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Abstract

Skeletal muscle is the largest metabolic organ making up ∼50% of bodymass. Because

skeletal muscle has both metabolic and endocrine properties, it can manipulate

the microbial populations within the gut. In return, microbes exert considerable

influence on skeletal muscle via numerous signalling pathways. Gut bacteria produce

metabolites (i.e., short chain fatty acids, secondary bile acids and neurotransmitter

substrates) that act as fuel sources and modulators of inflammation, influencing

host muscle development, growth and maintenance. The reciprocal interactions

between microbes, metabolites and muscle establish a bidirectional gut–muscle

axis. The muscular dystrophies constitute a broad range of disorders with varying

disabilities. In the profoundly debilitating monogenic disorder Duchenne muscular

dystrophy (DMD), skeletal muscle undergoes a reduction in muscle regenerative

capacity leading to progressive muscle wasting, resulting in fibrotic remodelling and

adipose infiltration. The loss of respiratory muscle in DMD culminates in respiratory

insufficiency and eventually premature death. The pathways contributing to aberrant

muscle remodelling are potentially modulated by gut microbial metabolites, thus

making them plausible targets for pre- and probiotic supplementation. Prednisone,

the gold standard therapy for DMD, drives gut dysbiosis, inducing a pro-inflammatory

phenotype and leaky gut barrier contributing to several of the well-known side effects

associated with chronic glucocorticoid treatment. Several studies have observed that

gut microbial supplementation or transplantation exerts positive effects on muscle,

including mitigating the side effects of prednisone. There is growing evidence in

support of the potential for an adjunctive microbiota-directed regimen designed to

optimise gut–muscle axis signalling, which could alleviatemuscle wasting in DMD.
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1 GUT–MUSCLE AXIS

Skeletal muscle is the largest metabolic organmaking up∼50% of total

body mass (Valentino et al., 2021). While primarily associated with
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locomotion, skeletalmuscle is also responsible for other vital functions,

including influencing bone density, insulin-stimulated glucose uptake,

fatty acid oxidation and whole-body protein metabolism (Lahiri et al.,

2019; Valentino et al., 2021). Additionally, skeletal muscle acts as an
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endocrine organ eliciting systemic effects via the release of growth

factors and cytokines (Pedersen et al., 1999). Both the metabolic

and endocrine nature of skeletal muscle allow communication with

other systems such as the digestive system, including the microbial

population that resides within the gut.

Skeletal muscle mass and composition is highly plastic, regulated

by a balance of muscle protein synthesis and breakdown that is

affected by consumption of food (i.e., nutrient supply), physical

activity/inactivity, illness and inflammation (Lochlainn et al.,

2018). If the rate of protein synthesis is reduced, or break-

down/degradation is increased, muscle wasting occurs (Bindels &

Delzenne, 2013). The relationships between exercise and muscle

protein recruitment/synthesis, as well as sedentary behaviour/disuse

and loss, are well studied. Increased physical activity enhances muscle

protein synthesis, while a sedentary lifestyle can contribute to muscle

wasting (atrophy).

1.1 Human studies

Studies investigating the gut microbial populations of athletes report

that exercise positively correlates with a larger diversity of beneficial

commensal gut microbial populations. Not only is a higher diversity

beneficial, but stability of the microbial population has also proven to

be advantageous (Furber et al., 2022). For example, in comparisons

between a group of professional rugby players and a control group of

healthy similar non-sport playing individuals (matched for ageandbody

mass index), the athletes had a higher diversity of beneficial micro-

bes (Clarke et al., 2014). Similarly, in a study comparing amateur and

professional cyclists, the professional cyclists had larger populations

of microbes associated with energy and carbohydrate metabolism,

facilitating the energy requirements demanded by more intense

exercise (Petersen et al., 2017). However, in these types of studies it

is difficult to parse out the independent contributions of exercise and

diet.

