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Paratuberculosis in cattle causes substantial economic losses to the dairy industry.
Exploring functional genes and corresponding regulatory pathways related to
resistance or susceptibility to paratuberculosis is essential to the breeding of disease
resistance in cattle. Co-analysis of genome-wide DNA methylation and transcriptome
profiles is a critically important approach to understand potential regulatory mechanism
underlying the development of diseases. In this study, we characterized the profiles of DNA
methylation of jejunum from nine Holstein cows in clinical, subclinical, and healthy groups
using whole-genome bisulfite sequencing (WGBS). The average methylation level in
functional regions was 29.95% in the promoter, 29.65% in the 5’ untranslated region
(UTR), 68.24% in exons, 71.55% in introns, and 72.81% in the 3’ UTR. A total of 3,911,
4,336, and 4,094 differentially methylated genes (DMGs) were detected in clinical vs.
subclinical, clinical vs. healthy, and subclinical vs. healthy comparative group, respectively.
Gene ontology (GO) and analysis based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) showed that these DMGs were significantly enriched in specific
biological processes related to immune response, such as Th1 and Th2 cell
differentiation, wnt, TNF, MAPK, ECM-receptor interaction, cellular senescence,
calcium, and chemokine signaling pathways (q value <0.05). The integration of
information about DMGs, differentially expressed genes (DEGs), and biological
functions suggested nine genes CALCRL, TNC, GATA4, CD44, TGM3, CXCL9,
CXCL10, PPARG, and NFATC1 as promising candidates related to resistance/
susceptibility to Mycobacterium avium subspecies paratuberculosis (MAP). This study
reports on the high-resolution DNA methylation landscapes of the jejunum methylome
across three conditions (clinical, subclinical, and healthy) in dairy cows. Our investigations
integrated different sources of information about DMGs, DEGs, and pathways, enabling us
to find nine functional genes that might have potential application in resisting
paratuberculosis in dairy cattle.
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INTRODUCTION

Animal health, as a main factor affecting the development of the
animal husbandry economy, is being valued progressively more over
time and incorporated into breeding programs. Paratuberculosis is
referred to as Johne’s disease and has been reported all over the
world bringing huge economic losses to the dairy industry,
warranting more attention (Ott et al., 1999). The disease is a
chronic debilitating enteritis caused by a Mycobacterium avium
subspecies paratuberculosis (MAP) infection (Clarke, 1997),
which has a long incubation period. Clinical manifestations
contain chronic or intermittent diarrhea, throat and jaw edema,
weight loss, and eventually death (Whitlock and Buergelt, 1996).
Verschoor et al., 2010 reported that four single nucleotide
polymorphisms (SNPs) in the IL10RA gene were significantly
associated with paratuberculosis susceptibility in the Canadian
Holstein cattle population (Verschoor et al., 2010). Hempel et al.,
2016 identified seven genes, FABP6, SLC10A2, MMP13, APOB,
IGSF23, GNLY, and FCRLA, related to paratuberculosis through
RNA sequencing (RNA-Seq) of ileocecal tissues from Holstein cows
(Hempel et al., 2016). Studies have proved that jejunum is the main
invasion and residence site of MAP, the infected jejunum wall is
diffusely thickened, showing inflammation and tissue edema. The
enlargement of mesenteric and other regional lymph nodes are
usually apparent (Wentink et al., 1994; Bannantine and Bermudez,
2013; Ibeagha-Awemu et al., 2019). Therefore, we also used jejunum
tissue to explore the mechanism of paratuberculosis diseases in
our study.

The genome-wide DNA methylation genetic map is an
effective strategy to reveal the role of DNA in development
and disease. It has been reported that abnormal DNA
methylation is related to human diseases, such as cancer and
neurodevelopmental diseases (Weksberg et al., 2001; Debaun
et al., 2003). Prawitt et al. (2005) found that aberrant
methylation at the ICR1 gene led to human Wilms’ tumor and
Beckwith–Wiedemann syndrome. Furthermore, a growing
number of studies are considering the use of epigenomics to
study disease resistance in livestock (Moore et al., 2008; Jin et al.,
2011; Hao et al., 2016; Sharifi-Zarchi et al., 2017; Fu et al., 2018).
Whole-genome bisulfite sequencing (WGBS) is used to determine
the DNA methylation status of single cytosines by treating the
DNA with bisulfite before sequencing (Stevens et al., 2013).
Compared with the previous methylation sequencing
technology, WGBS requires a smaller sample volume and gets
a resolution off a single base, which may detect the methylation
status of each cytosine.

