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Abstract
Bioinformatic tools are currently being developed to better understand the Mycobac-
terium tuberculosis complex (MTBC). Several approaches already exist for the
identification of MTBC lineages using classical genotyping methods such as mycobac-
terial interspersed repetitive units—variable number of tandem DNA repeats and
spoligotyping-based families. In the recently released SITVIT2 proprietary database of
the Institut Pasteur de la Guadeloupe, a large number of spoligotype families were
assigned by either manual curation/expertise or using an in-house algorithm. In this
study, we present two complementary data-driven approaches allowing fast and precise
family prediction from spoligotyping patterns. The first one is based on data transfor-
mation and the use of decision tree classifiers. In contrast, the second one searches for
a set of simple rules using binary masks through a specifically designed evolutionary
algorithm. The comparison with the three main approaches in the field highlighted the
good performances of our contributions and the significant runtime gain. Finally, we pro-
pose the ‘SpolLineages’ software tool (https://github.com/dcouvin/SpolLineages), which
implements these approaches for MTBC spoligotype families’ identification.

Introduction

Tuberculosis (TB) is an infectious disease caused by bac-
teria belonging to the Mycobacterium tuberculosis com-
plex (MTBC), with a broad host range. MTBC includes
a group of closely related species: Mycobacterium tuber-
culosis sensu stricto, Mycobacterium africanum, Mycobac-
terium bovis, Mycobacterium caprae, Mycobacterium pin-
nipedii, Mycobacterium suricattae, Mycobacterium orygis,

Mycobacterium microti, Mycobacterium mungi and prob-
ably other ecotypes yet to be determined. Phylogenomic
analysis of this group of organisms based on next-
generation sequencing, digital DNA–DNA hybridization
and average nucleotide identity showed that they might

be considered as heterotypic synonyms of M. tuberculo-
sis (1). TB is a global health problem that has killed 1.5

million people in 2018 according to the World Health
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Organization (2). Several genotyping methods are used
to identify the MTBC isolates. Mycobacterial interspersed
repetitive units—variable number of tandem DNA repeats
(MIRU-VNTRs) and spoligotyping are two methods used
mainly by researchers studying this pathogen (3, 4). Spolig-
otyping method uses the genetic diversity in the ‘clus-
tered regularly interspersed short palindromic repeats’
(CRISPR) locus, which is also known as the direct repeat
locus. More recent approaches are based on the Whole
Genome Sequencing (WGS) to better decipher and clas-
sify the MTBC isolates. Seven major TB lineages have
been identified: Lineage 1 (Indo-Oceanic), Lineage 2 (East-
Asian), Lineage 3 [East-African-Indian (EAI)], Lineage 4
(Euro-American), Lineage 5 (West-Africa 1), Lineage 6
(West-Africa 2) and Lineage 7 (Ethiopian or Aethiops
vetus lineage). These lineages are known to cause TB in
humans throughout the world, and some of them (such
as Lineage 3) are relatively specific to certain regions,
whereas others (such as Lineage 4) are more globally dis-
tributed (5). In the SITVIT2 (6) proprietary database of
the Institut Pasteur de la Guadeloupe (http://www.pasteur-
guadeloupe.fr:8081/SITVIT2/), which is an update of pre-
viously released SpolDB/SITVIT databases (7, 8), Lineage
1 is known as EAI; Lineage 2 is known as Beijing; Lin-
eage 3 is known as Central Asian (CAS); Lineage 4 includes
Cameroon, Haarlem (H), Latin-American-Mediterranean
(LAM), NEW-1 (formerly named Ural-2), S, T, Turkey,
Ural and X; Lineage 5 is known as AFRI 2 and AFRI 3;
Lineage 6 is known as AFRI 1 and Lineage 7 is known
as Ethiopian. Two newly discovered lineages (Lineage 8
and Lineage 9) seemingly restricted to Africa were recently
described (9, 10).

The design of prediction techniques for MTBC lineages
is a critical task in TB molecular epidemiology because
each lineage has its specificity and peculiarity regarding
public health aspects such as virulence or antibiotic drug
resistance. Therefore, knowledge concerning the lineages
involved in a given outbreak may bring potential clues
in TB diagnostics (by providing a better understanding of
the disease) and in the development of improved treat-
ments. Easily interpretable rules or methods allowing to
differentiate lineages are constantly needed for a better
understanding of TB epidemiological diversity in the given
regions of the world. Data-driven methods could facilitate
the accurate and rapid prediction of lineages based on an
updated nomenclature. The automation of lineages predic-
tion is also helpful for the curation/improvement of existing
or novel biological databases.