While studies illustrating a direct correlation between exercise

and gut microbial populations are abundant (Barton et al., 2018;

Clarke et al., 2014; Mach & Fuster-Botella, 2017; Petersen et al.,

2017), the exact mechanisms by which exercise shapes microbial

status remain elusive. One potential mechanism could be through

mitochondrial crosstalk whereby muscle mitochondria induce innate

immune responses or influence intestinal functional effector cells

(e.g., immune cells, epithelial cells and enterochromaffin cells) via

production of reactive oxygen species (ROS) and reactive nitrogen

species (RNS), thereby altering signalling within the digestive tract

(Clark & Mach, 2017). A summary of the way muscles can affect

gut microbial populations is given in Figure 1. Contracting skeletal

muscle also has the capacity to produce myokines, cytokines and

proteins that elicit autocrine, paracrine or endocrine effects (Pedersen

et al., 2003). The myokine that has been studied the most is inter-

leukin (IL)-6. Elevated systemic IL-6 can affect the gut environment by

stimulating intestinal L-cells, causing secretionof glucagon-likepeptide

1 (GLP-1) (Ellingsgaard et al., 2011). GLP-1 is an incretin hormone
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that acts on β-cells of the pancreas to enhance insulin secretion, and

functions to decrease intestinal motility, and enhance satiety, thus

promoting nutrient availability (Ellingsgaard et al., 2011). Alterations

to gut motility have long been understood to affect gut microbial

populations (Vantrappen et al., 1977). The capacity for myokines to

affect the gut environment may extend beyond IL-6; however current

research is limited andmust be expanded upon in the future.

Additionally, the relationship between gut microbial profile and

individual status extends beyond exercise. Individuals who experience

age-related sarcopenia also have unique gut microbial profiles noting

a decrease in short chain fatty acid (SCFA)-producing bacteria

(Claesson et al., 2012; Kang et al., 2021). While age-related changes

in the gut microbiome are primarily a result of lifestyle changes (i.e.,

diet, exercise and medications), similar observations have been made

in clinical studies looking at the gut microbial status in different

cachexia cohorts (Hakozaki et al., 2022; Ni et al., 2021; Ubachs et al.,

2021).

Human studies allow for a glimpse at potential relationships

between individual status andgutmicrobial populations; however, they

are not without caveats. It is difficult to control for diet and other life-

style factors. Therefore, it is advantageous to use animal models to

obtain a more intimate and controlled look at the interplay between

gut microbial signalling and muscle. The following section will explore

animal studies offering amore in-depth look atmicrobial signalling and

associated pathways in the context of skeletal muscle.

2 METABOLIC SIGNALLING

The first study to suggest the presence of a gut–muscle axis was a

pilot study investigating the mechanisms underlying the resistance to

diet-induced obesity in germ-free mice (Bäckhed et al., 2007). The

study discovered that germ-free mice were protected from weight

gain during consumption of a high-fat and high-sugar Western diet,
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F IGURE 1 Summary of the bidirectional gut–muscle axis. Primary factors from bothmuscle andmicrobiota are in blue boxes, signalling
pathways in pink, and effects in muscle in terracotta. Exercise andmuscle use can alter gut microbial status via endocrine signalling. The gut can in
turn producemetabolites that influence skeletal muscle development in a positive manner, while an absence of microbial influence on signalling
molecules can result in a lack of development and atrophy.

presenting lean phenotypes with increased skeletal muscle. This

phenotype was due to elevated fasting-induced adipocyte factor (Fiaf)

expression in the intestines (Bäckhed et al., 2007). Previous studies

have observed that gut microbial interactions suppress expression

of Fiaf (Bäckhed et al., 2004) Fiaf is a glycoprotein that regulates

lipid metabolism and adiposity via fatty acid oxidation through AMP-

activated protein kinase (AMPK) activation in skeletal muscle; it

attenuates muscle lipid uptake by inhibiting lipoprotein lipase activity

(Nay et al., 2019). AMPK is a heterotrimeric enzyme that functions

as a ‘fuel gauge’, activating glucose and fatty acid uptake and

oxidation when cellular energy is low (Bindels & Delzenne, 2013). Fiaf

is also associated with increased peroxisome proliferator-activated

receptor γ coactivator 1α (PGC-1α) expression. PGC-1α regulates

mitochondrial biogenesis and oxidative metabolism by promoting

fibre-type switching from glycolytic to oxidative fibres, playing a vital

role in skeletal muscle health (Bindels & Delzenne, 2013). PGC-1α also
suppresses FOXO3, a transcription factor that upregulates expression

of atrophy-related ubiquitin ligases atrogin-1 andMuRF-1 (atrogenes),

thereby protecting against muscular atrophy (Sandri et al., 2006). The

results of the study suggest that the gut microbiome can alter body

composition via regulation of host bioenergetic pathways in mouse

models.

