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Abstract

Total variation (TV) based models are very popular in image denoising but suffer from some

drawbacks. For example, local TV methods often cannot preserve edges and textures well

when they face excessive smoothing. Non-local TV methods constitute an alternative, but

their computational cost is huge. To overcome these issues, we propose an image denois-

ing method named non-local patch graph total variation (NPGTV). Its main originality stands

for the graph total variation method, which combines the total variation with graph signal pro-

cessing. Schematically, we first construct a K-nearest graph from the original image using a

non-local patch-based method. Then the model is solved with the Douglas-Rachford Split-

ting algorithm. By doing so, the image details can be well preserved while being denoised.

Experiments conducted on several standard natural images illustrate the effectiveness of

our method when compared to some other state-of-the-art denoising methods like classical

total variation, non-local means filter (NLM), non-local graph based transform (NLGBT),

adaptive graph-based total variation (AGTV).

Introduction

Image denoising is one of the most fundamental and widely studied problems in low-level

image processing. Its main purpose is to reduce undesirable distortions and noise present in

images while preserving important features such as discontinuities, edges, corners and tex-

tures. Image denoising can be described by the following model [1]:

u0 ¼ uþ z; ð1Þ

where u is the original image, u0 is the observed image and z is assumed to be an additive

white Gaussian noise.

Image denoising is an ill-posed problem and requires an appropriate regularization to

restore the original image [2]. Solutions proposed so far can be divided into two categories [3].

The first one makes use of some prior knowledge about images such as image smoothness or

sparsity of image coefficients in certain transformed domains (e.g., DFT or Wavelet). The
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second one relies on existing self-similarity in images as, for example, bilateral filter and non-

local means (NLM) filter [4]. The solution we propose in this paper belongs to the first class of

method where the denoising problem is expressed as:

min
x
ku0 � uk2

2
þ m priorðuÞ; ð2Þ

where ku0 � uk2

2
is a fidelity term which requires that the desired image u approaches to the

observation image u0 while the prior(u) is a term representing the prior knowledge we have on

the original image u and μ is a weighting parameter which determines the tradeoff between

prior knowledge and the fidelity of the observation.

Total variation (TV) algorithm [5] and its improved versions [6] are among the most popu-

lar prior knowledge-based methods due to their efficiency for image denoising. They also con-

stitute powerful tools for multiscale image analysis [7]. Most total variation-based image

denoising methods consider the original image as a continuous function defined on <2, and

evaluate the noise through the integration of the absolute gradient of the observed function.

Under this hypothesis, it is then natural to take the image as a smooth function over a discrete

sampling structure [8]. Reducing the total variation indicates that the unwanted details have

been removed. However, reducing the gradient may not be sufficient in the case of images

with noise or with many details.

Recently, image denoising has also been studied from the point of view of graph signal pro-

cessing (GSP) [9]. Kheradmand and Milanfar [3] proposed a general graph-based regulariza-

tion framework which was later modified by Pang et al. [10] who used patch gradients instead

of patch intensities to define the patch self-similarity. Mahmood et al. [11] proposed an adap-

tive graph total variation (AGTV) for tomographic reconstruction. Though these methods

provide good experimental performance, some problems remain: (i) there is neither theoreti-

cal justification nor intuitive interpretation of the relationship between the graph structure

derived from the image and the image denoising performance; (ii) these algorithms involve

complicated mathematical construction and large calculations.

In addition, one of the key issues in performing graph signal processing (i.e. denoising in

our case) concerns the selection of edge weights [12]. Indeed, these weights have a significant

effect on the amount of noise removal. In [13], Smolka et al. compute the weights using a

Gibbs distribution of the intensities for the adjacent pixels. Black et al. [14] derived these

weights via robust statistics. A more common but less robust approach exploits a Gaussian ker-

nel function where the weights are calculated only from two isolated pixels based on their

intensities and location information [15]. A more reliable idea is to consider the pixel neigh-

borhood due to the high degree of redundancy in natural images [6]. In such a way Buades

et al. [4] proposed to use a windowed non-local means filter to characterize one pixel instead

of only using the pixel itself. Some graph-signal based image denoising methods also borrow

the image patch thought to construct the graph, the most typical scheme being AGTV. How-

ever, they only take the image patch intensity into consideration and ignore the location infor-

mation of the patch. Thus, image spatial information has not been utilized.

