions originating from the reflection but
noncircular symmetry, that is, reflection symmetry about the x- and y-axis but asymmetry
under a rotation from the x-axis to the y-axis of the elliptical nanoslit. The bright spots
with high intensities can be regarded as the characteristic spots, which are marked with
circles. On the one hand, for the maps of the ISC, the distributions of the light field along
with the included bright and characteristic spots are reflection symmetric about the x- and
y-axis, which derives from the superposition of wavelets from the elliptical slit of reflection
symmetry. On the other hand, in the images of the CSC, each characteristic spot shifts
either vertically or horizontally relative to its counterpart in the ICS image, depending on
the locations on either the x- or y-axis.

Moreover, because of the centrosymmetry of the elliptical slit, the intensity distribu-
tions of the CSC are also centrosymmetric; therefore, they appear as coinciding bright spot
distributions as a 180◦ rotation about the z-axis of the ellipse center is accomplished. Fur-
thermore, the shifts of the characteristic spots in a symmetrical pair are equal but opposite
with respect to the x- or y-axis, and the separation between a pair of spots is twice the shift
of each spot. Physically, this results from the noncircular but reflection symmetry of the
ellipse, and under such a symmetry, the slope of the ellipse and the corresponding gradient
of the additional geometric phase are inverse with respect to the x- or y-axis, thereby giving
rise to the opposite shift of the characteristic spots and the centrosymmetric intensity
distributions, as described above. In each of the intensity maps of the LP components
Ex(xp, yp) and Ey(xp, yp), there are only two centrosymmetric characteristic spots, marked
with red or white circles in Figure 3, in contrast to the four characteristic spots in two
symmetric pairs distributed along the x-axis or y-axis, respectively, in the ISC and CSC
maps. Interestingly, the two spots in the x-polarized component are distributed along the
x-axis, but their shifts are opposite in the y-direction, and the same is true for the spots in
the y-polarized component with their shifts in the x-direction. This means that the spilt of
the characteristic spots is perpendicular to the direction of the linear polarization. When
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the closed elliptical nanoslit is used to measure the OSHE, it might be advantageous over
the previous truncated semicircle nanoslit. In the semicircular nanoslit system, the shift of
the single spot from the center of the semicircle is used, and the unobservable center as the
reference point needs to be accurately determined, which would bring about inconvenience
for the performance and additional errors of measurement. While in the elliptical nanoslit
system, the relative shift between the characteristic spots in a symmetrical pair is doubled,
the symmetric spots are clearly observable and the shift is determined without needs for
other reference; this makes the OSHE more easily measurable with better accuracy.
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Obviously, the shifts between the characteristic spots in the x- and y-component fields
are smaller than (actually half) those between the spots of the corresponding symmetric
pair in the CSC field, as shown in Figure 3, with the spots in corresponding pairs marked
with red and white circles, respectively, for clarity. This happens because the fields of the
x- and y-component are the addition of the fields of corresponding component in both
CSC and ISC, as noticed in Equations (8a) and (8b), and the shifts of spots occur solely in
the CSC field, not in the ISC field. To analyze the shifts more quantitatively, the intensity
curves through the centers of the characteristic bright spots were extracted from the images
of the x- and y-component, together with the curves through the corresponding spots from
CSC and ISC, respectively, are shown in Figure 4. The curves in Figure 4a designate the
intensity data along the vertical lines, marked with the dashed green vertical line segments
in Figure 2(a2–c2), while the curves in Figure 4b indicate the data along the horizontal
lines, marked with the black segments in Figure 3(a2,b2,d2). For the curves in Figure 4a,
the y-coordinates corresponding to the peaks of the intensity curves for the x-component
and CSC are practically the spot shifts along the y-direction, referred to as y-shifts, which
are read at 0.1098 µm and 0.2218 µm, respectively, under the parameter values set for the
simulations; meanwhile, the peak at zero y-coordinate in the ISC intensity curve can be
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used as the reference for the shifts of the corresponding spots in the x-component and in
the CSC fields.
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Similarly, in Figure 4b, the shifts along the x-direction, referred to as x-shifts, of the
characteristic spots in the y-component, CSC and ISC, are 0.1032 µm, 0.2023 µm, and
0 µm, respectively. These values demonstrate that, with good accuracy, the shifts of
the bright spots marked with colored circles in the x- and y-components are half those
of the corresponding spots in the same color circles in the CSC. Because the LP x- and
y-components are the addition of the corresponding components in both ISC and CSC,
and the characteristic spots in CSC merely experience a shift relative to their unshifted
counterparts in ISC, with their size and brightness almost unchanged, the peaks in the
curves of the x- and y-components are formed at the midpoint of the ISC and CSC peaks,
as demonstrated by the obtained shift values. Therefore, the phenomenon in which the
shifts of the spots in the LP components are half those in CSC is essentially the result of
OSHE occurring solely in the CSC field of the elliptical nanoslit. Although the shifts of the
LP component spots have been used to measure the OSHE in curvilinear nanoslit regimes
in previous literature, the shifts of the CSC spots, acquired by separating the CSC from the
total light field, can be observed more clearly and can demonstrate the mechanisms of the
OSHE more explicitly.