Mouse studies that intentionally disrupt the gut microbial

population have further corroborated that the gut microbiome

can alter body composition. In one study, antibiotic-induced dysbiosis

in mouse models impaired skeletal muscle adaptation to exercise,

blunted hypertrophy and induced a muscle fibre shift (Valentino

et al., 2021). In a separate study, antibiotic treatment in mice resulted

in skeletal muscle atrophy and changes in the expression of genes

involved in the muscle peripheral circadian rhythm and metabolic

regulation (Manickam et al., 2018). The disruptive effect of the gut

microbiome on body composition and skeletal muscle is evident, which

has motivated further studies investigating metabolic signalling within

the gut–muscle axis.

2.1 Short chain fatty acid signalling

SCFAs (e.g., acetate, butyrate and propionate) have been a primary

focus in the delineation of gut microbial signalling. Thus, predictably,

they also play a central role in the gut–muscle axis. SCFAs are produced

by microbes in the large intestine via fermentation of non-digestible

carbohydrates that remain after digestion of different food sources

(e.g., cereals, fruits and vegetables; Francisco & Malagelada, 2003;
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Rastelli et al., 2019). Skeletal muscle has considerable redundancy in

themaintenance ofATP requirements. Contracting skeletalmuscle can

utilise numerous substrates to generate ATP (e.g., creatine phosphate,

muscle glycogen, plasma glucose and free fatty acids; Okamoto et al.,

2019). The SCFA acetate can be converted to acetyl-CoA by acetyl-

CoA synthetase 2 serving as a substrate in fatty acid synthesis

and/or in the tricarboxylic acid (TCA) cycle, thereby contributing

to multiple ATP-producing pathways (Okamoto et al., 2019). One

study observed that antibiotic treatment of mice lowered serum

acetate levels resulting in impaired endurance exercise performance,

suggesting that acetate is an important energy source for skeletal

muscle (Okamoto et al., 2019). However, high acetate concentrations

havealsobeenassociatedwith increased insulin resistanceandobesity,

which are both positively correlated with muscle anabolic resistance

(Goffredo et al., 2016; Perry et al., 2016). These findings reinforce that

molecular signalling is complex, affecting numerous pathways.

The SCFA butyrate has also been determined to play numerous

roles within the host system. Butyrate is a primary fuel source for

colonocytes within the enteric nervous system. Butyrate is trans-

ported into colonocyte mitochondria where it undergoes β-oxidation
to acetyl-CoA, which enters the TCA cycle resulting in the reduction of

NAD+ to NADH, which enters the electron transport chain producing

ATP and CO2 (Donohoe et al., 2011). One study observed that

antibiotic administration lowered luminal butyrate levels, resulting

in colonocytes shifting to anaerobic glycolysis (Zarrinpar et al.,

2018). The metabolic shift altered host glucose homeostasis by

lowering serum glucose levels, increasing insulin sensitivity and

hepatic gluconeogenesis (Zarrinpar et al., 2018). A separate study

involving mouse models observed a reduction in skeletal muscle

glycogen storage after antibiotic treatment, further contributing to

a reduction in muscle endurance. The authors postulated that the

shift in metabolism (i.e., butyrate consumption to glucose) contributed

to a decrease in glycogen stores as glycogen storage requires both

carbohydrate availability and uptake (Nay et al., 2019). Butyrate

is also a general histone deacetylase (HDAC) inhibitor. HDACs are

enzymes that remove the acetyl group from lysine residues, making

DNA less likely to be transcribed (Walsh et al., 2015). HDACs play

crucial roles in skeletal muscle development and maintenance. Class II

HDACs suppress myoblast differentiation regulating myoblast activity

through interactions with the transcription factor myocyte enhancer

factor 2 (MEFT) (Lu et al., 2000). SCFA signalling pathways are

summarised in Figure 1. Additionally, HDACs 4 and 5 contribute to

denervation atrophy via activation of atrogenes (Moresi et al., 2010).