To overcome the above problems, we propose a non-local patch graph total variation

(NPGTV) as a novel method for natural image denoising. Our method can be seen as an

improved version of AGTV by considering the pixel coordinate as an ingredient to construct

the K nearest neighbor graph (KNN graph). More clearly, both the image patch intensity and

patch location information are taken into account. By doing so, image details can be preserved

at a greatest extent. In addition, in this paper, we also analyze the impact of the patch size and

of the K value of the KNN graph on the denoising performance. It is important to notice that

AGTV reconstructs and utilizes graph total variation, repeatedly, our method merely
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constructs a non-local patch graph and use GTV model once. In this way, time cost is signifi-

cantly reduced. As we will see in the sequel, our proposed method can achieve better perfor-

mance compared to some recent and efficient non-local based denoising methods and total

variation based denoising methods.

The rest of this paper is organized as follows. Some basic knowledge about graph signal

processing is reviewed in Section 2. Section 3 presents our NPGTV method and details

its implementation. In Section 4, we experimentally illustrate its effectiveness and compare

it to several state-of-the-art denoising methods. Some future works are sketched in

Section 5.

Prior work

Graph signal and weighted graph

A dataset consisting of N elements with a known relationship between these elements can be

represented by a graph G = {V, A, W}, where V, A and W stand for the nodes set, the adjacency

matrix and the weight matrix of graph G, respectively. Each element in set V corresponds to a

node in graph G while each Wi,j in W reflects the degree of relationship in-between the two

nodes vi and vj. In the general case, G can have directed or undirected edges (i.e. arcs) and Wi,j

can take arbitrary real or complex values. For a denoising image, the direction of edge is mean-

ingless and, considering one node vi and nodes connected to it, one can construct the neigh-

borhood of vi as Ni = {j|Wi,j 6¼ 0}.

The graph signal of G is defined as a map from the nodes of G into the real number set<,

V ! <

vi ! f ðviÞ;
ð3Þ

where f is a real value function and f(vi) is the graph signal on vertex vi. A graph signal can also

be represented as a vector f 2 <n. In the image denoising problem, the signal at each node (i.e.

pixel) corresponds to the image intensity.

Signal smoothness with respect to the intrinsic structure of graph

As is stated above, image denoising is an ill-posed problem, and thus prior knowledge about

the sought image is required for the regularization. When an image is represented in the form

of graph signal, the attribute that can describe graph signal should be chosen as the prior

knowledge accordingly. In this paper, we take the graph signal smoothness as prior knowledge.

Smoothness is one of the most important properties of graph signals and requires taking into

consideration the intrinsic structure of the data domain. Here, the intrinsic structure refers to

the weighted graph onto a sampled manifold [16]. For analyzing continuous signals on differ-

entiable manifolds, discrete calculus provides the right tools to operate [17]. Discrete differen-

tial operators defined on a graph have been widely explored in the literature. Herein, we only

examine some important concepts and definitions [18] in order to derive an accurate mathe-

matical description of the smoothness of signal on a graph.

The edge derivative of a signal f along the edge e = (i, j) connecting the nodes i and j is

defined as:

@f

@e

�
�
�
�
i

¼
ffiffiffiffiffiffiffiffi
Wi;j

q
½fðjÞ � fðiÞ�: ð4Þ
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Based on the Eq (4), the graph gradient of f at node i is the vector:

rif ¼
@f

@e

�
�
�
�
i

� �

e2ε s:t: e¼ði;jÞ for some j2V

: ð5Þ

The local variation at node i can be defined as:

krifk2 ¼
X

e2ε s:t: e¼ði;jÞ for some j2V

@f

@e

�
�
�
�
i

� �2
" #1

2

¼
X

j2Ni

Wi;j½fðiÞ � fðjÞ�2
" #1

2

: ð6Þ

This formula provides a measure of local smoothness of graph signal f around node p. The

global smoothness using the discrete p-Dirichlet form of f is then defined as:

SpðfÞ ¼
1

p

X

i2V

krifk
p
2
¼

1

p

X

i2V

X

j2Ni

Wi;j½fðjÞ � fðiÞ�2
" #p

2

: ð7Þ

AGTV algorithm

AGTV algorithm was proposed for tomographic data reconstruction. The whole algorithm

can be divided into five steps: (i) Project input data into the sinogram space to obtain a filtered

back projection (FBP). (ii) Construct a patch graph from the FBP. (iii) Formulate an objective

function that takes graph total variation and adjoint operator of the wavelet transform as regu-

lar terms. (iv) Solve the objective function with the forward–backward primal dual (FBPD)

algorithm. (v) Repeat step (ii) to (iv) until convergence.