In this paper, we focus on the classification of
MTBC genotypic lineages. In particular, we propose two
approaches that aim to extract interpretable models: (i) the
decision tree (DT) with data transformation and (ii) the

search for binary mask combinations with an evolution-
ary algorithm (EA). Our objective was to evaluate the
performances of our two approaches in the prediction task
of MTBC lineages. For this purpose, the performances of
our methodology were compared to the three main clas-
sification approaches that stand as references in the field.
The experiments conducted have thus allowed highlight-
ing the good performances of our approaches, which are
of great significance for the current database development
and improvement.

Related works

Knowledge Discovery from Databases (KDD) is the ‘non-
trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data’ (11). Over
the last 30 years, advanced prediction methods and tools
borrowed to the KDD field have contributed to defining
new kinds of prediction models, namely data-driven mod-
els. They consist of searching for correlations between
predictive historical variables and output variables. When
the output variables are discrete, the problems consid-
ered are referred to as ‘classification problems’. Among the
current techniques used to tackle these problems, artifi-
cial neural networks (ANNs), DTs, instance-based learn-
ing or correlation analysis are the most common. They
have proved to perform quite accurately in comparison to
knowledge-driven solutions with the advantage of requir-
ing less knowledge for their implementation. However,
one of the issues in data-driven approaches is the under-
standability and readability of models that end-users should
trust. Indeed, a lot of techniques, including ANNs, can be
seen as delivering black-boxes since they do not provide
explanations of how they work. Decision-makers are more
likely to trust models whose predictions are interpretable
and understandable.

EAs (12, 13) are population-based metaheuristic opti-
mization methods inspired by the main principles of the
neo-Darwinian theory of evolution. They have been widely
used in the KDD field (14), including the search of rule-
based predictionmodels (15, 16). A population of solutions
undergo evolution by applying genetic operators such as
selection, replacement and mutation. These methods have
proved to be efficient to find useful solutions for optimiza-
tion and search problems with acceptable execution time
comparatively to exhaustive techniques. In the following
section, we present the main parts of the EA that we have
designed to address our classification problem.

Several software tools allow to predict MTBC geno-
typing families from spoligotyping and/or MIRU-VNTR
patterns; examples include the following online resources:
MIRU-VNTRplus (17), StackTB (18), TB-Lineage and
other TB-Insight’s tools (19) and TBminer (20); however,
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most of the existing tools are only available as online tools
limiting the amount of data that can be analysed. Some
available software tools are using more or less complex
algorithmic approaches that are not easily understand-
able for neophytes (or persons with few or no computing
skills). All the available tools are nevertheless useful and
present specific functionalities and complementary predic-
tion algorithms.

RuleTB is one of the approaches used in StackTB online
tool, allowing to determine MTBC families from 24-loci
MIRU-VNTR basing on a direct method that proposes
a concise set of rules (18). StackTB also uses a machine
learning approach that requires only a fraction of training
data to determine lineages. RuleTB is used in SpolLineages
to potentially predict MTBC families from MIRU-VNTR
data.

TB-Lineage is an online tool using a rule-based system
allowing to classifyMTBC genotypes (spoligotyping and/or
24-loci MIRU-VNTR) into major phylogenetic lineages.
The model was trained using labelled spoligotype data with
spoligotypes belonging to East Asian, EAI, Euro-American,
West African 1 and 2,M. bovis and Indo-Oceanic lineages.
For the purpose of the Naive Bayes classifier, each spolig-
otype is represented as a binary 12-dimensional feature
vector. Each dimension represents the presence/absence of a
contiguous deletion. Presence of a deletion means no spac-
ers are present in the subsequence, while absence means at
least one spacer is present in the subsequence. The model
takes into account the fact that the evolution of the direct
repeat (or CRISPR) locus occurs via deletion of one or more
contiguous spacers with some non-negligible probability,
whereas insertion of repeats is highly unlikely (22). The
features selected to represent a spoligotype were single dele-
tions of spacers 3, 16, 8, 9 and 39 and contiguous deletions
of spacers 1–34, 25–28, 29–32, 33–36, 39–43, 4–7 and
23–24 (19).

