
Antioxidants 2015, 4, 248-268; doi:10.3390/antiox4020248 
 

antioxidants 
ISSN 2076-3921 

www.mdpi.com/journal/antioxidants 
Review 

Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, 
and Photoprotective Strategies with Phytochemicals 

Ricardo Bosch 1,2, Neena Philips 3,*, Jorge A. Suárez-Pérez 1,2, Angeles Juarranz 4,  
Avani Devmurari 3, Jovinna Chalensouk-Khaosaat 3 and Salvador González 5,6 

1 Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain;  
E-Mails: ricardobosch@aedv.es (R.B.); jasuape@hotmail.com (J.A.S.-P.) 

2 Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain 
3 School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck,  

NJ 07666, USA; E-Mails: avaniben@student.fdu.edu (A.D.); jovinna.ck323@yahoo.com (J.C.-K.) 
4 Biology Department, Universidad Autónoma de Madrid, Madrid 28903, Spain;  

E-Mail: angeles.juarranz@uam.es 
5 Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10022, USA;  

E-Mail: gonzals6@mskcc.org 
6 Ramon y Cajal Hospital, Alcala University, Madrid 28034, Spain 

* Author to whom correspondence should be addressed; E-Mail: nphilips@fdu.edu or 
neenaphilips@optonline.net; Tel.: +1-201-692-6494. 

Received: 28 December 2014 / Accepted: 12 March 2015 / Published: 26 March 2015 
 

Abstract: Photoaging and photocarcinogenesis are primarily due to solar ultraviolet (UV) 
radiation, which alters DNA, cellular antioxidant balance, signal transduction pathways, 
immunology, and the extracellular matrix (ECM). The DNA alterations include UV 
radiation induced thymine-thymine dimers and loss of tumor suppressor gene p53. UV 
radiation reduces cellular antioxidant status by generating reactive oxygen species (ROS), 
and the resultant oxidative stress alters signal transduction pathways such as the  
mitogen-activated protein kinase (MAPK), the nuclear factor-kappa beta (NF-κB)/p65, the 
janus kinase (JAK), signal transduction and activation of transcription (STAT) and the 
nuclear factor erythroid 2-related factor 2 (Nrf2). UV radiation induces pro-inflammatory 
genes and causes immunosuppression by depleting the number and activity of the  
epidermal Langerhans cells. Further, UV radiation remodels the ECM by increasing 
matrixmetalloproteinases (MMP) and reducing structural collagen and elastin. The 
photoprotective strategies to prevent/treat photoaging and photocarcinogenesis include oral 
or topical agents that act as sunscreens or counteract the effects of UV radiation on DNA, 
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cellular antioxidant balance, signal transduction pathways, immunology and the ECM. 
Many of these agents are phytochemical derivatives and include polyphenols and  
non-polyphenols. The flavonoids are polyphenols and include catechins, isoflavones, 
proanthocyanidins, and anthocyanins, whereas the non-flavonoids comprise mono phenolic 
acids and stilbenes. The natural sources of polyphenols include tea, cocoa, grape/wine, soy, 
pomegranate, and Polypodium leucotomos. The non-phenolic phytochemicals include 
carotenoids, caffeine and sulphoraphance (SFN). In addition, there are other phytochemical 
derivatives or whole extracts such as baicalin, flavangenol, raspberry extract, and 
Photomorphe umbellata with photoprotective activity against UVB radiation, and  
thereby carcinogenesis. 

Keywords: skin aging; skin cancer; ultraviolet radiation; signal transduction pathways; 
extracellular matrix; polyphenols 

 

1. Introduction 

Premature skin aging and development of malignant cutaneous tumors, melanoma and non-melanoma, 
are interrelated issues that are increasingly important problems in the field of dermatology. Skin aging 
is important aesthetically, whereas skin cancer is a direct threat to the health of the patient. Hence, 
research aimed at providing knowledge in these areas has increased exponentially to develop 
preventive and therapeutic approaches. 