Although the AGTV algorithm can perform well on the tomographic data denoising, there

still exist some shortages that hinder it from being applicable to the natural image denoising

problem. First, only image intensity is taken into consideration during the graph construction

while ignoring the patch location information. Second, the patch graph needs to be con-

structed repeatedly in the whole algorithm, which will lead to the tedious hyperparameter tun-

ing problem. How to overcome both deficiencies and construct an effective GTV-based image

denoising algorithm becomes our main motivation to propose the NPGTV algorithm.

A non-local patch graph total variation

In this section, we describe the proposed NPGTV algorithm accordingly to three steps:

(i) representation of an image as a weighted undirected graph; (ii) establishment and solving

of the total variation model; (iii) description of our complete NPGTV proposal. This choice

stands for the main steps of our algorithm depicted in Fig 1. First, as shown in Fig 1(a) and

1(b), a group of non-local image patches are extracted from a noisy image. By next, a KNN

graph is derived from these patches as illustrated in Fig 1(c). Then the NPGTV model is estab-

lished. Finally, the denoised image is achieved by performing the Douglas-Rachford splitting

algorithm on to this model (Fig 1(d)).

Image denoising via a non-local patch graph total variation
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Total variation of graph signal

As we discuss above, Eq (7) can measure the graph signal smoothness. The p value in (7) can

take 1, 2 and1. When p = 1, S1(f) is the total variation of the signal on a graph [20]:

S1ðfÞ ¼ kfkTV ¼
X

i2V

krifk2 ¼
X

i2V

X

e2ε s:t : e¼ði;jÞ for some j2V

@f

@e
ji

� �2
" #1

2

¼
X

i2V

X

j2Ni

Wi;j½fðiÞ � fðjÞ�2
" #1

2

: ð8Þ

From (8), one can easily find that edge weights have an important effect on graph total vari-

ation. Thus, for a same image, changing the graph topology by modifying its edges will lead to

different graph total variation.

Notice that in [21] another GTV based on the lp norm was used:

kfkTV ¼

�
�
�
�f �

1

jrmaxðAÞj
Af

�
�
�
�

2

2

; ð9Þ

where A stands for the adjacent matrix and ρmax (A) denotes the eigenvalue with the largest

magnitude. Although (9) can measure graph smoothness generally, it is not necessary vanished

for constant graph signal and may be zero for non-constant signal as mentioned in [20]. As a

consequence, in this paper, we limit our discussion to (8).

Modified graph representation

One of the core steps of our method is to construct from an image a graph G for GTV regulari-

zation. To do so, we build a weighted undirected graph G = (V, E) to describe an image by con-

sidering its pixels as elements of V. The set E contains the corresponding edge information.

The edge em,n only exists if the node vm and vn are connected. One naïve way consists in con-

necting each pixel to its neighbors. One can thus obtain a 4-connect graph or an 8-connect

graph. Another strategy, like in AGTV [11], connects image patch center at each pixel through

Fig 1. The procedure of our NPGTV method. The image is contaminated by the additive Gaussian noise with 10dB

standard deviation. (The original Cameraman image in our paper is taken from Fig 1 in [19] published by PLOS one,

which is licensed under the Creative Commons Attribution International License (CC BY 4.0). KNN graph is

visualized through the Matlab software).

https://doi.org/10.1371/journal.pone.0226067.g001
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the K nearest neighbor (KNN) algorithm. However, both methods suffer from various draw-

backs. The former, being a local model, will tend to alter image details when denoising. The

latter is a non-local model that merely uses patch intensity to calculate the distance between

two image patches without considering central pixel coordinate. To go beyond these disadvan-

tages, we propose a graph construction method that combines patch intensity with pixel coor-

dinates. The method consists of four steps:

1. The whole image u 2 <n×n is first divided into a series of overlapped patches. Let us note Si

be a s × s image patch whose center is at the ith pixel;

2. Each patch is then vectorized and concatenated with its center pixel coordinates. More

clearly a given image patch Si is expanded into a vector vi into which, the coordinates of the

ith pixel (irow, icol) are incorporated so to get an access to a new vector v0 i ¼ ðvi; lirow; licolÞ,
where λ is a parameter that expresses the spatial constraint;

3. Each image patch is connected with its k nearest neighbors depending on the Euclidean dis-

tance metric through the KNN algorithm. In details, the Euclidian distance between two

image patches Si and Sj is such as dði; jÞ ¼ kv0 i � v0jk2
;

4. Finally, using the Gaussian kernel weighting scheme (10), the graph weight matrix W is

computed as follows:

wði; jÞ ¼
expð�

d2ði; jÞ
s2
Þ if patch Si and Sj is connected

0 otherwise

8
<

:
; ð10Þ

where σ is a parameter that controls the sensitivity of the similarity measure to the noise.

This one is empirically fixed to 20% of the sum of the noise variance like in[22]. Such proce-

dure is illustrated in Fig 2.

Parameters analysis

From the above, it is easy to find that the patch size s, the K value of KNN algorithm and the

spatial constraint parameter λ will have an impact on the denoising result. All three parameters

are relevant to the noise level. Generally speaking, these parameters will take large values

under high noise levels, and vice versa. But they cannot be too high. For the first two parame-

ters, the larger the patch size and K, the smoother the image will be. If the patch size and K
take too large values, some image details will be removed. Besides, too large patch size will lead

to image edge blur (just as illustrated in Fig 3). Too large K values will also increase the calcula-

tion cost slowing down our method. Thus in the experiments presented in our paper, we set a

patch size of 9×9 pixels under high noise level (larger than 15db) and 5×5 pixels under weak

noise level (less than15db). The value of K is fixed to 5. Such parameters have been shown to

be robust while details and fine structure can be better preserved.

As for the spatial constraint parameter λ, the location information of the patch is normal-

ized into the range of gray level of the image. By doing so, patch intensity and location are

more relevant when constructing the graph with the KNN algorithm. Notice that, when λ = 0,

v0i is degraded into vi. As a consequence, the similarity between two patches is measured based

on the distance of their intensity level. When λ takes a high value, patch location will become

the main ingredient to determine the similarity between two patches. Taking such value may

not work well since it is extremely sensitive to minor transformations, both in geometry (shifts

and rotations) and in imaging conditions (lighting or noise) [23]. Therefore, the selection of

Image denoising via a non-local patch graph total variation
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the value of λ heavily depends on the range of gray level of the image. In our experiment, the

gray level is normalized between 0 to 1 considering images of size 512×512 or 256×256 pixels.

λ should guarantee that the values of λirow and λirow not too far from this range. Thus, we set λ
in the range between 0.01 and 0.1. Fig 4 well validates the effectiveness of our strategy to select

the value of λ.

Optimization solution of NPGTV

After image graph representation is obtained, combining with the definition of graph

total variation in (8), we construct the NPGTV model and solve it. We set u0 the graph

signal derived from the original noisy image and u the corresponding recovered one, i.e.

the original image. Our model can be formulated as a convex optimization problem as fol-

lows:

arg min
u

kukTV s:t:ku � u0k2 � ε; ð11Þ

where ε is the radius of a L2 ball. In this paper, the operator splitting method, one of the

most important techniques, is employed to solve the model (11). The basic idea of the

method is to divide the optimized object into several convex functional in the form of sum-

mation. Thus, a complicated problem can be decomposed into several subproblems that are

easier to solve. For (11), we set f1(u) = ||u||TV and f2 as the indicator function of the set H

Fig 2. Examples of similarities between patches in the standard Cameraman image. Si, Sj and Sk are three distinct

patches. wi,j and wi,k are weights on the edges ei,j and ei,k respectively.