Borile_AP (23) is an affinity propagation algorithm
embedded in TBminer (20), allowing to assign MTBC
spoligotype families from spoligotyping data. Furthermore,
TBminer also utilizes different machine learning algorithms
to predict a consensual taxonomy from lineage assigna-
tions obtained using TB-Lineage, MIRU-VNTRplus and
SITVITWEB. In the Borile affinity propagation taxonomy,
distances to the 32 Borile references were computed based
on shared blocks of absent spacers (23). Every isolate
was assigned to the group of the most similar reference,
and unassigned when equal distances were found with at
least two references. Borile AP taxonomy also used three
methods to compute distances: Domain Walls, Blocks and
Deletions methods. These distance methods were used to
compute the distance between each SpolDB4 spoligotype
pattern and the references of the main MTBC families.

The AP method is based on the choice of ‘exemplars’ as
centres of the clusters, i.e. one representative data point
for each cluster to which the other nodes rely upon. The
choice of the exemplars is based on the minimization of
the total ‘energy’ of the system, function of the total dis-
tance between data points and exemplars in a given clusters
configuration. This method falls in the class of message-
passing type algorithms, exploiting the belief propagation
method (also known as cavity method) to minimize the
energy function in an computationally efficient way [from
the exponential time complexity of the naive methods to
O(N2), where N is the total number of nodes to a cluster].
The starting point is thus a set of data points, representing
the nodes of the network, and a similarity matrix S defin-
ing the similarities among all the nodes as deduced from the
distance between all these nodes (20).

Researchers can also use the SITVIT2 database and
its associated tool SpolSimilaritySearch (24) to query the
database or search for similar spoligotype patterns from
the database using regular expressions. The binary rules
described in SITVIT2 (defined here as expert rules) were
used with regular expressions taking into account 43
spoligotyping spacers, where the character ‘n’ (or num-
ber 1) represents a mandatory presence of spacer, the
character ‘o’ (or number 0) represents an absence of spacer
and the character ‘.’ represents either an absence or a
presence of spacer. When a given spoligotyping pattern is
classified ambiguously and corresponds to different fami-
lies, the newly defined priority rules consist in first selecting
the families that would be the most specific (basing on
our past experience in spoligotyping patterns analysis). For
example, a spoligotyping pattern that has been classified
as belonging to both T1 (defined by the absolute presence
of spacer rank number 31 and the absence of spacer rank
numbers 33–36) and X1 (defined by the absolute presence
of spacers 17 and 31, and by the absence of spacer 18
as well as spacers 33–36) sublineages would be reclassi-
fied as belonging to X1 sublineage since X1 prototype is
more specific than T1 family according to the priority rules
implemented in the SpolLineages program. Another exam-
ple is the classification of patterns potentially belonging to
both T and Turkey lineages, where the priority rules will
allow the selection of Turkey if this ambiguity is noticed
(see binary rules table on the dedicated ‘Help’ page of
SpolLineages website for further details). Table 1 shows
some examples of binary rules for MTBC spoligotype fam-
ilies (AFRI 2, Beijing, CAS1-Delhi, EAI1-SOM, Ethiopian,
H1, LAM1, T1 and Turkey) used in the SITVIT expert
classification.

Further details concerning spoligotyping based MTBC
families/lineages could be found in previous works
(6–8).
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Table 1. Examples of expert binary rules for some MTBC

spoligotype families

Sublineages 43 spoligotyping spacers

AFRI 2 ……nooooon……noooon……….nooon…
Beijing oooooooooooooooooooooooooooooooooo………
CAS1-Delhi ..noooon………….noooooooooooon……..
EAI1-SOM ……………………….oooono. non..
Ethiopian nnnooooooooooooooooooooon..oo……n…….
H1 ……………………noooooonoooo…….
LAM1 ..o……………..oooon…..n.oooo…….
T1 …………………………n.oooo…….
Turkey ……………….ooooonoon..n.oooo…….

Interestingly, other software tools were developed,
allowing to predict spoligotyping and MIRU-VNTR
patterns from WGS data (SpolPred, SpoTyping, MIRU-
profiler and MIRUReader) (25–28). Furthermore, the fol-
lowing programs are some examples of tools allowing
to make lineage and/or antibiotic resistance prediction
from WGS FASTQ (https://en.wikipedia.org/wiki/FASTQ)
sequence reads: KvarQ, TB-Profiler, PhyResSE and TGS-
TB (29–32). Another recent software named SNP-IT
allows predicting MTBC lineage directly from
DNA sequence using single-nucleotide polymorphisms
(SNPs) (33).