We review the mechanisms of photoaging and photocarcinogenesis, the photoprotective strategies, 
and the phytochemicals that can provide photoprotection. The photoaging and photocarcinogenic 
mechanisms are predominantly the effect of solar ultraviolet (UV) radiation that induces reactive 
oxygen species (ROS) and alters DNA/cellular homeostasis, which together alter signal transduction 
pathways and inflammatory cascade and induce immunosuppression and extracellular matrix (ECM) 
remodeling. The photoprotective strategies include the blockade of UV photon incidence, DNA repair, 
removal of ROS (antioxidant), anti-inflammation, and immunomodulation. The photochemical 
derivatives that are effective for these photoprotective strategies are polyphenols, flavonoids and  
non-flavonoids, non-phenolic derivatives, and whole plant extracts. 

2. Mechanisms of Photoaging and Photocarcinogenesis 

Aging is a natural process leading to the progressive deterioration of the organs and its resultant 
clinical and histological changes. A primary cause is the imbalance between ROS production and their 
neutralization by natural antioxidant systems, which generates oxidative stress. ROS promote 
peroxidation of the lipid components of the cell membrane, alter the structure and function of several 
enzymatic systems, and promote carbohydrate oxidation. Incident UV radiation is the predominant 
cause of the oxidative stress in the skin and the histological differences between UV radiation exposed 
and non-exposed skin areas. The whole array of changes caused by UV radiation in exposed skin is 
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termed photo aging, whereas changes from other factors that contribute to aging, such as metabolic or 
hormonal, are termed “chronologic” or “intrinsic” aging [1–4]. 

Cancer is a disease caused by the alteration of certain genes, resulting in uncontrolled cellular 
proliferation and loss of normal control mechanisms to inhibit such growth. Its development begins at 
the cross roads between genetics and environment, the latter being more important in certain types of 
cancer, e.g., skin tumors. The chief promoter of skin cancer, which underlies the use of the term photo 
carcinogenesis, is sun radiation; although other factors may contribute, such as viruses or chemicals. 

The photoaging and photocarcinogenic mechanisms through UV radiation induced ROS and  
DNA damage, and the resultant cellular damage, inflammation, immunosuppression and ECM 
remodeling/angiogenesis are illustrated in Figure 1. 

 

Figure 1. Summary of the major deleterious effects of sun-generated ultraviolet (UV) 
radiation in skin. 

2.1. Effects of Solar Ultraviolet Radiation 

Photon energy carried in UV (particularly UVB at 280–315 nm, and UVA at 315–400 nm) induces 
alterations that accumulate and promote the majority of the typical manifestations of skin aging and 
cancer. UVB makes up only 5% of the UV radiation that reaches the surface of earth and has little 
penetrance, but it displays great biological activity. UVA makes up the remaining 95% of incident 
light and is more penetrating, promoting photo aging. However, UVA carries less energy and therefore 
promote carcinogenesis to a lower extent than UVB [5]. 

The main effects of acute and chronic exposure to UV radiation are DNA damage, inflammation 
and immunosuppression. These effects are direct as well as indirect due to ROS production. The ROS 
are particularly harmful in that they destabilize other molecules and promote chain reactions that 
damage biomolecules rapidly, such as telomere shortening and deterioration, mitochondrial damage, 
membrane degradation and oxidation of structural and enzymatic proteins [4]. 

UV radiation directly and through ROS participates in the three stages of the carcinogenic  
process [6–8]. During initiation, it produces genetic damage through direct effect on the DNA or by 
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activating other factors [9,10]. In the promotion stage, it favors the proliferation of malignant cells by 
inhibiting the mechanisms of immune controls and promoting genomic instability [11]. Finally, it also 
boosts progression and dissemination of tumors by promoting protease release and angiogenesis [12,13]. 

2.2. DNA and Cellular Homeostasis 

UV radiation, particularly UVB, alters DNA by promoting the formation of thymine-thymine 
dimers and pyrimidine-pyrimidone dimers, and generates ROS [14–16]. The thymine-thymine dimers 
are particularly crucial when they affect the tumor suppressor gene p53. Mutated p53 appears in skin 
displaying chronic sun damage, actinic keratosis and skin cancer [17]. The p53 mutation make cells 
resistant to apoptosis and the cells enter mitosis without having undergone DNA repair [18]. Further, 
the ROS participate in p53-independent apoptotic pathways [19]. 