It is worth noting that when change in the wavelength λ of the illuminating light takes
place, the propagation phase shift will change by 2πs/λ with s being the path difference;
as a result, for the intensity distributions of ISC Eσσ similar to those in Figure 3, the size
of the bright spots and their separation distances will vary with λ, but the basic form of
the symmetrical intensity distribution remains unchanged. Moreover, the geometric phase
depends only on the orientation of the slit element and is independent of wavelength, and
correspondingly, the properties of the characteristic spot shifts and their symmetry will
also remain basically unchanged.

In addition, by using the FDTD simulations, the efficiency of the elliptical nanoslit for
the OSHE were estimated. By taking a rectangle which was matched to include the nanoslit
ellipse, the input power was calculated as product of the illuminating light intensity and
area of the rectangle; the output power was calculated by integrating the intensity of
the transmitted CSC component immediately after the elliptical slit. Thus, we obtained
the estimated efficiency 4.45% as the ratio of the output power to the input power. The
low efficiency is resulted from the small area ratio of the nanoslit and loss of the metal
medium. Fortunately, the transmitted intensity distributions with the characteristic spots
are easily measurable in the experimental setup, as will be demonstrated in the later
experimental Section.
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3.2. Conservation of Angular Momentum in SOIs with the Slit

Furthermore, the OSHE is associated with the phenomena of optical SOIs. As the
incident light passes through the nanoslit, the change of the polarization state corresponds
to the variation of the SAM, which gives rise to a change in the OAM with the conservation
of the total angular momentum (TAM). Afterward, the change in the momentum or the
propagation direction of light can occur correspondingly. Particularly, regarding RCP light
as an example for the incident light with a TAM of 〈Sin〉 ∝ 1, while the TAM 〈J〉 of the
transmitted light field is conserved, both the TAMs of CSC 〈Jc〉 and ISC 〈Ji〉 are conserved
as well. Here, the angle brackets 〈.〉 represent the mean SAM of the light field [40]. The
CSC is flipped to LCP with SAM 〈Sc〉 ∝ −1, and the change of SAM is 〈∆Sc〉 = 〈Sc〉 −
〈Sin〉 ∝ −〈Pc〉/〈Pc〉 − 〈Pin〉/〈Pin〉, where 〈Pin〉 and 〈Pc〉 are the mean momenta of incident
light and CSC, respectively [40]. The conservation of angular momentum 〈Jc 〉 = 〈Jin〉
sets 〈Jc〉 = 〈Lc

ext 〉 + 〈Sc〉 ∝ 1, with the superscript denoting extrinsic OAM [8,40,41]. The
process indicates that 〈∆Sc〉 introduces a change in extrinsic OAM and equivalently causes
changes in light propagations and distributions. One of the possible results to compensate
for the flip of the SAM by creating extrinsic OAM in CSC is that the wavelet profile on
each side of a slit, as schematically demonstrated by the red dashed curves in Figure 1b,
undergoes the transverse shift δu or -δu along the u-axis with respect to an unshifted
profile in the blue dashed curve, which represents the profile of the ISC field. The extrinsic
OAM of the wavelet propagating in the v–direction is accordingly 〈Lc

ext 〉 = δu × 〈Pc〉 [40].
For two slit elements A and B, which are reflection symmetric with respect to the x-axis,
the counterclockwise shifts δu of their CSC field profiles correspond to equal extrinsic
OAM change and causes the intersection point of their propagating field profiles to shift
downward, as shown in Figure 1a, and thus the characteristic spot shifts in the y-direction.
This schematic is also consistent with the above analysis with the geometric phase gradients.
Though somewhat rough, the schematic is simple and intuitive, and more accurate results
can be demonstrated by the analytical and numerical integrals and calculations.