Methodology

Datasets were extracted from the SITVIT2 database. A sub-
set of 7668 (4594 for the training set+3074 for the testing
set) unique profiles were randomly generated from strains
belonging to 14 representative MTBC spoligotype families
as defined in SITVIT2 (6). Predictions from NEW-1 (pre-
viously misnamed as Ural-2 in SITVIT2 database) were
intentionally included in the Ural family for the analyses.
Predictions from Borile AP and TB-Lineage were collected
using TBminer (which provides a greater capacity of input

file size). The current solution for classifying MTBC spolig-
otype families in SITVIT databases is based on spoligo-
typing binary rules. Spoligotyping-based binary rules exist
since previous versions of SITVIT databases. These binary
rules have been updated in the more recent versions of the
database in the function of current and ongoing findings
concerning the MTBC families. These binary rules were
generally used to classify TB strains in the function of their
spoligotyping patterns. Users can either (i) use these rules
directly for manual annotation/curation of their data (using
other metadata when necessary); (ii) query the SITVIT2
database to check if their data were already detected else-
where or (iii) use other online tools such as StackTB,
TBminer, TB-Lineage or MIRU-VNTRplus to predict lin-
eages from their data. In the improved approach using
expert binary rules, RuleTB (18) refined rules were used
to predict lineages from 24-loci MIRU-VNTR data. Data
on 24-loci MIRU-VNTR from our datasets were not suf-
ficient to conduct a comparative study as was done for
spoligotypes. This is why RuleTB was used as an interme-
diate method (more pending data are available on 24-loci
MIRU-VNTR).

Reducing spacers for DT-based modelling

One of the first approaches we propose to obtain a model
that can be easily interpreted by humans is ‘DTs’-based
modelling. Indeed, DTs have long been used in various pre-
dictive tasks and have the advantage of being readable and
quick to execute (34).

In this work, we are interested in DTs for their ability to
simply describe the underlyingmodel as a set of rules. These
rules are then synthesized in a graph structure, in which
each leaf corresponds to a predicted class and each path
to a leaf corresponds to a rule. As our goal is to provide
rules that can be easily interpreted by a human, we have
attempted to reduce the initial 43 spacers by performing
dichotomous mergers as described in Figure 1.

Figure 1. Spacer reduction strategy for predictive modelling with DTs.

https://en.wikipedia.org/wiki/FASTQ
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Figure 2. Binary representation for an EA solution.

More specifically, to reduce the number of attributes,
we convert the binary number resulting from the concate-
nation of the spacers to an integer. By this way, the fusion of
the initial 43 spacers allow to obtain six different datasets
successively containing 43, 22, 8, 4, 2 and even only 1
attributes.

Thus, the objective of this attribute reduction step is
twofold: (i) to evaluate whether the attribute reduction
can maintain satisfactory predictive performance and (ii) to
obtain DTs with simple predictive rules that involve the
fewest attributes.

Search for binary masks

In this section, we present the second original method that
we developed to classify tuberculosis spoligotypes. As seen
earlier, spoligotypes are represented by sets of 43 spacers
materialized by binary digits. The main idea of this sec-
ond approach is to use combinations of binary masks to
distinguish spoligotype families. The search for such com-
binations of binary masks can be seen as a combinatorial
optimization problem which search space S is the set of all
possible combinations of n masks. We propose to use an
EA to tackle this optimization problem and find the best
combinations.

The classification of spoligotype families is a multi-
class classification problem as there are 14 families to
distinguish. However, as we will see in the rest of this sec-
tion, our approach is binary by nature since we determine
if a spoligotype belongs to a given family or not. In ‘EA
model and parameters’ section, we will explain how indi-
vidual binary classifiers are integrated into a single 14-class
classifier through a ‘One-vs-All’ (OVA) strategy.