2.3. Signal Transduction Pathways 

The predominant pathways regulated by photooxidative stress include the mitogen-activated protein 
kinase (MAPK), the nuclear factor-kappa beta (NF-κB)/p65, the JAK/STAT (Signal Transduction and 
Activation of Transcription) and the nuclear factor erythroid 2-related factor 2 (Nrf2) [20,21]. The 
activation of MAP kinase pathway, through the receptor tyrosine kinase, results in the activation of 
transcription factor activator protein-1 (AP-1) that activates expression of MMPs and is comprised of 
the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun-N-terminal- kinase (JNK) and p38  
proteins [21]. The JNK and p38 pathways play a major role in the UV radiation mediated increase in 
AP-1 and cyclooxygenase-2 (COX-2) expression, and are targets for chemoprevention of skin cancer [5]. 
The transcription factor Nrf2 regulates the expression of phase II key protective enzymes through the 
antioxidant-response element. Nrf2 and several of its target genes are significantly down-regulated, 
causing oxidative stress in human prostate cancer [22]. 

The NF-κB pathway is also activated by oxidative stress through the activation of cytoplasmic I-κB 
kinase. Active I-κB kinase phosphorylates and degrades I-κB, the inhibitor of NF-κB transcription  
factor [20]. The NF-κB activation is associated with UVA and UVB radiation mediated oxidative 
modification of cellular membrane components [3]. The release of NF-κB from its inhibitor (I-κB), 
results in the translocation of active NF-κB to the nucleus to activate the inflammatory cytokines and 
prostaglandins [20]. In general, inhibition of NF-κB by use of antioxidants, proteasome inhibitors, 
prevention of Ikb phosphorylation or expression of overactivated, mutant (Ikb) mitigate UV-induced 
damage (Reviewed in [21]). 

2.4. Role of Mitochondria and Cellular Bioenergetics 

Mitochondria are important players in the oxidative response. Mitochondrial DNA accumulates  
UV-induced mutations that track exposure to UV light (reviewed in [22]). UV alters mitochondrial 
function, including decreased O2 consumption and ATP production, which effects cellular processes 
such as cell migration and division (Reviewed in [23]). The mechanism of UV-induced mitochondrial 
dysfunction and toxicity includes interrelated steps of caspase activation, membrane depolarization and 
cytochrome C release (Reviewed in [24]). Overall mitochondrial dysfunction, in addition to the 
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depletion of cellular energy required activities such as motility and DNA repair, increases the levels of 
oxidative stress from increased ROS production at mitochondrial complexes (reviewed in [25]). UV 
radiation targets Nrf2. Nrf2 is a master regulator of the antioxidant response as it controls the 
expression of several endogenous antioxidant systems, e.g., the enzymes involved in NADPH 
synthesis such as glucose 6-phosphate dehydrogenase, synthesis of thioredoxin such as thioredoxin 
reductase, and GSH, such as glutathione S-transferases and peroxidase (reviewed in [26]). Nrf2 also 
controls the bioavailability of mitochondrial respiratory (reviewed in [27]), underlining the role of 
bioenergetics in Nrf2-mediated antioxidant protection. 

2.5. Inflammation Cascade 

UV radiation induces pro-inflammatory genes. Inflammation is an important mediator of photoaging 
and photocarcinogenesis [28–31]. The inflammatory mediators are released from keratinocytes, 
fibroblasts, tumor cells, leukocytes, and the endothelial lining of blood vessels. The mediators include 
the plasma mediators (bradykinin, plasmin, fibrin), lipid mediators (prostaglandins, leukotrienes, and 
platelet activating factor), and the inflammatory cytokines [interleukin-1 (IL-1), IL-6, and tumor 
necrosis factor (TNF)-α]. The lipid mediators, COX-2 (cyclooxigenase-2) and prostaglandin E2 
(PGE2) are also activated by ROS [32–34]. UV radiation also participates in the activation of the 
enzyme ornithine decarboxylase, which decreases the activity of different polyamines that regulate cell 
proliferation [35]. The inflammatory process triggers ROS and RNS (reactive nitrogen species), which 
generates peroxynitrite that triggers DNA deletion and rearrangement [36,37]. The processes of DNA 
repair, cell cycle and apoptosis are altered to favor tumor progression. Further, UV radiation alters the 
expression of transforming growth factor-b (TGF-β), which is the predominant regulator of the matrix 
metalloproteinases that remodel the extracellular matrix for skin photoaging and tumor dissemination [38]. 