https://doi.org/10.1371/journal.pone.0226067.g002
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defined as ||u − u0||� ε. Then the prox of f1 and f2 can be acquired through:

proxf1 ;g
ðu0Þ ¼ arg min

u

1

2
ku � u0k

2

2
þ gkukTV; ð12Þ

proxf2 ;g
ðu0Þ ¼ arg min

u

1

2
ku � u0k

2

2
þ iHðuÞ; ð13Þ

Fig 3. 256×256 denoised Cameraman image under 30db noise. The patch size is 20, K is 9 and λ is 0.05. Although

the noise is removed, some image details are also eliminated such as building outline and grass on the ground. Besides,

the image is blurred. A virtual outline appears around the image edges.

https://doi.org/10.1371/journal.pone.0226067.g003

Fig 4. PSNR values of the denoised Cameraman image in the case of 10db noise with various λ. The image size is

256×256 pixels. In all experiments, patch size is 5×5 pixels and K is fixed to 5. Left: Obtained PSNR values for λ values

between 0 and 0.1. Right: PSNR values for λ values in the range [0,1]. It is easy to observe that the relation between λ
and the performance of the NPGTV algorithm is consistent with our theoretical analysis.

https://doi.org/10.1371/journal.pone.0226067.g004
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where iH (u) is zero if u is in the set H and infinity otherwise. proxf: <
n!<n is the proximal

operator which is defined as follow [24]:

proxf ðxÞ ¼ arg min
y

1

2
kx � yk2

2
þ f ðyÞ; ð14Þ

The function on the right-hand in (14) is strongly convex and not every infinite, so it has a

unique minimizer for every x 2 <n. Eqs (12) and (13) can be solved by various approximate

splitting algorithms, such as Forward-Backward Splitting (FBS) [25], Douglas-Rachford

Splitting (DRS) [26] or Alternating direction method (ADM) [27], and Primal-Dual hybrid

gradient (PDHG) [28]. The convergence conditions required by Douglas-Rachford splitting

(DRS) are slack. Besides, it has more general convergence character when solving the finite-

dimensional problem with the fixed-step DRS iterative scheme. More important, it does not

need the decomposed subproblems to be differentiable like for the FBS algorithm [29].

Therefore, in our paper, we choose the DRS algorithm to solve the NPGTV model. Applica-

tions of the DRS algorithm in signal and image processing can be found in[30–33].

DRS algorithm was originally used to solve the equation μ = Ax + Bx, where A and B are

both positive definite matrices. Later, it was used to solve non-linear problems. For any γ> 0,

there exists at least one solution for the unconstrained non-convex problem shown in (15)

min
x2<N

f1ðxÞ þ f2ðxÞ; ð15Þ

This solution satisfies the following two conditions:

x ¼ proxg;f2y

proxg;f2y ¼ proxg;f1ð2 � proxg;f2y � yÞ

(

ð16Þ

with proxγ,f y expressed as [24]:

proxg;f y ¼ arg min
y

1

2g
ky � xk2

2
þ f ðyÞ; ð17Þ

where γ is a parameter. Algorithm 1 presents the derivation process of the DRS algorithm for

NPGTV. Here the graph signal u0 derived from the original noisy image is set as the algorithm

initial input. λn stands for the iterative step. tol denotes the stopping tolerance parameter. The

detailed derivation process of the algorithm can be found in [34].

Algorithm 1: Douglas-Rachford Splitting algorithm for NPGTV
INPUT: y0 = u0, γ > 0, ε 2[0,1], tol > 0
ITERATIVELY: for n = 0, 1, . . ..I-1 do

xn ¼ proxg;f2yn

λn 2 [ε, 2 − ε]
ynþ1 ¼ yn þ lnðproxg;f1ynð2xn � ynÞ � xnÞ

if ynþ1 � yn
ynþ1

< tol then
BREAK
end if

end for
OUTPUT: u = yn+l

The whole procedure of our NPGTV algorithm is summed-up in Algorithm 2.