3.3. Variation of the Spots and the Shifts with the Observation Distance

When the observation plane moves away from the sample surface with distance z,
the OSHE is manifested as an increase in the characteristic spot shifts in the outgoing CSC
component field, as described above. Figure 5a illustrates the full intensity image of the
CSC fields obtained with FDTD at z = 3 µm, and Figure 5b presents the image consisting of
striped intensity images, including the characteristic spots of the x-shift at distances from
z = 0 to z = 5 µm, where the striped map at z = 3 µm cut off from its full map is marked
with the white dashed rectangle in Figure 5a. Figure 5c depicts the striped maps including
the characteristic spots of the y-shift, and Figure 5a indicates the striped map at z = 3 µm
marked with the red dashed rectangle. In Figure 5, we can notice that both the x- and
y-shifts of the characteristic spots increase with the propagation distance z, which is in
good agreement with the dependence of the shift on the propagation distance provided by
Equations (10a) and (10b).

For a more quantitative demonstration, Figure 5d–e show the curves of CSC intensity
profiles versus x and y, respectively, passing through the maximum intensity points of
characteristic spots along the y- and x-axis at different distances. The x- and y-shifts of
the spots along the y- and x-axis are read from the profiles, respectively, and the curves
of the x- and y-shifts versus distance z for CSC are illustrated in Figure 5f. Similarly, the
curves of the shifts versus distance z for y- and x-polarization components, respectively,
are also shown in Figure 5f. From these curves, we notice that the y-shift increases more
quickly than the x-shift for either the CSC or the LP components, as it can be observed more
clearly in Figure 5c in comparison with Figure 5b for CSC. We also notice that even the spot
size increases more quickly in Figure 5c. This originates from the different distributions
of geometrical phase gradients along the x- and y-directions; the larger deflections in the
y-direction result from the larger phase gradient, which is consistent with the results of
Equations (12a) and (12b) as well as the analysis presented above.
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4. Experiment

To verify the OSHE through the closed curvilinear nanoslit, we fabricated a sample
of elliptical nanoslits using focused ion beam etching and conducted experimental ob-
servations and measurements. The physical parameters of the elliptical nanoslit were
the same as those involved in the simulation. A schematic of the experimental setup is
illustrated in Figure 6. A He–Ne LP laser of wavelength 632.8 nm with power 30 mw is
converted into CP light by a properly oriented quarter-wave plate (QWP1) and is utilized
as the incident light to illuminate the sample from the substrate side. The sample was
mounted on a three-dimensional transitional stage. The light waves scattered from the
sample surface were collected and imaged by a microscope objective (Nikon, NA 0.9, 100×).
The light fields of the ISC and the CSC are selected by adjusting QWP2 and polarizer P,
and the images are received by an S-CMOS (Zyla 5.5, 16-bit, 2560 × 2160 pixels, pixel size
6.5 µm × 6.5 µm). When QWP2 is removed, by adjusting the transmitting direction of P,
the images of the x- and y-components are recorded.

Figure 7 presents the experimental results for |Ex|2,|Ey|2,|Eσσ|2, and |Eσ−σ|2

produced by the elliptical nanoslit at a distance z = 2 µm, respectively, with the images in
Figure 7(a1–d1) in the upper row for RCP illumination and Figure 7(a2–d2) in the lower row
for LCP illumination; Figure 7e–f are results for |Ex|2 and |Ey|2 near the gold–air interface
for RCP illumination, respectively, where the elliptical slits are marked with dotted lines,
points A and A’ are the vertices, and points B and B’ are the co-vertices of the ellipse. The
centrosymmetric distributions of characteristic spots in the intensity maps of |Ex|2,|Ey|2,
and |Eσ−σ|2 are obvious, and the centrosymmetric shifts of characteristic spots in the CSC
images in Figure 7(b1–b2) with respect to those in ISC images in Figure 7(a1–a2) are the
direct experimental verifications of the OSHE.
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Figure 6. Schematic illustration of the experimental setup. QWP1 and QWP2 represent quarter-wave
plates, A is attenuator, S stands for sample, microscope objective lens is denoted by MO, and P
is Glan–Thompson polarizer. Laser is He–Ne with an emission wavelength of 632.8 nm, and the
S-CMOS camera model is Zyla 5.5.
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Figure 7. (a1–d2) Experimental results of different components of transmitted fields with RCP (a1–d1) and LCP (a2–d2)
illumination at z = 2 µm. (e–f) Experimental results of |Ex|2 and |Ey|2 near the gold–air interface under RCP illumination.
The incidences are marked with white arrows.