2.6. Immunosuppression 

Immunosuppressed patients are more prone to develop tumors, likely due to decreased local 
immunosurveillance. UV radiation mainly decreases the cellular response, but the humoral response is 
also affected (reviewed in [39]). UV radiation depletes epidermal Langerhans cells (LC), which are 
crucial mediators of the cellular immune response due to their role in antigen presentation [40]  
(Figure 2). Importantly, UV radiation not only decreases the number of LC but also impairs their 
functions. e.g., migration and antigen presentation in lymph nodes. Whereas the former is not well 
understood mechanistically, impaired antigenic presentation is due to a loss of co-stimulatory 
molecules. e.g., B7. The main mechanism involved in this process is the isomerization of  
trans-urocanic acid to the cis form, which directly reduces LC migration and activity (reviewed  
in [41–43]). In addition, UV radiation promotes secretion of the immunosuppressive cytokines (IL-10). 
Il-10 is secreted by keratinocytes in response to cis-UCA or CPD. This cytokine is of particular interest 
because of its crucial role in immunosuppression in skin, not only induced by UV radiation but in other 
skin pathologies, e.g., melanoma, in which high IL-10 correlates with bad prognosis (reviewed  
in [44]). Also, depletion of LC and the proinflammatory microenvironment induced by UV causes 
influx of macrophages that activate regulatory T cells (TREG) and polarizes the Th1/Th2 response 
towards Th2 [37,38] (Figure 2). The role of the Th2 response in immunosuppression in response to UV 
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light is likely related with the expression of IL12 by LC because IL-12 depletion skews T cell 
activation towards Th2 while promoting TREG activation (reviewed in [45–47]). 

 

Figure 2. Immunosuppressive effects of UV radiation. 

2.7. Extracellular Remodeling: Collagen, Elastin and Matrix Metalloproteinases Network 

Collagen and elastin are the structural proteins of the ECM. The deterioration/remodeling of the 
collagen and elastin fibers facilitates angiogenesis and metastasis, and the damaged collagen and 
elastin proteins serve as additional sensitizers of photooxidative stress [48]. The specific properties of 
the different collagens are based on the lengths of the triple helical segments, interruptions to the triple 
helix, and amino acid modifications [28]. The elastin fibers that provide stretch-recoil properties to 
skin are composed predominantly of an elastin core (90%) surrounded by fibrillin microfibrils. The 
loss of proper elastin fibers occurs with the exposure of skin to UV radiation [4]. UV radiation also 
depletes the microfibrillar network in the epidermal-dermal layer and the dermis, which contributes to 
the aberrant elastic fibers [49]. 

The ECM proteolytic enzymes (MMPs/elastases) are produced by epidermal keratinocytes, 
fibroblasts, in the mediation of ECM remodeling and skin cancer [50–52]. Their basal levels increase 
with aging, and are further increased by environmental pollutants and UV radiation, resulting in the 
fragmentation of collagen and elastin fiber proteins for carcinogenesis. MMPs are categorized on the 
basis of the presence of AP-1 or TATA nucleotide sequences in the promoters into group I MMPs 
(MMP-1, 3, 7, 9, 10, 12, 13, 19, and 26) that contain TATA box and activator protein-1 (AP-1 site), 
group II MMPs (MMP-8, 11, 21) without the AP-1 site, and group III (MMP-2, 14, 28) without the 
TATA box and AP-1 site [53,54]. 

The transcription factor AP-1, stimulated largely by the MAPK pathway, stimulates the 
transcription of several MMPs that collectively degrade the ECM, such as MMP-1, MMP-2/9, and 
MMP-3 [3]. Further, AP-1 inhibits the transcription of type I collagen gene [28]. Hence, the damage to 
the ECM and tissue integrity is from the enhanced degradation of ECM by MMPs as well as the 
reduced expression of the structural ECM proteins. The pro- and active forms of MMPs are inhibited 
by the tissue inhibitors of MMPs or tissue inhibitor of matrixmetalloproteinases (TIMPs) [53,54]. The 
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remodeling of collagen and elastin, for angiogenesis, metastasis, and tissue destruction, is largely from 
the increased expression or activation of MMPs and reduced expression of TIMPs [53,54]. 

3. Photoprotective Strategies 

The photoprotective strategies to prevent and/or repair the deleterious effect of UV radiation leading 
to photoaging and photocarcinogenesis from direct blockade of UV photons, to counteracting the direct 
or indirect effects of UV radiation through DNA repair systems and antioxidants, are illustrated in  
Figure 3. 