In our previous studies, we detected the serum antibody levels
of MAP based on an enzyme-linked immunosorbent assay
(ELISA) for 8,214 Chinese Holstein cows and estimated the
heritability of susceptibility to paratuberculosis (0.04–0.11)
(Gao et al., 2018a). We further identified 26 genome-wide
significant SNPs and 10 functional genes associated with
paratuberculosis by performing a genome-wide association
study, namely IL-4, IL-5, IL-13, IRF1, MyD88, PACSIN1,
DEF6, TDP2, ZAP70, and CSF2 (Gao et al., 2018b). In
addition, we conducted RNA sequencing on the jejunum
samples from MAP-infected and healthy Holstein cows and

identified 134 differentially expressed genes among clinical,
subclinical, and healthy groups (unpublished data). However,
research related to the regulatory roles of DNA methylation on
paratuberculosis in dairy cattle has not been reported until now.
In the present study, WGBS was using with the same samples as
those for our RNA-Seq study to investigate the regulatory
mechanism of DNA methylation on paratuberculosis and
identify potentially critical genes for resistance/susceptibility to
MAP in order to provide molecular information for a disease-
resistance breeding program in dairy cattle.

METHODS AND MATERIALS

Sample Collection
In our previous studies (Gao et al., 2018a; Gao et al., 2018b), we
detected the serum antibody levels for MAP of 8,214 Chinese
Holstein cows with the ELISA method, of which 784 cows were
identified as positive. Stool samples of each seropositive cow were
further collected for quantitative PCR (qPCR) to detect whether
MAP was present with an INgene q ParaTB Kit (Ingenasa,
Madrid, Spain). Individuals who were positive in both the
serum and stool samples and had obvious diarrhea were
defined as clinical cows (CC); individuals who were
seropositive, but their stools were negative and with no
diarrhea, were referred to as subclinical cows (SC); individuals
that were negative in both serum and stools samples were treated
as healthy cows (HC). Three cows were included in each group
(Supplementary Figure S1A). These nine cows were dissected in
the same slaughterhouse. The jejunum tissues were collected from
each individual within 30 min after slaughtering and placed in
liquid nitrogen. The infected part of the jejunum from clinical
cows was obviously thickened, inflamed, and edema was present,
and that from subclinical cows showed mild inflammation
and edema.

Deoxyribonucleic Acid Extraction and
Library Preparation
Genomic DNA of the jejunum tissue from the nine cows with
three in each group was extracted using a TIANamp Genomic
DNA Kit (Tiangen, Beijing, China). The DNA quantity and
quality were determined using a NanoDrop2000
spectrophotometer (ThermoFisher, Waltham, MA,
United States) and Agilent 2100 Bioanalyzer (Agilent, Santa
Clara, CA, United States), respectively.

First, 5 μg of lambda DNA was added into the genomic DNA
of each sample as the negative control. Then, the genomic DNA
was randomly broken into 200–300 bp fragments using an
S220 focused-ultrasonicator (Covaris, Santa Clara, MA,
United States); these fragments were end-repaired, added to
the sequencing adapter, and treated with bisulfite. The
methylated cytosines were thereby unchanged and the
unmethylated cytosines became uracils, which were changed to
thymines after PCR amplification (Supplementary Figure S1B).
A library quality control was performed with an Agilent 2100
Bioanalyzer.
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Bisulfite Sequencing and Data Analysis
With the completion of the library, paired-end sequencing was
performed on the Illumina NovaSeq6000 sequencing platform
(Illumina, CA, United States). Preliminary quality control of raw
reads was carried out with fastqc (v0.11.9, https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and these reads
were then filtered with fastp software (v0.20) to remove adapters
and low quality sequences (Chen et al., 2018). With bowtie2 (v2.4.
0), clean reads were deduplicated and aligned against the bovine
reference genome (ARS-UCD1.2, https://asia.ensembl.org/index.
html), which was bisulfite-converted using bismark (v0.22.1)
(Langmead and Salzberg, 2012; Langmead et al., 2018), and
the command of “bismark--genome_folder ref.fa -bowtie2 -N
0 -L 20”. Methylation status was determined andmethylated CpG
sites were marked using the command “bismark_methylation_
extractor” (Krueger and Andrews, 2011). The correlation
coefficient within each group was calculated using R
programing language (v3.6.0).