Algorithm 2: Non-local patch graph total variation
Input: Noisy grayscale image
Processing steps:
A. Transform the noisy image into a modified non-local patch graph

structure G;

Image denoising via a non-local patch graph total variation
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B. According to Eq (10) calculate the edge weights;
C. Calculate Graph Total Variation according to Eq (8);
D. Construct the optimization form of the denoising problem of total

variation on graph according to Eq (11);
E. Solve the NPGTV model by means of the DRS algorithm as Algorithm

1.
Output: The denoised image

Algorithm complexity analysis

The computational complexity of the NPGTV algorithm depends on the KNN graph construc-

tion and on the optimization algorithm given in Algorithm 1. For an image of n pixels, n over-

lapped patches can be achieved. The computational complexity when directly building the

graph with KNN algorithm is O(n2). In order to reduce such complexity, and inspired by the

AGTV algorithm, we decided to use the open-sourced library called FLANN [35]. Set the size

of each image patch is s × s pixels and K value in KNN algorithm is fixed. With FLANN, the

computational complexity of the graph construction is reduced to O(nlog(n)). Let I be the

maximum number of iterations for the DRS algorithm to converge. In that case, the DRS

computational cost is O(I|E|), where |E| represents the number of edges in the graph G = (V,

E). As G is a KNN graph where E� Kn, the computational complexity of our optimization

algorithm is linear in the size of the number of the graph vertex n, i.e., O(IKn). Based on the

above analysis, the whole complexity of the NPGTV algorithm is O(IKn + nlog(n)).

Experiments

This section presents the experimental results we obtained by applying our method to the clas-

sic benchmark images considered in the literature. Performances of our scheme are also com-

pared to several state-of-the-art denoising methods. Tests have been conducted using Graph

Signal Processing MATLAB toolbox (GSPBox) on a PC with an Intel 4.0 GHz CPU and 16 GB

of memory.

In the following examples, images were contaminated by additive independent and identi-

cally distributed zero-mean Gaussian noise (AIIDZMGN) with the standard deviation σ. To

investigate the effect of the denoising process, as in [1] [4] and [8], we choose the standard

Baboon, Boat and Pepper images. The top row of Fig 4 highlights the denoising results

obtained on the standard Baboon image with NPGTV considered an AIID zero-mean Gauss-

ian noise of 10 dB. Zoomed medallions in Fig 5 columns (d) and (e) allow a better screening of

the result. We can see that an effective suppression of noise is achieved while complicated skin

textures and periodic patterns are preserved. Similar comments can be made on the Boat and

Pepper images (middle and bottom Fig 5 rows, respectively). Such qualitatively good perfor-

mance can be explained by the presence of similar textures not only in the immediate neigh-

borhood of a given pixel but also of distant pixels.

Comparisons with some state-of-the-art denoising methods have been carried out for vari-

ous levels of noise. These state-out-of-art method set includes the non-local graph based trans-

form (NLGBT) method [22], non-local means (NLM) filter scheme [4], and the classical total-

variation approach (TV) [37]. In order to make a fair assessment, we manually choose the

parameters’ values of each method in order to obtain the best results they can provide for a

given image and noise level. Fig 6 displays the results obtained for the Barbara image contami-

nated by an additive zero-mean Gaussian noise of 30dB. (More experiment results of some

other standard images can be founded in Figs A-E of S1 Appendix) In order to quantitatively

evaluate and compare these methods, we use Peak Signal to Noise Ratio (PSNR) and structural

Image denoising via a non-local patch graph total variation
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Fig 5. Results of the proposed NPGTV algorithm on different test images; images of reference in the literature.

Column (a): Original images: Baboon, Boat and Pepper. (b) Images are corrupted with the noise at σ = 10dB. (c)

Denoising results. All three examples are filtered using a patch size of 5×5, K = 5. (d) Zoomed regions from noisy

images and (e) the corresponding denoised image regions. (The original Baboon and Boat images in our paper are

taken from Fig 7 in [36] published by the journal Mathematical Problems in Engineering, and Pepper image in our

paper is taken from Fig 1 in [19] published by the journal PLOS one. Both journals are licensed under the Creative

Commons Attribution International License (CC BY 4.0)).

https://doi.org/10.1371/journal.pone.0226067.g005

Fig 6. Results of different denoising methods on 576×720 Barbara image. The image is corrupted by the noise at σ =

30 dB. (a): Original image. (b): Noisy image. (c): NPGTV with k = 5, λ = 0.05, patch size 9×9. (d): NLGTV algorithm.