 

Figure 3. Major beneficial effects of phytochemical derivatives against UV-induced photodamage. 

3.1. Blockade of UV Photon Incidence 

The most obvious strategy to prevent the deleterious effects of UV radiation is to prevent its 
incidence on the skin; thus, physical blockers and screens are the most widely accepted and used 
countermeasures. Topical sunscreens can be divided into reflective and absorbing substances. Their 
use requires application of the correct amount, and frequent replenishment upon changing environment 
conditions, e.g., increased perspiration, water immersion, etc. Additional difficulties to their use 
include displeasing sensitivity, e.g., stickiness, aesthetic issues due to whitening, etc. Finally, complete 
blockade in cases of extreme photoprotection may lead to Vitamin D deficiency, which can promote 
carcinogenesis [55].  

Sunscreens are the most important preventive measures against photoaging and photocarcinogenesis. 
In fact, proper use of sunscreens mitigates the chances of developing UV-induced skin cancer 
(reviewed in [56–58]). Some phytochemical derivatives fulfill this function, administered either 
topically or systemically, which increases adherence to the application regime as well as its uniformity. 
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3.2. DNA Repair Systems 

Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Two major 
mechanisms exist to repair oxidatively induced DNA lesions: base-excision repair (BER) and 
nucleotide-excision repair (NER). In BER-mediated repair, DNA glycosylase usually detects the 
damaged base and mediates base removal prior to nuclease, polymerase, and ligase proteins bridging 
the gap and completing the repair process. On the other hand, NER-mediated repair recognizes base 
lesions that distort the helical structure. The damaged base is excised as a 22–30 base oligonucleotide 
resulting in single-stranded DNA that is repaired by proteins such as DNA polymerase before 
proceeding to ligation. An endogenous enzymatic system corrects and repairs the formation of 
cyclobutane pyrimidine dimers. The absence of the DNA repair systems produces diseases such as 
xeroderma pigmentosum, and underlies a large percentage of skin cancers in the general population. 

Different preparations containing DNA repair enzymes have been assayed and shown to decrease 
DNA damage caused by UV radiation [59,60]. Among these, photoliase promotes a process termed 
DNA photo-reactivation that repairs T-T, cyclobutane pyrimidine dimers and 6-4 photoproducts [61]. 
Another preparation containing T4 endonuclease N5 (Dimericine) promotes DNA repair in xeroderma 
pigmentosum patients [62]. 

3.3. Antioxidant Activity 

Oxidative stress is a key process underlying photo aging and photo carcinogenesis [63]. 
Endogenous systems to prevent its deleterious effects include enzymes, e.g., superoxide dismutase, 
catalase, ceruloplasmin, transferrin, etc., and other substances obtained from the diet, e.g., Vitamin E  
(α-tocopherol), Vitamin C (ascorbic acid) and carotenoids (β-carotene). Non-melanoma skin cancers 
display a significant decrease of the enzymatic antioxidant systems [64]. However, whether exogenous 
supplementation of non-enzymatic antioxidants, e.g., Vitamin E, C or carotenes, is useful to prevent 
photocarcinogenesis is currently controversial [65–68]. There is disparity in the parameters evaluated, 
including erythema, immunosuppression, photo aging or tumor formation, and the lack of homogeneity 
may account for the controversy [69,70]. A largely beneficial substance to prevent skin cancer is  
Vitamin A (retinol, derived from β-carotene) and its derivatives (isotretinoin and acitretin) [71–73]. 

3.4. Anti-Inflammatory Action 

Aspirin (acetyl salicylic acid) and other NSAIDs (non-steroidal anti-inflammatory drugs), e.g., 
indomethacin, piroxicam, sulindac, diclofenac, are useful to decrease the incidence of skin tumors and 
to treat actinic keratosis [74,75]. These molecules decrease prostaglandin production by inhibiting  
COX-1 and COX-2 [76]. Colecoxib is another inhibitor specific of COX-2 [77]. Several studies 
support the anti-inflammatory effect of different phytochemicals [78,79]. 

3.5. Immunomodulatory Action 

Another strategy against photo carcinogenesis is to revert immunosuppression induced by UVB. 
For example, supplementation with Vitamin B3 (niacin) reduced the immunosuppressive effect of  



Antioxidants 2015, 4 256 
 
UVB [80]. Other phytochemicals decrease immunosuppression, e.g., by preventing Langerhans cell 
depletion [81]. 