Individual representation
A solution (individual) s represents a binary classifier taking
into account (as input) spoligotype spacers binary strings
Sp and making a decision as output: either a given family is
detected (positive) or not (negative). The classifier consists

Table 2. Set of rules corresponding to an EA solution with

n=2

Conjunctions (Ri = Mi AND Sp) C bits Output class

R0 = 0 ∧ R1 = 0 1 Beijing
R0 = 0 ∧ R1 > 0 0 Other
R0 > 0 ∧ R1 = 0 0 Other
R0 > 0 ∧ R1 > 0 1 Beijing

of n 43 bits’ binary masks Mi and a 2n bits binary string
C. Figure 2 shows an example of a solution using this rep-
resentation. In order to make a prediction, each mask Mi

is applied separately to Sp through a bitwise AND opera-
tor, resulting either in a null or a non-null binary value Ri.
Rules based on logical conjunctions of Ri values are then
derived from C. Indeed, as there are 2n ways to combine n
binary values, each bit of C corresponds to an output class
for a given rule. Table 2 gives some insights about the asso-
ciation between a set of rules and an individual. Each line
corresponds to a rule. The first column shows the conjunc-
tion of Ri values; the second column shows the bit of C
associated with the rule and the last column shows the out-
put class corresponding to that bit. When a conjunction is
true, the classifier answers with the specified class. Accord-
ing to this individual representation, the size S of the search
space is given by the following formula:

|s|= 22
n
×

n∏
i=1

243

With n=4, we obtain |S|≈3.92×1056.

Genetic operators
Genetic operators are crucial in an evolutionary pro-
cess as they guide the evolution of a randomly gen-
erated initial population toward the best reachable
solutions. These operators can be classified in two cate-
gories. Problem-independent operators such as selection or
replacement are generic operators that can be used in any
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EA regardless of the problem considered. They see indi-
viduals as a whole and use their fitness value to achieve
their treatment. The choices that we made regarding these
operators will be presented in ‘EA model and parame-
ters’ section, where we show the parameters that we used
and the results that we obtained. In contrast, problem-
dependent operators such as crossover or mutation highly
depend on the representation chosen as they need to create
new individuals from the genotype of existing individu-
als. In this sense, they are often called variation operators.
The crossover operator is the analogue of reproduction: it
takes two individuals as input—the parents—and generates
two new individuals—the offspring. The mutation opera-
tor is equivalent to the biological mutation: it creates a new
individual by altering a small part (gene) of an existing indi-
vidual to maintain the genetic diversity. As our individuals
are made of binary strings, which have been widely used
in EA, we can use classical binary variation operators with
no constraints on the generated strings. We use a two-point
crossover where two positions are selected randomly from
the parents and the bits in between these two points are
swapped to create the offspring. The ith mask of the first
parent is crossed with the ith mask of the second parent.
The same goes for the C value of each parent. The muta-
tion operator randomly chooses one position of a binary
string and flips its value. It is also applied to each mask and
the C string of an individual.

Objective function
The role of the objective function, often called fitness func-
tion in the EA vocabulary, is to assign a quality value to an
individual to implement the ‘survival of the fittest’ aspect
of the evolutionary process. The choice of this function is
extremely important as individuals with good values will
be favoured during the process. In a classification problem,
the most straightforward choice for this function is the
precision of the classifier on the learning dataset, i.e. the
percentage of its right answers, which gives an overall
performance measure. However, as we use an OVA strat-
egy, the relabelled datasets on which each binary classifier
works are necessarily quite imbalanced, with the ‘family’
class being much less represented as the ‘Other’ class. In
this case, the search for individuals with good precision
values would lead to classifiers with better proper negative
rates. It is the reason whywe use the ‘Matthews Correlation
Coefficient (MCC)’ (35) defined as follows:

MCC=
TP×TN−FP×FN

(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)

where TP is the quantity of true positive, TN is the quantity
of true negative, FP is the quantity of false positive and FN

is the quantity of false negative. It offers the advantage to
be particularly well suited for imbalanced datasets.

Comparison approach

Our objective in this paper is to evaluate the performances
of our two approaches in the prediction of MTBC spoligo-
type families: (i) the DT with the reduction of spacers and
(ii) the binary masks with the EA. To evaluate the efficiency
of these approaches, we compare the performances with
the three main classification approaches that are references
in the field: ‘Expert rules’, ‘TB-Lineage’ and ‘Borile AP’,
described in ‘Related works’ section.