Identification of Differentially Methylated
Regions and Differentially Methylated
Genes
The bsseq (v1.24.4) package in the R programing language (v3.6.0)
was used to find differentially methylated regions (DMRs) among the
three comparative groups based on the information about CpG sites
(Hansen et al., 2012). Each DMR had at least five methylated CpG
sites where the distance between CpG sites was less than 300 bp and
there was a greater than 10% difference inmethylation levels between
groups. The significant ranking of DMRs was dependent on the
absolute value of areaStat that was used to determine the significance
threshold. In order to screen differentially methylated genes (DMGs),
we retained the genes in which the DMRs were entirely located using
the “intersect–f 1” command from bedtools (v2.28.0) (Quinlan and
Hall, 2010), eliminating genes that had partial DMRs, all these
screened genes were defined as DMGs. The promoter is located
kilo bases upstream away from the transcriptional start site in the
regulatory sequence controlling gene expression (Hernandez-Garcia
and Finer, 2014; Yu et al., 2016). Therefore, we defined 2000 bp
upstream of the gene as the promoter region and identified the
differentially promoter-methylated genes (DPMGs) with identical
screening. Both the files of the gene body and promoter were
downloaded from UCSC (https://genome.ucsc.edu/). The genes
containing both hypermethylated and hypomethylated regions
were considered as hypermethylated and hypomethylated genes.

Gene Ontology and Kyoto Encyclopedia of
Genes andGenomes Functional Enrichment
Analysis
The clusterProfiler tool (v3.16.0) in R was applied to perform GO
and KEGG enrichment analysis on DMGs and DPMGs (Yu et al.,
2012). The significant threshold related to enrichment analysis of
DMGs and DPMGs was a q value <0.05 and p value <0.05,
respectively. The p value is a measure of statistical significance;
the q value is a measure of the false discovery rate (FDR)
(Benjamini and Hochberg, 1995; Storey, 2003).

Integration Analysis of Whole-Genome
Bisulfite Sequencing and Ribonucleic Acid
Seq Data
Genes that were both DMGs and DEGs according to the DNA
methylation and RNA sequencing data were identified. Further,
we detected the methylated status of promoters in these genes and
calculated the association between the methylated status and the
fragments per kilobase million (FPKM) with Pearson correlation
analysis (Schober et al., 2018).

RESULTS

Summary of Methylome Sequencing
By performing WGBS, the raw data of the nine jejunum tissue
samples from clinical, subclinical, and healthy groups, each
comprising three Holstein cows were completed. After quality
control, a total of 2.84 × 109 clean reads were obtained with an
average of 3.16 × 108 (average 108.33 G per sample) for each
sample, indicating a sequencing depth of 30×. There were 81.03%
of non-duplicated clean reads uniquely aligned to the bovine
reference genome (ARS-UCD1.2, Supplementary Table S1).
Bisulfite conversion efficiency (BCE) reached 99.33%
suggesting the reliability of the methylome sequencing in this
study (Table 1).

Deoxyribonucleic AcidMethylation Patterns
We found that on average 3.22% of all genomic C sites were
methylated across the nine samples. Methylation in advanced
mammals generally exists in three sequence contexts: CpG, CHG
(where H is A, C, or T), and CHH. Here, we observed the overall
genome-wide methylation levels of 70.50% CpG, 0.40% CHG,
and 0.38% CHH in the clinical group, 69.60% CpG, 0.39% CHG,
and 0.38% CHH methylation in the subclinical group, and
68.03% CpG, 0.39% CHG, and 0.38% CHH methylation in the
healthy group (Supplementary Table S1). Further, we calculated
the correlation of 0.9 within each group using the methylation
level of CpGs.