As can be observed by comparing the corresponding spots in the intensity maps of
Figure 7(b1,b2), the shifts of characteristic spots in the CSC images under RCP and LCP
illuminations are in opposite directions. This indicates that the geometric phase gradient
depends on the spin, as expected from the previous analysis. Similarly, the corresponding
centrosymmetric pairs of spots in the intensity maps of |Ex|2 and |Ey|2 shift in opposite
directions as well, but the distances between the spots along the x- and y-axis are smaller
than (approximately half) the corresponding distances in the images of |Eσ-σ|2. For
clarity in determining the shifts, we designate the characteristic spot pair by drawing two
yellow horizontal dashed lines passing through the center of the spots of the y-shift in
Figure 7(b1–c2) and draw the yellow vertical dashed line to designate the y-axis in CSC
and |Ey|2 images, respectively. These experimental results were consistent with those
obtained by the FDTD simulation shown in Figure 3.

From the maps in Figure 7e,f we can demonstrate the geometric phase imposed on the
transmitted wave and slope of the elliptical slit, which was inverse along the principal axes.
In Figure 7e, intensity of |Ex|2 vary along the elliptical slit marked by the dotted curve, it
takes the maximum values at the vertices A and A,’ and it takes minimum values at the
co-vertices B and B.’ Based on Equation (7), Ex ~1 + exp(iΦ) is obtained, and the |Ex|2 map
is actually the interference of the CSC and the ISC; maximum and minimum intensities
at A and B indicate ΦA = 0 and ΦB = π, respectively; similarly, the ΦA’ = 2π and ΦB’ = 3π
are obtained. We now consider the two points C and C’ which are symmetric with respect
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to minor axis, and geometric phases have also symmetrical values with respect to that of
point B, that is, ΦC = π − ∆Φ and ΦC ’= π + ∆Φ, respectively. With ∆α = ∆Φ/2, we have
αC = π/2 − ∆Φ/2 and αC’= π/2 + ∆Φ/2, and consequently, the slopes of points C and C’
are kC = cot(4Φ/2) and kC’ = − cot(4Φ/2), respectively, demonstrating that the slope is
inverse along the minor axis of the ellipse slit. Similarly, by using Ey ~i[1 − exp(iΦ)], the
same conclusion can be obtained using the intensity of |Ey|2 in Figure 7f, and it can also
be demonstrated that the slope of slit is inverse along the major axis of the ellipse slit.

Figure 8 depicts the experimental and FDTD results near the gold–air interface with
LP light illumination. As the superposition of the RCP and LCP, the LP incident light
causes the double shifts of the characteristic bright spots in opposite directions for the
transmitted field, and the intensity maps are reflection-symmetric, as can be noticed in
Figure 8. For the converted RCP and LCP components, the acquired additional geometric
phases are in opposite signs, thus the two different CP component fields split, which
is the manifestation of the OSHE. Owing to the noncircular symmetry of the elliptical
nanoslit and the subsequent geometric phase gradient in the x- and y-directions, such splits
occur in both the x- and y-directions simultaneously. Overall, experimental observations
demonstrate theoretical analysis and numerical calculations and suggest that the geometric
phase associated with the spin–orbit interaction underpins the shifts of the characteristic
spots and the OSHE in the closed curvilinear nanoslits.
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5. Conclusions

In summary, instead of the usual truncated curvilinear nanoslit, a single closed ellipti-
cal nanoslit was used to demonstrate and observe the OSHE. Compared to the truncated
symmetry-breaking curvilinear slits in literature, the present work employed a closed
elliptical slit with the noncircular but reflection symmetry and achieved centrosymmet-
ric shifts occurring as bright characteristic spot pairs in the light field. Instead of the
conventional measurement of OSHE in the curvilinear slit regimes in which the two spin
components were not distinguished with incomplete understanding of the inherent physics,
the polarization separation method was firstly introduced in the investigation, and the
transmitted light field was divided into ISC and CSC fields. Thus the shifts of characteristic
spots were more clearly observable and the mechanism of the related OSHE was more
explicit. The elliptical nanoslit offered the geometric phase gradients of the CSC field,
which were inverse about the principal axes; consequently, the characteristic spot pairs
shifted in opposite directions and thus the shift between them was doubled. Moreover,
the change in the extrinsic OAM resulted from the flip of the SAM in the CSC field and
gave rise to the shifts of the wavelet profiles from the slit elements in the same rotational
direction, thereby yielding centrosymmetric shifts in the characteristic spot pair. The shifts
of the characteristic spots increased with the observation distance linearly, and the smaller
phase gradient along the major axis set a slower increase. The principles and results based
on the analytical and simulation performances as well as the experimental demonstrations
might be developed to different kinds of curvilinear nanoslits for OSHE. We believe that
this study could be significant for subjects involving applications of the OSHE, such as
nanophotonics, precision metrology and spin-based photonics.
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