Furthermore, HDAC inhibitors have been shown to reduce fibrosis and

improve muscle function in mdxmouse models of Duchenne muscular

dystrophy (DMD) (Consalvi et al., 2013). Butyrate also promotes PGC-

1α gene expression, which in one study led to a shift in skeletal muscle

fibres from glycolytic to mitochondria-rich oxidative in mouse models

(Gao et al., 2009). Additionally, the same study found that butyrate

administration prevented insulin resistance when mice were exposed

to a high fat diet, by stimulating thermogenesis and fatty acid oxidation

in skeletal muscle and brown adipose tissue mitochondria (Gao et al.,

2009).

While not as much is known about interactions with propionate, it

does serve several metabolic purposes. Propionate increases insulin-

independent glucose uptake in C2C12 myotubes via activation of

GPR-41 receptors (Han et al., 2014). Propionate can also enter the

TCA cycle as succinyl-CoA where it is converted into oxaloacetate,

contributing to hepatic gluconeogenesis (den Besten et al., 2013).

Interestingly, certain microbes can convert exercise-induced lactate

into propionate via the methylmalonyl-CoA pathway, which translated

to increased athletic performance in one study inmice (Scheiman et al.,

2019).

While the exact mechanism remains elusive, SCFA uptake has been

shown to promote insulin-like growth factor 1 (IGF-1) production in

both the liver and adipose tissue (Yan, Herzog et al., 2016). IGF-1 is a

primary anabolic hormone. Chronic subclinical inflammation (i.e., over-

expression of IL-6) can result in the down-regulation of IGF-1 (Maggio

et al., 2013), contributing to anabolic resistance in myocytes (Haran

et al., 2012). SCFAs also upregulate the NAD-dependent deacetylase

sirtuin-1 (SIRT1) receptor (Ticinesi et al., 2017). SIRT1 is a redox-

sensitive energy sensor that can positively modulate mitochondrial

biogenesis via PGC-1α deacetylation (Clark &Mach, 2017).

2.2 Bile acid signalling

SIRT1 is also a target for secondary bile acids. Primary bile acids

are cholesterol derivatives synthesised by hepatocytes in the liver

where they are further conjugated with glycine or taurine and then

secreted in bile into the small intestine (Swann et al., 2011). Within

the small intestine, bile acids regulate bacterial proliferation and

overgrowth, while also undergoing deconjugation, dehydrogenation,

dehydroxylation and sulfation reactions to become secondary bile

acids (Midtvedt, 1974). Because themicrobiota plays an integral role in

the production of secondary bile acids, microbial diversity also confers

diversity on bile acid profile (Swann et al., 2011). Bile acids primarily

function to absorb dietary fats and lipid-soluble vitamins in the small

intestine and maintain hepatic cholesterol homeostasis (Swann et al.,

2011). Additionally, secondary bile acids have endocrine functions,

enabling interaction with mitochondria via binding to the farnesoid X

receptor (FXR) and the plasma membrane-bound bile acid receptor

(TGR5) (Swann et al., 2011).

Activation of the FXR reduces insulin resistance and protects

againstmuscle fat deposition (Cipriani et al., 2010). FXR activation also

downregulates steroid response element binding protein-1c (SREBP-

1c), carbohydrate response element binding protein (ChREBP) and

peroxisomeproliferator-activated receptorα (PPAR-α), all ofwhich are
found in skeletal muscle playing roles in fatty acid synthesis (Joyce &

Gahan, 2016),muscle fibre type determination (Hanke et al., 2011) and

uptake and oxidation of fatty acids (Joyce&Gahan, 2016), respectively.

Bile acid signalling pathways are summarised in Figure 1. A study using

antibiotic deletion of gut microbes observed a disruption of micro-

bial bile acid metabolism, resulting in an increase in TβMCA, a known

antagonist of FXR receptors. The disruption of FXR signalling leads to

atrophy via disruption of fibroblast growth factor 19 (FGF19; FGF15
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in rodents) signalling and downstream extracellular signal-regulated

protein kinase (ERK) pathways (Qiu et al., 2021).

Additionally, secondary bile acids can increase energy expenditure

in skeletal muscle cells via interactions with TGR5, resulting in

intracellular thyroid hormone activation (Watanabe et al., 2006).