Deoxyribonucleic Acid Methylation Levels
in Different Regions of the Gene
To characterize the distribution of methylation in different
genomic elements, we analyzed the average DNA methylation
levels in the promoter, 5’ untranslated region (UTR), exons,
introns, and the 3’ UTR of each methylated gene, and found
the average methylation levels of the three experimental groups
were similar in the promoter (29.3–30.48%) and 5’ UTR
(29.02–30.29%) but displayed certain differences in partial
exons, introns, and 3’UTR (Figure 1). Of note, the
methylation levels of partial exons, introns, and the 3’UTR in
the clinical group (68.50, 72.40, and 73.35%) were obviously
higher than those in the healthy groups (67.90, 70.60, and
71.22%). In addition, the methylation level in the X
chromosome (63.45%) was significantly lower than that in the
autosomes (69.65%, p value <0.05; Figure 2).
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Differentially Methylated Regions,
Differentially Methylated Genes, and
Differentially Promoter-Methylated Genes
Identification
By comparing the cytosinemethylation profiles of MAP-infected and
healthy groups, we detected 100,758 differentially methylated regions
(DMRs), including 31,750 between the clinical and subclinical
groups, 35,082 between the clinical and healthy groups, and
33,926 between the subclinical and healthy groups

(Supplementary Table S2). The length of DMRs was 6–2,292 bp
with an average of 350 bp, 98.5% of which were less than 1,000 bp
(Supplementary Figure S2). Further, a total of 6,653 differentially
methylated genes (DMGs) and 1,779 differentially promoter-
methylated genes (DPMGs) were identified, i.e., 3,911 DMGs and
661 DPMGs in clinical vs. subclinical groups, 4,336 DMGs and 893
DPMGs in clinical vs. healthy groups, and 4,094 DMGs and 746
DPMGs in subclinical vs. healthy groups (Supplementary Table S2).
Details of the top 10 significant DMGs and DPMGs in the three
comparisons are described in Table 2 and Table 3, respectively.

TABLE 1 | Basic state of alignment, bisulfite conversion efficiency, and methylation level.

Group BCE (%) Unique alignment (%) Methylation level (%) Methylation
level (by group)

CC1 99.33% 81.60% 67.41% 67.42%
CC2 99.33% 80.40% 66.78%
CC3 99.33% 80.90% 68.06%
SC1 99.32% 81.30% 65.29% 66.74%
SC2 99.36% 81.40% 67.50%
SC3 99.34% 80.00% 67.42%
HC1 99.33% 79.70% 63.36% 65.26%
HC2 99.34% 81.00% 65.00%
HC3 99.33% 80.00% 67.44%

Note: CC: clinical cow; SC: subclinical cow; HC: healthy cow; and BCE: bisulfite conversion efficiency.

FIGURE 1 | Average methylation levels in different genomic regions. The y-axis is the methylation level; the x-axis is the different regions in the genome. CC: clinical
cow; SC: subclinical cow; and HC: healthy cow.
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Gene Ontology Annotation and Kyoto
Encyclopedia of Genes and Genomes
Pathways Enrichment on the Differentially
Methylated Genes and Differentially
Promoter-Methylated Genes
To further investigate the potential associations of the DMGs and
DPMGs with paratuberculosis, we implemented functional
enrichment analysis with the clusterprofiler package and
found that the DMGs were significantly enriched in 77 GO

terms (q < 0.05; Figure 3, Supplementary Table S3). From
those, the most enriched terms included plasma membrane
part (GO:0044459, q � 3.51E-06), phospholipid binding (GO:
0005543, q � 3.80E-05), metal ion transmembrane transporter
activity (GO:0046873, q � 0.00018), and phosphatidylinositol
binding (GO:0035091, q � 0.00223).

According to the KEGG analysis, the DMGs were significantly
enriched in 181 pathways (q < 0.05; Supplementary Table S3)
with 95 common pathways across all the comparisons
(Supplementary Figure S3). These were mainly related to Th1

FIGURE 2 | Density plot of 5-methylcytosine among various groups. Chromosome numbers and scales are indicated on the periphery, a dark to light color
indicates a low to high level of methylation. CC: clinical cow; SC: subclinical cow; and HC: healthy cow.
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and Th2 cell differentiation (bta04658, q � 0.03), wnt
(bta04310, q � 0.00056), TNF (bta04668, q � 0.0008), MAPK
(bta04010, q � 6.98E-08), ECM-receptor interaction (bta04512,
q � 0.017), cellular senescence (bta04218, q � 0.03), calcium
(bta04020, q � 1.80E-05), and the chemokine signaling pathways
(bta04062, q � 0.001).