Thus, the comparison process we adopt performs in five
steps as described in Figure 3. We start from a spoligotype
file that contains multiple samples of spacers for each
MTBC spoligotype family. We then separate the dataset
into two parts: 60% of the samples are used for generat-
ing a training set while the remaining 40% are used for
testing. The training set is used for modelling with DT and
EA as described previously. Finally, the models learned are
applied to the testing set to compare the results with ‘Expert
rules’, ‘TB-Lineage’ and ‘Borile AP’. The quality of the dif-
ferent models is compared by using several performance
indicators such as the true positive (TP) rate, the false pos-
itive (FP) rate, the precision and the average error rate.
We compare the performances on each of the 14 MTBC
spoligotype families addressed and we also focus on the
average of the results to study and compare the overall per-
formances of the models. To go further, we compare the
execution time to evaluate the ability of models to analyse
large datasets. Finally, we show some examples of the rules
used by our models to perform classification.

Experimental results

Impact of spacer reduction on DT performances

In a first step, we have studied the impact of the spacer
reduction step on the DT performances. Our objective was
to reduce the model creation phase, to simplify the under-
lying classification rules and to evaluate the impact of this
procedure on performances. Figure 4 shows the evolution
of (i) TP and FP rates and (ii) precision when the num-
ber of attributes used for spacer reduction is evolving. In
our experiment, we use ‘C4.5’ algorithm (36) for modelling
with a DT, with the minimum number of instances of object
per leaf set to two and confidence factor set to 0.25.

As expected, we can observe that the performances of
the DT increase with the number of attributes. In partic-
ular, when the number of attributes is very low, the DT
does not perform well. For instance, when all 43 spacers
are aggregated to a single integer attribute, TP rate is about
56% while precision is about 55%. These bad results can
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Figure 3. Methodology for comparing classification models.

be explained by the fact that a too brutal spacer aggre-
gation causes an important loss of information that does
not allow any more to correctly classify MTBC spoligotype
families. The most important result concerns the perfor-
mance we obtain when 43 spacers are aggregated over eight
attributes. Indeed, with eight attributes, the TP rate and
precision are about 98%, which is equivalent to the results
obtained when all 43 spacers are considered.

Thus, these results show that the DT can be used with
a reduction of 43 spacers on only eight attributes without
loss of performance. Therefore, in the rest of the article,
we compare the DT with other models by using 8 and 43
attributes.

EA model and parameters

We have conducted numerous experiments to find the right
parameters for our EA. The first choice we had to make
was about the number of masks n. A too small value would
not have allowed finding optimal solutions, as the number
of possible rules would have been too low. At the same
time, a too high value would have significantly increased
the size of the search space|S|, making it harder to reach
optimal solutions in a reasonable time. As a fair trade-off,
we have chosen the value n=4. One common problem
in EA is ‘premature convergence’ (37), i.e. the fact that
the population converges too early resulting in subopti-
mal solutions. Indeed, as the population begins to evolve
through the use of genetic operators, the building blocks
of the current best individuals spread relatively quickly to
the rest of the population, leading to a reduction of the

genetic diversity. However, the preservation of a certain
amount of diversity is crucial when it comes to finding new
best individuals. It is typically the role of the mutation
operator, as explained in ‘Search for binary masks’ sec-
tion, whose application rate may vary. To go further, we
also modified our crossover operator in a way that when
two identical parents are selected to mate with each other
(which would generate two identical offspring), one of the
offspring is replaced by a new randomly generated individ-
ual. It is known as a ‘headless chicken crossover’ (38) and
can be seen as a form of macro-mutation. Another way
to combat premature convergence is the use of low selec-
tion pressure, allowing non-optimal solutions to survive
and transmit their building blocks throughout the gener-
ations. It is why we used a binary tournament selection
operator, consisting of choosing the best solutions among
sets of two individuals with a probability p for reproduc-
tion. Finally, to further improve our results, we decided
to use an island model parallel EA (39). The main idea of
this model is to evolve simultaneously several isolated pop-
ulations. From every k generations, the best individual of
each island is sent to other islands to enhance the quality
of their respective populations. In addition to allowing bet-
ter preservation of genetic diversity, this model offers two
interesting advantages:

1. It allows to take advantage of the parallel archi-
tecture found in most recent microprocessors,
leading to either significant runtime reduction or
the increase in the total number of considered
individuals.
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Figure 4. Impact of attribute reduction step on DT performances (a) TP
and FP rates and (b) precision.

2. It allows using simultaneously different parameters
(crossover rate, mutation rate, tournament selection
probability, etc.) for the evolution of each island;
indeed there are no predefined correct values for
these parameters that would suit every optimization
problem.