3.6. Inhibitory Activity of ECM Remodeling 

An emerging strategy against photo aging is to prevent the changes induced by UV, particularly 
UVA, in the dermis. These changes include alterations of the extracellular matrix proteins that form 
fibrillar structures, e.g., collagen and elastin. Metalloproteinase and elastase expression and/or 
activation underlie these alterations, which also promote angiogenesis and tumor progression. Several 
phytochemicals orally and/or topically administered provide protection against these changes [82]. 

4. Photoprotective Activity of Phytochemical Derivatives 

A myriad of extracts or isolated/purified substances from different parts of plants, including roots, 
leaves, flowers, seeds, etc., have been traditionally used to prevent and treat skin cancer [2]. Although 
some of these substances have been used topically, its route of administration is mainly oral, as food 
supplements, concentrates and purified extracts. Many of these substances contain active principles of 
the polyphenol group (antioxidants), or other antioxidants with diverse chemical structures [83]. The 
active phytochemicals or the extracts of their sources have become major photoprotective  
strategies. Although they mainly function as antioxidants, they also display anti-inflammatory and 
immunomodulatory activity and also control dermal extracellular matrix remodeling. 

4.1. Polyphenols 

Polyphenols are chemicals characterized by the presence of more than one phenolic group (a 
hydroxyl group bound to an aromatic ring) per molecule. Their intrinsic antioxidant function resides in 
the hydroxyl (−OH) group that, bound to the aromatic ring, act as a hydrogen or an electron donor, 
giving it to a free radical or other reactive species. This underlies the inhibition of ROS and ROS 
mediated damage on DNA, proteins and lipids; production of inflammatory cytokines; and the 
activation of the signal transduction pathways such as mitogen activated protein kinase and nuclear 
factor kappa-B (NF-κB)/p65 that regulate transcriptional activity [84]. 

The typical classification of these molecules takes into account the number and type of phenolics, 
which determine their biological properties. According to this, polyphenols are either flavonoids (the 
most numerous) or non-flavonoids, appearing in numerous plants (Table 1). In addition to their 
antioxidant capability, some of them display metal (Cu and Fe) chelating properties, thereby preventing 
the Fenton reaction, which involves formation of free radicals from hydrogen peroxide (H2O2).  
Non-flavonoids comprise mono phenolic acids and alcohols, benzoic and cinnamic acid and stilbenes. 

4.1.1. Flavonoids 

The flavonoids include catechins, isoflavones, proanthocyanidins, and anthocyanins (Table 1). 
The catechins are mainly present in tea leaves; they contain a pyrocatechol group and comprise of 

the following: catechin, epicatechin, galactocatechin, epicatechingallate and epigallocatechin-3-gallate. 
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In humans, their topical administration decreases UV-induced changes in epidermis, specifically 
increased p53 expression and apoptosis [85]. 

Table 1. Main sources of polyphenols with antioxidant activity. 

Polyphenol Major Sources 
Flavonoids  
Catechins: catechin, epicatechin, galactocatechin, epicatechingallate, 
epigallocatechin-3-gallate 

Tea 

Isoflavones: Genistein 
Sylimarin 

Soy 
Thistle 

Proanthocyanidins (tannins) Grapeseed 
Anthocyanins  Pomegranate 
Non-flavonoids  
Phenolic acids 
Benzoic acids: Galic acid 

Cinnamic acids 

Grape & derivatives 
Tea 
Polypodium leucotomos 

Stilbene 
Resveratrol 

Grape & derivatives 
Nuts, peanuts 

The isoflavones contain a phloroglucinol group. The most well-known isoflavones are genistein, 
derived from soybean, and silymarin, derived from the milk thistle (Silybum marianum). Genistein 
exerts a photoprotective effect and halts skin photocarcinogenesis in animal models [86]. The major 
active principle of silymarin is silibinin. It is widely used as a liver protector, but it has been shown to 
be also photoprotective in animals due to ROS reduction as it decreases infiltration of CD11b+ 
lymphocytes in UV-irradiated areas [87]. 