One experiment observed during exercise that the unfolded protein

response, required for maintenance of endoplasmic reticulum homeo-

stasis during exercise, increased the expression of TGR5, promoting

muscle cell differentiation andmuscle hypertrophy (Sasaki et al., 2018).

TGR5 activation is also associated with lowered pro-inflammatory

cytokine levels (i.e., IL-1α, IL-1β, IL-6 and tumour necrosis factor-

α; Duboc et al., 2014). Activation of TGR5 also suppresses nuclear

kappa light-chain enhancer of activated B cells (NF-κB) transcriptional
activity. NF-κB induces pro-inflammatory pathways and is typically

tightly controlled. Chronic activation of NF-κB is associated with

inflammation, auto-immune diseases (Wang et al., 2011) and muscle

wasting (Cai et al., 2004).

We are just beginning to fully understand the extent of the

inter-relationship between skeletal muscle and microbial metabolic

signalling. Due to the complexity of the underlying physiology, it

is evident that there are multiple mechanisms augmenting skeletal

muscle development andmaintenance. The importanceof the interplay

between gut microbiota and muscle is evident but remains enigmatic

and difficult to unravel. It is apparent that the bidirectionality of the

gut–muscle axis creates a positive perpetual loop where exercise and

healthy eating (i.e., nutrient supply) contribute to a beneficial diverse

commensal population, which in turn promotes the development of

strongermuscles permitting increased physical capacity. The emerging

evidence strongly points to the requirementof ahealthy gut for healthy

muscles andwhole-body health.

3 THE MUSCULAR DYSTROPHIES

The muscular dystrophies are a set of monogenic disorders

characterised by defects in muscle proteins, which contribute to

progressive skeletal muscle wasting and weakness (Emery, 2002).

Ultimately, individuals with a severe form of muscular dystrophy

die prematurely of either respiratory or cardiac failure (Lo Mauro &

Aliverti, 2016).

DMD is characterised by mutations in DMD, the gene encoding

dystrophin, which leads to premature truncation of protein translation,

resulting in unstable and non-functioning dystrophin (Duan et al.,

2021). Dystrophin isoforms are expressed ubiquitously throughout

the body (e.g., cortical neurons, cerebellar Purkinje cells, the retina,

central nervous system, kidney, peripheral nerves, Schwann cells and

muscle; Duan et al., 2021). Mutations in DMD can also cause a milder

disease, Becker muscular dystrophy (BMD), characterised by a later

onset and slower, less severe progression. There are thousands of

different mutations found in people with DMD and BMD (Duan et al.,

2021).

Within muscle, dystrophin links myocyte cytoskeletal F-actin with

the cellular membrane (sarcolemma) via its N-terminal and C-terminal

domains (Ibraghimov-Beskrovnaya et al., 1992). Dystrophin is an

integral part of a dystrophin-glycoprotein complex (DGC) that bridges

the myocyte cytoskeleton to the extracellular matrix, stabilizing

the sarcolemma, protecting the myocyte from contraction-induced

damage and necrosis (Gao & McNally, 2015). Therefore, dystrophin

deficiency leads to a disassembly of the DGC, permitting contractile

damagewith deleterious consequences for muscle cell function.

DMD affects tissues other than skeletal muscle since dystrophin is

expressed ubiquitously throughout the body. DMD is also associated

with gastrointestinal dysfunction resulting in life-threatening

constipation and metabolic acidosis; these disturbances can further

lead to insufficient fluid and caloric intake (loCascio et al., 2016), which

may contribute to gut microbial dysbiosis, further contributing to the

dystrophic pathology.

4 MECHANISMS OF MUSCLE WASTING

There are several pathways that contribute to myocyte necrosis

in DMD. One major pathway is sarcolemmal weakening. Repeated

cycles of contraction generate force and stress on the sarcolemma

which is mitigated by the DGC in healthy myocytes. In DMD,

the more heavily worked muscles (e.g., diaphragm or heart) are

affected earlier, which is why individuals with DMD typically die

from respiratory and/or cardiac failure (Duan et al., 2021). Dystrophin

also functions to anchor neuronal nitric oxide synthase (nNOS) to

the sarcolemma as part of the DGC (Sander et al., 2000). nNOS

elicits localised vasodilatation via the release of nitric oxide into

the vasculature, blunting sympathetically induced vasoconstriction,

allowing for adequate perfusion to exercising muscle beds (Sander

et al., 2000). In DMD, nNOS is delocalised to the cytosol, resulting

in impaired microcirculation and functional ischaemia (Sander et al.,

2000).