(e): Classical TV. (f) NLMF with search window size 3×3, similar widow size 5×5 and the standard deviation is set to

0.1. (The original Barbara image in our paper is taken from Fig 1 in [19] published by the journal PLOS one, which is

licensed under the Creative Commons Attribution International License (CC BY 4.0)).

https://doi.org/10.1371/journal.pone.0226067.g006
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similarity index (SSIM) [38]. Considering images of m×l pixels, they are defined as:

PSNR ¼ 10 log

Xm

i¼1

Xl

j¼1

ð255Þ
2

Xm

i¼1

Xl

j¼1

ðuðx; yÞ � ûðx; yÞÞ2

0

B
B
B
B
@

1

C
C
C
C
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¼ 10 � log
10

2552
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� �
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SSIM u; ûð Þ ¼
ð2mumû þ c1Þð2suû þ c2Þ

ðm2
u þ m

2
û þ c1Þðs

2
u þ s

2
û þ c2Þ

: ð19Þ

where u and û denote the original image and its corresponding denoised version, respectively;

μu and mû stand for the average of u and û while σu and sû represent their standard deviation;

suû means the covariance of u and û; c1 and c2 are constant values to avoid denominator be

zero.

The PSNR and SSIM measures we obtained are reported in Table 1. In both cases, our

NPGTV method provides noticeably better results for both noise elimination and feature

Table 1. Obtained PSNR values and SSIM values for different denoising methods on some benchmark images. In each cell, four results are represented-Top left:

NPGTV. Top right: NGBT. Bottom left: TV. Bottom right: NLMF. The best result among four is highlighted in bold in each cell.

Image NPGTV NGBT

TV NLMF

" #
Noise standard deviation

10 15 20 25 30

Cameraman 33.42 32.26 30.41 30.04 29.52 28.49 28.5 27.14 27.64 26.33

0.9151 0.8897 0.8537 0.8451 0.8416 0.7957 0.8184 0.7208 0.7938 0.6806

23.27 29.45 23.22 29.3 23.15 29.04 23.06 28.41 22.94 27.41

0.7416 0.8349 0.7309 0.8336 0.7133 0.8229 0.6941 0.7861 0.6715 0.7091

Lena 34.88 33.63 32.93 31.79 31.48 30.25 30.36 29.3 29.44 28.66

0.8946 0.8773 0.8591 0.8480 0.8371 0.8185 0.8111 0.7982 0.7852 0.7833

29.35 32.07 29.17 31.90 28.90 31.45 28.58 30.61 28.21 29.25

0.8286 0.8496 0.8177 0.8484 0.8021 0.8352 0.7850 0.7949 0.7627 0.7163

Barbara 32.94 31.85 30.93 29.46 29.42 27.45 28.97 26.2 27.80 25.22

0.9130 0.8983 0.8828 0.8491 0.8502 0.7927 0.834 0.7482 0.7993 0.7090

24.25 29.93 24.19 29.75 24.10 29.37 23.98 28.66 23.86 27.62

0.6959 0.8552 0.6881 0.8538 0.6774 0.8433 0.6636 0.8111 0.6488 0.7523

House 35.02 34.52 33.59 32.84 32.24 31.43 31.36 30.29 30.52 29.35

0.8801 0.8716 0.8596 0.8537 0.8312 0.8400 0.8223 0.8244 0.8206 0.8091

27.40 32.83 27.25 32.42 27.11 31.99 26.86 30.99 26.59 29.4

0.8076 0.8528 0.7946 0.8502 0.7808 0.8395 0.7645 0.8004 0.7408 0.7133

Bacteria 36.97 34.61 34.60 32.40 33.63 30.33 32.65 29.70 31.22 29.11

0.9612 0.9509 0.9539 0.9336 0.9388 0.9104 0.9276 0.9034 0.9281 0.8934

32.95 35.85 32.57 35.08 31.88 33.90 31.36 32.42 31.36 30.40

0.9597 0.9645 0.9492 0.9574 0.9347 0.9375 0.9166 0.8931 0.8989 0.8111

Moon 36.96 35.18 35.23 33.76 34.29 32.78 33.29 32.14 32.90 31.58

0.8851 0.6156 0.8583 0.5656 0.8469 0.5495 0.8267 0.5409 0.8208 0.5345

33.23 35.46 32.74 35.10 32.16 34.46 31.59 33.19 30.90 31.15

0.8650 0.8775 0.8288 0.8581 0.7943 0.8305 0.7644 0.7838 0.7336 0.6998

https://doi.org/10.1371/journal.pone.0226067.t001
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preservation than the classical TV algorithm and the low-pass filtering on graph method. The

proposed NPGTV algorithm not only achieves better performance than the NLGBT algorithm,

but also needs less time than the NLGBT algorithm. In addition, the TV method eliminates

some details that are preserved by NPGTV like the details and textures of the Barbara image.