The proanthocyanidins are also known as condensed tannins; this is a group of substances widely 
represented in grape seeds. An extract of grape seeds prevents tumor induction in response to UV 
radiation in mice. These effects are likely due to their antioxidant and anti-inflammatory properties [88,89]. 

The anthocyanins are water-soluble blue dyes and confer this color to leaves and fruits and seeds, e.g., 
grapes, to protect them against solar radiation. It has an important role for the color/appearance of wine. 

4.1.2. Non-Flavonoids 

The non-flavonoids include phenolic acids and stilbene (Table 1). The phenolic acids include 
benzoic, galic, and cinnamic (caffeic, ferulic and p-cumaric) acids. They appear in wine (more in red 
wine) and in tea. They exhibit antioxidant and anti-neoplastic properties. Caffeic acid, not related to 
caffeine, belongs to the hidroxycinnamic group and is widely present in all plants. It protects against  
UVA-induced photo damage [90]. 

Stilbene represents anti-microbial substances secreted by plants. The most important is glycosylated 
trans-resveratrol (in grapes, grape juice and wine, peanuts and others). It is a good antioxidant with  
anti-aging and anti-photocarcinogenic properties in animals [91,92]. 
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4.1.3. Natural Sources of Polyphenols 

The polyphenols are part of a normal diet, occurring in vegetables, fruits, beans and cereals. They 
are often used as concentrated dietary supplements obtained from common or uncommon vegetables. 
The topical use of polyphenols depends on their lipophilic or hydrophilic nature. In general, 
polyphenols are hydrophilic and hardly penetrate the epidermal barrier (an exception is silymarin). The 
steps to address this have mainly been the improvement of penetrance by iontophoresis or use of 
liposomes. The natural sources of polyphenols include tea, cocoa, grape/wine, soy, pomegranate, and 
Polypodium leucotomos (Table 1). 

Tea is the second most consumed liquid in the world, after water. It is an infusion of the leave of 
Camellia sinensis. Its name depends on the main features of the plant leaves used to brew the 
beverage, white (young leaves), green (non-oxidated), yellow or blue (medium oxidation) or black 
(high degree of oxidation, which increases its theaflavin content). Other denominations are 
geographical. Green tea is the most consumed tea around the world. It mainly contains catechins, 
particularly epigallocatechin-3-gallate and simple phenolic acids. It protects against sun damage, and 
anecdotal epidemiological evidence suggests that it reduces the development of certain tumors [93,94]. 

Cocoa extracts contain polyphenols, particularly catechins and proanthocyanidin flavanols, as well 
as smaller amounts of gallocatechin and epicagallo-catechin. In addition, cocoa contains large amounts 
of theobromine, a methylxanthine with ROS scavenging properties in skin upon UV treatment [95].  

Grape, Vitis vinífera, contains numerous polyphenols in its seeds and grape peels. These pass to the 
fermented form, wine. Specifically, they contain antocyanins (which provide color) and other flavonoids, 
e.g., proanthocyanidins. Some of these include tannins that cause constipation. Grape/wine contains several 
non-flavonoid polyphenols, e.g., cinnamic acid and resveratrol, which are well-known photoprotectors.  

Soy, Glycine maxi (soybean plant), is enriched in proteins that are consumed in several forms, e.g., 
boiled bean pods, soybean cake, milk and sauce. It is high in protein content, which enables its use as 
meat or fish substitute. It also contains large amounts of genistein, which has photoprotective activity 
for the prevention/treatment of photoaging, and photocarcinogenesis [96,97]. 

Pomegranate extract contains anthocyanins, ellagitannins and hydrolyzable tannins. Its oral 
administration reduces UVB-induced carcinogenesis in mice [98].  

Polypodium leucotomos extracts, from the tropical fern, contain a high concentration of antioxidant 
phenolic acids, e.g., caffeic and ferulic acids [99]. In addition, it contains monosaccharides, e.g., 
fructose and glucose, and many other components [88]. It is safe when administered orally and can 
undergo topical absorption. It displays great efficacy against photo aging and photo carcinogenesis [89]. 
It prevents lipid peroxidation, UV-induced membrane damage, transcriptional activation of 
proinflammatory AP1 and NF-κB factors, and induction of enzymes that generate nitric oxide [100]. It 
inhibits UV-mediated actin disarray and loss of cell-extracellular matrix focal adhesion and also 
prevents keratinocyte apoptosis [101–104]. It is also used as an adjuvant in PUVA (Psoralens + UVA) 
therapy to prevent the deleterious side effects of irradiation [105]. Its mechanism of action involves 
antioxidant, anti-inflammatory and immunomodulating activities [81,106–108]. In addition, it 
modulates metalloproteinase activity by inducing TIMP (tissue inhibitor of metalloproteinase) and 
induces elastin and collagen to counteract skin aging and photocarcinogenesis [109]. 
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4.2. Non-Polyphenols with Photoprotective Sctivity 