Table 3 summarizes the choices that we made for our EA
parameters. n is the number of masks of a binary classifier,
islands is the number of islands used in our parallel EA,
gens is the number of generation during which the process
takes place and migration is the number of migrations, i.e.
exchange of best individuals, between the islands during the
evolution (a migration occurs in every gens/migration gen-
eration), pcross is the crossover rate, pmut is the mutation
rate and p is the binary tournament selection probabil-
ity. Notice that these three last elements are represented
by intervals: a value comprised in these intervals has been
affected by each island.

Table 3. EA parameters

n islands gens individuals migration pcross pmut p

4 24 250 200 10 [0.5,
0.8]

[0.001,
0.002]

[0.6,
0.9]

Table 4. Overall model performance on the testing set

Expert
rules

TB-
Lineage

Borile
AP DT 8

DT
43 EA

TP rate 0.993 0.937 0.835 0.978 0.982 0.951
FP rate 0.011 0.020 0.108 0.004 0.002 0.028
Precision 0.989 0.979 0.886 0.979 0.983 0.970

We have used this EA to find 14 efficient binary
classifiers—one for each spoligotype family—to predict
based on binary masks combination. Since our approach is
a binary classification method by nature, we have followed
a ‘OVA’ strategy to integrate them into a single multiclass
classifier. Each of these classifiers takes as input specific
relabelled datasets where only one family is kept and all the
other families are changed to ‘Other’. When a new example
has to be classified, it is given successively as input to each
binary classifier. The final answer corresponds to that of
the classifier that detects a family. A priority table obtained
through an optimization technique based on the answers
of each classifier on the learning dataset is used to make a
single prediction when two or more binary classifiers detect
different families.

Comparative performance of models

Then we have compared the different existing approaches
(Expert rules, TB-Lineage and Borile AP) to the two
approaches we propose DT (with 8 and 43 attributes,
respectively, denoted DT 8 and DT 43) and binary
masks with an EA (denoted EA). Table 4 presents the
overall model performances for ‘true positive’ (TP) and
‘false positive’ (FP) rates and ‘precision’. For each indi-
cator, the values of the three best models are shown
in bold.

Regarding the ‘TP rate’, we can globally observe that
all models provide a high value, namely >90%, with the
exception of Borile AP, which has a TP rate of about 85%.
Three best results are obtained for Expert rules, DT 8
and DT 843. Trends are the same for ‘FP rate’ and model
‘precision’.

Thus, these results demonstrate the good performance of
DTs in the task of classifying MTBC families. In particular,
even when the spacers are reduced to eight attributes the
model retains very good performance, with a precision of
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Table 5. The precision of models on MTBC spoligotype families. For each family, the models with the best precision are

displayed in bold

Expert rules TB-lineage Borile AP DT 8 DT 43 EA

Beijing 1 1 1 1 1 0.645
Bovis 1 0.92 0.808 0.966 0.978 0.997
Cameroon 1 1 0.846 1 0.963 1
CAS 1 0.961 0.967 0.983 0.994 0.972
EAI 0.987 0.969 0.964 0.996 0.993 0.973
H 1 1 0.871 0.986 0.994 0.983
LAM 0.951 0.993 0.829 0.991 0.986 0.939
Manu 0.994 - - 1 0.993 1
PINI 0.778 - 0.333 0.353 0.267 0.666
S 0.985 1 0.667 0.984 0.908 1
T 0.999 0.996 0.954 0.973 0.990 0.982
Turkey 1 1 - 0.933 0.933 0.666
Ural 1 1 0.52 0.971 1 0.970
X 0.991 0.974 0.889 0.966 0.943 0.973

about 98%. Finally, if the EA is not in the top three, we
can still note the good performance of the binary masks
approach with a precision of about 97%.

To further understand these results, we have also com-
pared the performance of models in the classification of
each MTBC spoligotype family. Table 5 details the ‘pre-
cision’ of models for 14 families in the dataset.

Comprehensively, good results of the models can also
be seen in the classification of different families. Indeed,
except the PINI family for which the results are rather
bad, the methods compared are largely concordant since
they present precision rates varying from 70% to 90% for
the other MTBC spoligotype families. It demonstrates the
effectiveness of all of these approaches in the classification
task.

When comparing performances between different
approaches, some disparities can be observed. For instance,
less concordant results are observed for prediction made
by Borile AP. This difference can be explained by
the fact that some lineages, like Turkey and NEW-1
(previously misnamed as Ural-2), are not taken into
account.