Free-radical damage is also considerably higherwithinDMDmodels

when compared to normal. In DMD, the microtubule lattice is

denser and disorganised, increasing the amounts of stretching and

activation of NADPH oxidase 2 (NOX2), producing elevated levels

of ROS (Khairallah et al., 2012). Free-radical levels are also elevated

via infiltration of inflammatory cells and dysfunctional mitochondria

(Duan et al., 2021). Moreover, levels of glutathione, a vital protective

antioxidant, are greatly reduced in DMD, reducing the capacity of

muscle to cope with the rising levels of oxidative stress (Duan et al.,

2021). Additionally, delocalisation of nNOS into the cytosol results in

elevated RNS, which has further deleterious downstream effects (Li

et al., 2011).

Calcium is released during muscle contraction from the

sarcoplasmic reticulum via calcium release channels/ryanodine

receptors (RyR1). Nitrosylation of RyR1 via nitric oxide prevents the

binding of the stabilizing protein calstabin resulting in calcium leakage

(Bellinger et al., 2009). Calcium overloading can lead to mitochondrial

dysfunction and activation of several degradation pathways (e.g.,

calcium-dependent calpain protease, phospholipase A2 (PLA2) and

mitochondria-dependent necrosis (Duan et al., 2021)).
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Muscle is in a perpetual cycle of breakdown and regeneration.

Regeneration is facilitated by the asymmetric division of satellite

cells and interactions of DGC proteins. However, in DMD muscle,

regeneration is exhausted resulting in muscle wasting, fibrosis and

fat replacement (Duan et al., 2021). DMD models with compromised

DGCs experience decreased regenerative capacity via altered

epigenetic-mediated gene transcription. The mitogen-activated

protein kinase (MAPK) p38γ is regulated via interactions with the

DGC during stem cell divisions. The p38γ pathway phosphorylates the
cofactor Carm1 preventing it from binding to Pax7 and promoting the

expression of Myf5, a key marker in muscle stem cell differentiation

(Chang et al., 2018). Regenerative potential is also blunted in DMD

models due to matrix restructuring and chronic inflammation (Duan

et al., 2021). Chronic inflammation increases transforming growth

factor β1 (TGF-β1) levels, which leads to continuous connective tissue
remodelling and eventually to fibrosis (Rosenberg et al., 2015).

Interestingly, Carm1 is also implicated in the positive regulation

of autophagy, functioning as a nuclear transcriptional co-activator to

induce genes necessary for autophagy (Shin et al., 2016). In normal

muscle, autophagy is responsible for the maintenance of the cellular

environment removing defective organelles and protein aggregates.

However, in DMD models, autophagy is blunted. Additionally, beyond

Carm1, NOX2-induced oxidative stress can impair autophagy via the

activation of the autophagy repressor mammalian target of rapamycin

through the phosphoinositide 3-kinase/Akt pathway (Pal et al., 2014).

Accumulation of defective organelles and dysfunctional proteins

contributes tomuscle degeneration (Duan et al., 2021).

The constant cycle of degeneration and repair, paired with

insufficient stem cell-dependent regeneration, leads to a replacement

of tissue, which inevitably leads to decreased functionality and

cardiorespiratory failure. The recovery potential of muscle is limited

and in the context of DMD, satellite cell proliferation cannot match

the constant breakdown; this leads to muscular necrosis without

replacement, inflammation, fibrotic remodelling and eventually

adipose replacement (Duan et al., 2021; Gao &McNally, 2015; Klingler

et al., 2012; Mhandire et al., 2022). In humans, remodelling typically

occurs in the posterior calf muscle first (Klingler et al., 2012); however,

by 10–12 years of age individuals begin to experience progressive

respiratory dysfunction due to fibrotic changes in the respiratory

muscles (Passamano et al., 2012). As respiratory muscle weakness

progresses, maximal inspiratory and expiratory pressures decrease,

reducing vital capacity, eventually leading to respiratory instability and

insufficiency (Duan et al., 2021;Mhandire et al., 2022).