The non-phenolic phytochemicals include carotenoids, caffeine, and sulphoraphance (SFN) as well 
as several other whole extracts or components. 

Carotenoids are pigments synthesized by plants and exhibit clear antioxidant action. They are 
mainly present in yellow or orange vegetables and fruits. They require additional fat for their 
absorption. B-carotene has been used as a photo protector in patients with pathological photosensitivity 
(porphyria and some others), but their sustained administration does not display any beneficial effect 
against non-melanoma cancer incidence compared to a control group [110]. Lycopene is a carotenoid 
most abundant in tomatoes. It is not a Vitamin A precursor, yet it protects against various skin 
alterations induced by UV radiation [111]. 

Caffeine is present in large amounts in coffee. Some epidemiological studies indicate that  
drinking large amounts of coffee decreases the incidence of skin cancer, particularly BCC (basal cell 
carcinoma) [112,113]. Caffeine underlies this effect since decaffeinated coffee does not replicate this 
finding [114]. The mechanism of this effect involves increased apoptosis of cells with defective DNA 
repair [115]. 

Sulphoraphane (SFN) is present largely in broccoli, extracts of which are metabolised into 
isothiocyanates. They main isothiocyanate from broccoli is SFN that has been shown to decrease  
UV-induced skin erythema in humans [116] and reduce the risk of skin cancer in mice [117]. 
Glucoraphanin, also known as SFN glucosinolate (SGS), is the precursor of SFN. It seems that SFN 
induces transcriptional activation of Nrf2. Other protective mechanisms in cells include inhibition of 
the activation of procarcinogens, disposal of damaged and potentially neoplastic cells by cell cycle 
arrest and apoptosis, and the suppression of inflammatory responses.  

Other phytochemical derivatives or whole extracts with photoprotective activity against UVB 
radiation are represented in Table 2 [118–122]. In addition, hypericin (Saint John Wort) can lower 
erythema in photodyanamic therapy, without being phototoxic [123]. 

Most of these studies have been carried out in animal models using topical or systemic administration. 

Table 2. Other phytochemical derivatives with photoprotective activity against UVB 
radiation in mice (Murine model). 

Substance and Origin Activity Reference 
Topical “Baicalin” 
Genus Scutellaria 

Inhibition of Ki67, PCNA and COX-2 expression [118] 

Oral “Flavangenol” 
French maritime pine bark extract 

Reduction of Ki-67, and (8-OHdG)-positive cells and 
VEGF expression 

[119] 

Topical black raspberry extract Reduction of edema, p53 levels and neutrophil activation [120] 
Topical Photomorphe umbellata extract Inhibition of the hyperplastic reaction and p53-positive cells [121] 
Oral and topical Brown algae polyphenols Inhibition of ciclooxygenase-2 activity and cell proliferation [122] 

5. Conclusions 

We have reviewed the mechanisms of photoaging and photocarcinogenesis, the photoprotective 
strategies, and the phytochemicals that can provide photoprotection. The photoaging and 
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photocarcinogenic mechanisms are primarily through UV radiation induced ROS and DNA damage 
and the resultant cellular damage, alterations in inflammatory/oxidative stress mediating signal 
transduction pathways, inflammation, immunosuppression and ECM remodeling/angiogenesis. The 
photoprotective strategies include the blockade of UV photon incidence, DNA repair through DNA 
repair enzymes, removal of ROS with antioxidant agents, and anti-inflammation/immunomodulation 
with anti-inflammatory agents. Many of these photoprotective strategies involve photochemical 
derivatives, including polyphenols (flavonoids and non-flavonoids), non-phenolic derivatives and 
whole plant extracts. An increase in the blockage of UV radiation as well as the strengthening of 
cellular antioxidant balance will reduce the incidence of photoaging and photocarcinogenesis. 
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