As for DPMGs, no significant GO terms were enriched
(p > 0.05). However, a total of 92 pathways were enriched
(p < 0.05, Supplementary Table S3), in which the most
significant pathways included oxytocin (bta04921, p � 1.46E-
05), influenza A (bta05164, p � 9.65E-05), prostate cancer
(bta05215, p � 0.00014), vascular smooth muscle contraction
(bta04270, p � 0.00015) and the long-term potentiation signaling
pathway (bta04720, p � 0.00022).

Identification of Candidate Genes Related
to Paratuberculosis With Integrated
Whole-Genome Bisulfite Sequencing,
Ribonucleic Acid Seq, and Biological
Functional Data
Our previous RNA sequencing on the same jejunum samples of
the nine Holstein cows used in the present study detected 134
DEGs including 23 between the clinical and subclinical groups, 71

between the subclinical and healthy groups, and 73 between the
clinical and healthy groups (q＜0.05; unpublished data). Of these,
31 functional genes were differentially expressed and
differentially methylated among the three comparative groups
simultaneously (Supplementary Table S4). Eight genes,
calcitonin receptor like receptor (CALCRL), tenascin C (TNC),
GATA binding protein 4 (GATA4), CD44 molecule (CD44),
transglutaminase 3 (TGM3), C-X-C motif chemokine ligand 9
(CXCL9), C-X-C motif chemokine ligand 10 (CXCL10), and
peroxisome proliferator activated receptor gamma (PPARG),
were significantly enriched in immune-related pathways such
as Th1 and Th2 cell differentiation, wnt, TNF, MAPK, ECM-
receptor interaction cellular senescence, calcium, and chemokine
signaling pathways. Therein, CXCL10 and CALCRL contained
two methylated sites in the promoter (Supplementary Figure
S4). The Pearson correlation coefficients between the methylated
status of the promotor and the mRNA levels (FPKM) of CXCL10
and CALCRL were calculated as -0.07 and -0.56, respectively,
indicating downregulation roles of the methylated promoter on
gene expression (Supplementary Table S5).

Further, nuclear factor of activated T cells 1 (NFATC1), whose
methylation of the intron was shown to affect the expression of
IL-2 and IL-4 in the effector T cells in previous studies
(Akimzhanov et al., 2008; Huang et al., 2011; Christie and
Zhu, 2014), was differentially methylated between the MAP-

TABLE 2 | The top 10 DMGs among clinical, subclinical, and healthy groups.

Group Gene Full name areaStat

CC vs.SC ABCA9 ATP binding cassette subfamily A member 9 −207.03
IGF1R insulin like growth factor 1 receptor −202.65
IRF2 interferon regulatory factor 2 178.43
TRIM36 tripartite motif containing 36 170.80
ATP2B2 ATPase plasma membrane Ca2+ transporting 2 161.54
ZNF521 zinc finger protein 521 −155.53
COMT catechol-O-methyltransferase −146.49
MAP2K6 mitogen-activated protein kinase kinase 6 −139.39
GLUD1 glutamate dehydrogenase 1 −136.60
KCNU1 potassium calcium-activated channel subfamily U member 1 −133.99

CC vs.HC TRIM9 tripartite motif containing 9 −206.52
VGLL4 vestigial like family member 4 195.48
ZNF521 zinc finger protein 521 −189.58
FGF12 fibroblast growth factor 12 −171.36
AP1M1 adaptor related protein complex 1 subunit mu 1 −166.31
MSX2 msh homeobox 2 −158.98
SPART spartin −147.53
LITAF lipopolysaccharide induced TNF factor −136.44
PRKN parkin RBR E3 ubiquitin protein ligase 135.78
UBE2V1 ubiquitin conjugating enzyme E2 V1 132.49

SC vs.HC FNTB farnesyltransferase, CAAX box, beta 181.33
GLUD1 glutamate dehydrogenase 1 147.12
FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial −142.08
GTF2IRD1 GTF2I repeat domain containing 1 −141.27
IQCA1 IQ motif containing with AAA domain 1 −130.13
CCDC88B coiled-coil domain containing 88B −129.05
RPH3AL rabphilin 3A like (without C2 domains) −128.24
UBE2V1 ubiquitin conjugating enzyme E2 V1 125.99
OAS1Y 2’,5’-oligoadenylate synthetase 1, 40/46 kDa −123.96

Note: DMGs: differentially methylated genes; CC: clinical cow; SC: subclinical cow; HC: healthy cow; vs.: versus; areaStat: the sum of the t-statistics in each CpG, the magnitude of its
absolute value represents the degree of methylation difference, the positive value represents hypermethylation, and the negative value represents hypomethylation.
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infected and healthy cows and significantly enriched in the Th1
and Th2 cell differentiation pathway (q � 0.033).