5 GUT MICROBIOTA-DIRECTED THERAPIES
FOR RESPIRATORY MUSCULAR DYSFUNCTION

The gut microbiota can be thought of as a transducer of nutrient

signals for the host, with the ability to generate pro-anabolic signals

and produce mediators that regulate metabolic homeostasis, insulin

sensitivity and inflammation (Ticinesi et al., 2017). Both manipulation

of the gut microbial population and introduction of specific sub-

strates can beneficially alter skeletal muscle, potentially alleviating

DMD-associated pathologies.

Altering the host microbial profile has shown promising steps in

enhancing and/or preserving skeletal muscle. In one study, muscle

properties were successfully transferred from a pig to germ-free

mice via faecal microbiota transplantation. Following transplantation,

the germ-free mice exhibited the same higher body mass, skeletal

muscle fibre characteristics and lipid metabolism as their donors

(Yan, Diao et al., 2016). In a separate study, transplantation from

specific pathogen-free mice to germ-free mice resulted in an increase

in skeletal muscle mass, reduction in muscle atrophy markers,

improved oxidative metabolic capacity of the muscle and elevated

expression of neuromuscular junction assembly genes (Lahiri et al.,

2019). Additionally, supplementation of specific microbial strains has

also conferred beneficial changes to hosts. Lactobacillus plantarum

supplementation has shown positive effects on muscle mass and

function in both young and aged mice, and young and older adult

humans (Chen et al., 2016; Huang et al., 2019; Lee, Chen, et al., 2022;

Lee, Liao, et al., 2021; Lee, Liao, et al., 2022; Lee, Tu, et al., 2021). Oral

supplementation of specific types of lactobacilli has also been shown to

mitigate muscle wasting in leukaemiamousemodels, reducing atrophy

marker expression and inflammation (Bindels et al., 2012), which may

translate tomuscular dystrophy.

Studies investigating how microbial metabolites affect skeletal

muscle have also yielded promising results. Supplementation with

SCFA has been shown to improve muscle mass (Walsh et al.,

2015) and exercise capacity (Okamoto et al., 2019) within old and

antibiotic-treated mouse models, respectively; however, the extent

of the treatment is limited. In one study, SCFAs prevented atrophy

and increased muscular strength in germ-free mice but could not

completely rescue themuscle phenotype (Lahiri et al., 2019).Microbial

interactionswithin the hostmay engagemultiple pathways, suggesting

that a more holistic approach may be necessary in a pathology as

complex as muscular dystrophy. Additionally, metabolites activating

the G-protein-coupled bile acid receptor Gpbar1 (TGR5) have also

been shown to improve skeletal muscle function in mice. The interplay

betweenmechanisms ofmuscular dystrophy andmicrobial signalling is

illustrated in Figure 2.One study observed that the dietary supplement

obacunone (found in citrus) stimulated muscle hypertrophy and pre-

vented obesity and hyperglycaemia via the activation of TGR5 and

PPAR-γ (Horiba et al., 2015). This makes obacunone a potential

therapeutic option; however, in addition, TGR5 can be stimulated via

bile acid signalling (Swann et al., 2011) and PPAR-γ is stimulated by

butyrate (Byndloss et al., 2017), both naturally produced microbial

metabolites.

Another potential therapeutic approach is to augment auto-

phagy and the clearance of dysfunctional mitochondria (mitophagy).

Inadequate autophagy can contribute to muscle wasting. Urolithin A,

produced naturally in the colon by gut bacteria from ellagitannins and

ellagic acid derived from pomegranate, berries and nuts, has shown

promise (D’Amico et al., 2021). One study observed that urolithin

A induces mitophagy, preventing the accumulation of dysfunctional

mitochondria and extended lifespan in Caenorhabditis elegans models.
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F IGURE 2 Diagram of the interplay betweenmuscular dystrophy and gut–muscle axis signalling. Supplementation andmicrobial signalling can
offset several of the dystrophic pathways that contribute to fibrosis.