Runtime evolution

In the third part of our study, we focused on calculation
times. Figure 5 describes the evolution of runtimes in sec-
onds for different sizes of test datasets. For these tests, we
assume that themodel has already been learned andwe only
take into account the time needed to apply the model on test
dataset. Runtime tests have been conducted on the follow-
ing environment: Intel Core i7, 2.4 GHz, 32Go Ram, Linux
Ubuntu 19.10.

Because of the input file size limit of TB-Lineage and
TBminer (Borile AP) online tools, the comparison of cal-
culation times has not been performed for these two
approaches, since a lot of aspects (such as internet connec-
tion quality, performance of their web server, etc.) could
have biased the results. As a result, we compare runtimes
for Expert rules and the two approaches we propose—DT
(with 8 and 43 attributes) and EA.

The computation time of all compared approaches
increases linearly with the size of the dataset. However,
when the dataset is large, the time required by Expert rules
is significantly higher compared to other approaches. For
instance, with 5 00 000 lines, Expert rules performs the
classification in >120 seconds while <1 second is required
for EA. We can also observe the impact of reducing the
number of attributes on DTs.

These results on the computation time allow putting in
perspective the performances observed in Table 4. Indeed,
if the binary masks approach does not offer the best per-
formances, it allows us to perform the classification very
quickly. Consequently, binary masks based approach is
undoubtedly the best compromise between speed of run-
time and performance, since it still has an overall precision
of 97%.

Towards interpretable models

Finally, in the last part of our study, we focus on the
interpretability of the models. Some examples of extracted
models for (a) DT and (b) binary masks are shown in Fig. 6.

Note that only a subset of the underlying rules of these
models is displayed on this graph. As you can observe, one
of the main advantages of the two approaches we propose
is their ability to provide simple classification rules that can
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Figure 5. Comparison of runtime in seconds (a) for Expert rules and our approaches and (b) focused only on our approaches.

be easily interpreted. These rules are available on the ‘Help’
page of the website.

SpolLineages tool

To facilitate user analysis, we have decided to distribute
SpolLineages as a freely available user-friendly command-
line tool (https://github.com/dcouvin/SpolLineages) and
as a web resource (http://www.pasteur-guadeloupe.fr:80
81/SpolLineages). SpolLineages scripts are mainly written
in Java and C programming languages. The online pro-
gramme (using JavaServer Pages, HTML and JavaScript)
allows users with no or few computing skills to easily per-
form their analysis based on spoligotyping and/or 24-loci

MIRU-VNTR data. Users can either upload their CSV/TSV
(separated by commas, tabs or semicolons) analysis file
containing spoligotyping and/or 24-loci MIRU-VNTR data
or directly enter their data in the provided text area. The
output result file contains predictions of MTBC spolig-
otype families using our methods. It is also possible to
get lineage prediction from 24-loci MIRU-VNTR data
using rules provided in RuleTB (18). Other options allow
users to get supplemental information such as Spoligotype
International Type, country distribution (according to
SITVIT2) and potential correspondence to SNP-based lin-
eage [according to related research (5)]. Further details are
provided on the web resource.

https://github.com/dcouvin/SpolLineages
http://www.pasteur-guadeloupe.fr:8081/SpolLineages
http://www.pasteur-guadeloupe.fr:8081/SpolLineages
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Figure 6. Examples of extracted models for (a) DT and (b) binary masks.

Conclusion and future directions

To conclude, we propose novel algorithmic approaches
allowing quick and precise prediction of MTBC genotypic
families from spoligotyping data, using a DT, an EA or clas-
sical binary rules. These approaches are helpful for a better
understanding and analysis of genotypic variability and
evolution of MTBC. SpolLineages software tool (available
online or via the command line) includes these methods
and allows users to easily search for MTBC genotypic fam-
ilies provided their corresponding spoligotyping data are
given. Indeed, this tool provides interpretable rules and
a user-friendly interface, which could be helpful for the
scientific community. In addition, data reduction method-
ologies were used to speed up calculations. Furthermore,
the approaches presented here are of great importance
for database improvement and development. Future works
will consist of applying these algorithms (as well as novel
ones) to predict better MTBC lineages from 24-loci MIRU-
VNTR data (since for the moment, RuleTB intermediate
rules are used for this task). Future development of addi-
tional software tools dealing with WGS data could be
particularly helpful towards a better understanding of TB
epidemiological diversity. Supplemental work will also be

done to facilitate prediction of newly described MTBC
lineages such as L8 and L9.
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