Potential Regulatory Mechanism
Underlying Paratuberculosis
Consequently, we inferred the potential of a regulatory
mechanism underlying paratuberculosis in dairy cattle. As

shown in Figure 4, the differentially methylated NFATC1,
TGM3, and GATA4 directly affected the expression of
immune factors, including IL-5, IL-2, IL-4, IL-4Ra, IL-2Ra,
GATA3, IL-6, IL-12Rb, and IFN-c secreted in Th1 and Th2
cells, to maintain an inflammatory response. NFATC1 elevated
the expression of these immune factors through a cell
differentiation pathway. TGM3 activated IL-6 expression via
calcium signaling pathways and GATA4 promoted IL-5, IL-4,

TABLE 3 | The top 10 DPMGs among clinical, subclinical, and healthy groups.

Group Gene Full name areaStat

CC vs.SC KBTBD6 kelch repeat and BTB domain containing 6 134.82
DOLK dolichol kinase 97.46
SPATA7 spermatogenesis associated 7 −81.91
DCTN1 dynactin subunit 1 −80.92
CDKN1B cyclin dependent kinase inhibitor 1B −80.63
STAG2 stromal antigen 2 74.02
ALKBH1 alkB homolog 1, histone H2A dioxygenase 69.09
SMN2 survival of motor neuron 2, centromeric 66.22
TRAPPC12 trafficking protein particle complex 12 64.98
BAG3 BAG cochaperone 3 −62.08

CC vs.HC NEUROD1 neuronal differentiation 1 −141.99
DOLK dolichol kinase 126.79
CDH10 cadherin 10 −108.22
TMEM47 transmembrane protein 47 −107.76
USP44 ubiquitin specific peptidase 44 −104.73
KCNH5 potassium voltage-gated channel subfamily H member 5 −100.64
SPATA7 spermatogenesis associated 7 −97.40
NFYB nuclear transcription factor Y subunit beta −95.71
TMEM184A transmembrane protein 184A −94.14
BLOC1S4 biogenesis of lysosomal organelles complex 1 subunit 4 −91.18

SC vs.HC THOC2 THO complex 2 −144.59
NEUROD1 neuronal differentiation 1 −116.99
DNAJA1 DnaJ heat shock protein family (Hsp40) member A1 −102.50
SOX5 SRY-box transcription factor 5 −96.20
NRK Nik related kinase −92.11
MRPS24 mitochondrial ribosomal protein S24 −87.19
USP44 ubiquitin specific peptidase 44 −82.56
CHCHD8 coiled-coil-helix-coiled-coil-helix domain containing 8 −76.81
FZD7 frizzled class receptor 7 −74.23
OR4D9 olfactory receptor family 4 subfamily D member 9 −73.86
PLPPR1 phospholipid phosphatase related 1 72.62

Note: DPMGs: differentially promoter-methylated genes; CC: clinical cow; SC: subclinical cow; HC: healthy cow; vs.: versus; areaStat: the sum of the t-statistics in each CpG, the
magnitude of its absolute value represents the degree of methylation difference, the positive value represents hypermethylation, and the negative value represents hypomethylation.

FIGURE 3 | Gene ontology categories enriched for DMGs. The y-axis is the name of GO terms; the x-axis is the gene number in terms. CC: clinical cow; SC:
subclinical cow; and HC: healthy cow.
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and IFN-c through a cellular senescence signaling pathway.
PPARG regulated NFATC1 expression through MAPK and
calcium signaling pathways thereby modulating immune
factors in Th1 and Th2 cells. CXCL9 and CXCL10 stimulated
chemokine receptor proteins that promoted the JAK2/3 and
STAT pathways, ultimately activating immune factors such as
IL-12Rb, IFN-c, and T-bet. Membrane proteins encoded by TNC
and CD44modulated the expression of IL-5 and IL-4 through the
ECM-receptor interaction signaling pathway and another
member protein encoded by CALCRL stimulated IL-5
secretion through activation of cAMP in the vascular smooth
muscle contraction pathway.