Although our method has a close link with the AGTV algorithm[11], it is far better than

AGTV in terms of complexity and denoising effect. In Fig 7, we compare our method and

AGTV on some benchmark images. These images are corrupted by the noise at σ = 30 dB.

Intuitively, the images denoised with our method preserve more image details compared to

AGTV. Table 2 shows that our method achieves higher PSNR and SSIM values on the most

testing images.

Fig 7. Comparison between the proposed NPGTV algorithm and AGTV on some benchmark images which are

contaminated by the noise at σ = 30 dB. a, c, e, and g are the denoised images obtained with the proposed NPGTV

solution while the rest of images are the results achieved with AGTV. (The original House image in our paper is taken

from Fig 1 in [19] published by the journal PLOS one. The original Bacteria image is taken from Fig 5 in [39] published

by the journal World Journal of Engineering and Technology. Both journals are licensed under the Creative Commons

Attribution International License (CC BY 4.0)).

https://doi.org/10.1371/journal.pone.0226067.g007

Table 2. PSNR and SSIM for NPGTV and AGTV on some benchmark images.

Image [NPGTV AGTV] Noise stand variation

10 15 20 25 30

Cameraman 33.42 29.64 30.41 28.69 29.52 27.72 28.5 26.69 27.64 26.20

0.9151 0.8444 0.8537 0.8329 0.8416 0.8166 0.8184 0.7953 0.7938 0.7235

Lena 34.88 33.11 32.93 31.37 31.48 29.59 30.36 29.05 29.3 28.64

0.8946 0.8692 0.8591 0.8483 0.8371 0.8177 0.8111 0.7734 0.7814 0.749

Barbara 32.94 30.28 30.93 28.51 29.42 27.67 28.97 26.66 27.8 26.15

0.9130 0.8702 0.8828 0.8184 0.8502 0.7905 0.834 0.7531 0.7993 0.7315

House 35.02 34.21 33.59 33.10 32.24 31.69 31.36 30.33 30.52 29.77

0.8801 0.8831 0.8596 0.8554 0.8312 0.8353 0.8223 0.8118 0.8206 0.784

Bacteria 36.97 35.25 34.60 33.31 33.63 31.59 32.65 30.06 30.32 29.85

0.9612 0.9644 0.9539 0.9483 0.9388 0.9300 0.9276 0.9056 0.9104 0.887

Moon 36.96 36.09 35.23 34.78 34.29 34.00 33.29 33.31 32.95 31.88

0.8851 0.8780 0.8583 0.8559 0.8469 0.8342 0.8267 0.8219 0.8208 0.8329

https://doi.org/10.1371/journal.pone.0226067.t002
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Conclusion

In this paper, we have proposed a non-local patch graph total variation algorithm for image

denoising. Unlike most continuous Total Variation-based methods for image denoising, the

problem has been formulated using a graph-spectral approach. An imagewas represented as an

undirected graph whose edge weights are computed by means of a Gaussian kernel function,

where Euclidean distance is calculated with two modified image patches instead of two isolated

pixels. The numerical implementation of the algorithm was performed through the Douglas-

Rachford Splitting algorithm. We also have demonstrated the relationships between our graph

denoising method and a number of alternatives including the classical total variation and

adaptive graph total variation. Qualitative and quantitative assessments, as well as the compari-

son of our approach with several state-of-the-art denoising methods, demonstrate its effective-

ness and better behavior in general. Future works will focus on convex optimization—it could

be improved—and extending our approach to some other kind images, such as color image

etc. Besides, we plan to bring in some technologies like superpixel/supervoxel based methods

[40, 41] to reduce the complexity of the graph construction.

Supporting information

S1 Appendix. This appendix contains Figs A-E.

(PDF)
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