In sum, invasion of MAP into the animal body induced
immune responses whereby the above-mentioned nine
functional genes stimulated the secretion of immune factors
against MAP, indicating the potential regulatory mechanism
underlying paratuberculosis in dairy cattle.

DISCUSSION

In this study, we obtained the integral genome-wide DNA
methylation maps of jejunum tissues from clinical, subclinical,
and healthy cows with regards to paratuberculosis at the
resolution of a single base. We found that the average
methylation level was 15–20% in the transcription start site

(TSS) and 65–75% in the gene body. These results were
similar to the report in humans (TSS: 15–20%, gene body:
60–75%) (Gao et al., 2014), in pigs (TSS: 15–25%, gene body:
65–75%) (Fu et al., 2018; Yang et al., 2021), and even in plants
(TSS: 10–20%, gene body: 30–45%) (Song et al., 2013), indicating
that a conserved methylation mode existed in trans-species
within different species. We observed that most DMRs (46%)
were located in the introns region. Del Corvo et al., 2020 also
reported that in Italian Simmental, 46% of DMRs in peripheral
blood between groups treated by different stress level were located
in introns (Del Corvo et al., 2020). This may be because the intron
sequence is much longer than the encoding region.

The DNA methylation status of the promoter can affect gene
expression via changes in chromatin structure or transcription
efficiency (Miller and Grant, 2013). In our study, we found that
both CALCRL and CXCL10 genes whose promoters contained
two methylated sites showed lower expression levels based on our
WGBS and RNA-seq data. This may be due to the methylation
state slowing down the progress of RNA polymerase during
transcription, given that delay of the transcription extension
and appearance can inhibit the abnormal transcription
initiation (Barry et al., 1993; Hohn et al., 1996; Rountree and
Selker, 1997).

Based on integrated information about the DMGs, DEGs, and
their biological functions, we identified nine genes as promising
candidates for resistance or susceptibility to paratuberculosis in

FIGURE 4 | The networks of the immune-related pathways to paratuberculosis. The oval with non-italic characters represents the protein, the oval with italic
characters represents the gene, and the small circle represents the small molecule. Orange ellipses are the membrane proteins, the blue ellipses are the extracellular
matrix, and green ellipses are the intracellular matrix. Blue and pink characters are the differentially methylated genes, and the red characters are the genes with
differential methylation and expression.
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dairy cattle. They were CALCRL, TNC, GATA4, CD44, TGM3,
CXCL9, CXCL10, PPARG, and NFATC1. CALCRL encodes the
membrane receptor CRLR, which is associated with diseases of
lymphatic malformation and changes contraction of the vascular
smooth muscle resulting in an increase in tissue fluid and thus
leads to edema (Dong et al., 2005; Garvey, 2018). TNC encodes an
extracellular matrix protein, which regulates the expression of
immune factors IL-4 and IL-5 and has a critical role in humoral
immunity. (Zhou et al., 2019) found that the TNC levels of serum
correlated strongly with occurrences of colorectal cancer
(Zhou et al., 2019). GATA4 encodes a member of the
GATA family of zinc-finger transcription factors that is
associated with inflammation induced by DNA damage in
mouse embryonic fibroblasts (Reyes et al., 2004; Kang et al.,
2015). CD44 participates in a wide variety of cellular functions
including lymphocyte activation and tumor metastasis
(Dalerba et al., 2007; Schmitt et al., 2015), and CD44 plays
important roles in ECM-receptor and wnt signaling pathways
related to differentiation of the invasion of tumor cells (Hill
et al., 2006; Wan et al., 2019) reported that the CD44
expression influenced susceptibility to colorectal cancer in
humans, and that an SNP (rs187115) in CD44 was associated
with an increased risk of colorectal cancer (Wan et al., 2019).
TGM3 encodes an enzyme that is involved in immune
regulation of cancer. (Feng et al., 2020) revealed that
TGM3 potentially suppressed cell proliferation through
promoting apoptosis and cell cycle regulation and
activating phosphorylated AKT serine/threonine kinase to
inhibit invasion and metastasis in colorectal cancer cells
(Feng et al., 2020). CXCL9 has a critical role in T cell
transport and recruitment of mononuclear cells and
granulocytes in the host immune response (Liu et al., 2008;
Elia and Guglielmi, 2018). Antonelli et al., 2014; Tokunaga
et al., 2018 reported that CXCL9 expression in epithelial colonic
cells interacted with immune factor IFN-γ in ulcerative colitis
(Antonelli et al., 2014; Tokunaga et al., 2018). CXCL10 was
associated with chronic inflammation, immune dysfunction,
and dissemination of the tumor (Liu et al., 2011). It was
reported that the downregulation of CXCL10 expression was
connected with tumor metastasis and recurrence of colorectal
cancer, and the increasing expression of CXCL10 influenced the
recruitment of CD8+ T lymphocytes to tumor sites (Li et al.,
2014; Zheng et al., 2016). PPARG decreased the inflammatory
response and increased synthesis and release of paraoxonase1,
and its activation was shown to inhibit pro-inflammatory genes
via trans-repression (Straus and Glass, 2007; Khateeb et al.,
2010). PPARG was also associated with beta-catenin, an
important molecule in colorectal tumor carcinogenesis and
C > T mutation in exon 8 that increased the risk of
colorectal cancer (Michalik et al., 2004; Tontonoz and
Spiegelman, 2008; Lin et al., 2019). NFATC1 encodes the
NFAC1 protein that plays a role in the inducible expression
of cytokine genes in T cells. NFATC1 induced IL-2 or IL-4
expression in T cells to regulate the activation differentiation
and proliferation of programmed death of T lymphocytes
(Huang et al., 2011). In our study, the methylation level of
DMRs in CALCRL, TNC, TGM3, and PPARG significantly

increased with aggravation of the MAP disease. And the
CXCL9, CXCL10, and NFATC1 methylation levels of HC
groups was significantly higher than CC and SC groups,
indicating that the decrease of their methylation levels may
be related to the occurrence of inflammation. The details of
methylation level can be found in Supplementary Table S4.

Further, we have proposed the regulatory mechanism by
which the immune response occurs after MAP invades the
body, and how these candidate genes regulate immune
pathways related to paratuberculosis in dairy cattle. Once
MAP invades the bovine body, the immune response will
control the infection immediately; nevertheless, it cannot
completely kill MAP (Arsenault et al., 2014). In the early stage
of infection, the Th1 cell-mediated immune response is rapid,
with a small number of bacteria excreted from the animal body at
this stage. As the cellular immunity mediated by Th1 cells
weakens, the humoral immunity that is mediated by Th2 cells
is gradually strengthened; the disease has progressed to the
clinical stage (Spellberg and Edwards, 2001). At this stage,
both the antibody level and the number of bacteria excreted
from the body are significantly increased (Nielsen and Toft,
2006). In our study, we found that the nine candidate genes
(CALCRL, TNC, GATA4, CD44, TGM3, CXCL9, CXCL10,
PPARG, and NFATC1) participated in the main immune-
related pathways associated with paratuberculosis, including
Th1 and Th2 differentiation, ECM-receptor interaction, wnt,
TNF, MAPK, calcium, vascular smooth muscle contraction,
T cell receptor, cellular senescence, and chemokine signaling
pathways. These pathways have the ability to influence the
secretion of immune factors in T cells, involving IL-5, IL-2,
IL-4, IL-4Ra, IL-2Ra, GATA3, IL-6, IL-12Rb, and IFN-c. This
implies that they function in transmitting intercellular
information, regulating the physiological process of cells and
resistance to MAP.

CONCLUSION

In this study, we obtained genome-wide methylomes with a
single-base resolution of jejunum tissue from Holstein cows in
clinical, subclinical, and healthy groups for paratuberculosis, and
identified 8,432 differentially methylated genes. With integration
of information about DMGs, DEGs, and biological functions, we
reported nine promising candidate genes associated with
resistance/susceptibility to paratuberculosis: CALCRL, TNC,
GATA4, CD44, TGM3, CXCL9, CXCL10, PPARG, and
NFATC1. Our findings provide new insights into the
regulatory mechanism of bovine paratuberculosis and
associated molecular information for gene-based
improvements to the health of dairy cattle.
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