TABLE 1 Microbial products and sensitivity to prednisone and antibiotics. Brief overview of the key bacterial genera responsible for short
chain fatty acid and secondary bile acid synthesis, and their sensitivity to prednisone and various representative antibiotics.

Genus Short chain fatty acid production

Secondary bile acid

synthesis

Prednisone

sensitivity Antibiotic sensitivity

Prevotella Acetate Metronidazole, vancomycin

Ruminococcus Acetate, butyrate, propionate Susceptible Doxycycline, metronidazole,

vancomycin

Bifidobacterium Acetate, propionate Hydrolysis capable Amoxicillin, vancomycin

Bacteroides Acetate, propionate Hydrolysis capable Susceptible Amoxicillin, metronidazole,

vancomycin

Clostridium Acetate, propionate Hydrolysis capable Susceptible Metronidazole, nitrofurantoin,

vancomycin

Streptococcus Acetate Susceptible Amoxicillin, clarithromycin

Akkermansia Acetate, butyrate, propionate Susceptible Doxycycline

Coprococcus Acetate, propionate Metronidazole, vancomycin

Fusobacterium Acetate Amoxicillin, metronidazole

Eubacterium Acetate, butyrate Susceptible Amoxicillin, clarithromycin

Dialister Acetate Amoxicillin, doxycycline, vancomycin

Oxalobacter Acetate Clarithromycin, doxycycline,

metronidazole

Enterococcus Acetate Hydrolysis capable Nitrofurantoin

Lactobacillus Acetate, propionate Hydrolysis capable Susceptible Doxycycline

Roseburia Acetate, butyrate, propionate Amoxicillin, doxycycline, vancomycin

Faecalibacterium Acetate, butyrate Doxycycline, metronidazole,

vancomycin
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F IGURE 3 Interactions between prednisone, muscle and the gut. Prednisone is the gold standard inmuscular dystrophy treatment, but it is
associated withmany side effects. Prednisone also affects gut microbial status. Positively altering the gut microbiome can increase the efficacy of
prednisone while offsetting some of the associated side effects.

Additionally, urolithin A improved exercise capacity in aged mouse

models and young rats (Ryu et al., 2016). UrolithinAnot only recovered

mitophagy, but also improved regenerative ability of muscle stem cells

and increased skeletal muscle respiratory capacity, increasing survival

of dystrophic mice (Luan et al., 2021).

Currently glucocorticoids (i.e., prednisone and prednisolone)

are the gold standard treatment in DMD (Gloss et al., 2016).

Glucocorticoids are anti-inflammatory and immunosuppressing

therapeutic drugs which function to mitigate muscle wasting in

individualswithDMD.However, glucocorticoid use is only a temporary

therapeutic solution that merely delays the inevitable degeneration

and cardiorespiratory failure while introducing myriad problems.

Long term use of glucocorticoids can induce deleterious effects on

numerous systems (e.g., osteoporosis, muscular atrophy, weight gain,

hepatic steatosis, mood changes, depression, cataracts andmore (Oray

et al., 2016). Glucocorticoid use also alters gut microbial status, which

is implicated in the development of side effects. A study using lupus

mouse models observed a significant change in microbial populations

after prednisone administration. The authors postulated that the shift

in microbial status enhanced the therapeutic efficacy of prednisone

(Wang et al., 2021). Prednisone treatment resulted in a shift in phyla,

favouring pro-inflammatory bacteria while conversely favouring

bacteria capable of producing B cell superantigens and regulating

T cell differentiation, boosting the efficacy of prednisone (Table 1).

Interestingly, faecal microbial transplantation from mice exposed to

prednisone alleviated the lupus, further suggesting that a beneficial

change tomicrobial status contributed to the therapeutic effect of pre-

dnisone (Wang et al., 2021). Similarly, in another study, glucocorticoid

driven osteoporosis was ameliorated by supplementation with

Lactobacillus reuteri, a bacterium associated with the protection of

intestinal epithelial barrier integrity (Schepper et al., 2019). To confirm

that a leaky gut contributed to the osteoporosis, a mucus supplement

wasusedwhich yielded similar results to aprobiotic strategy (Schepper

et al., 2019). These findings indicate a direct relationship between

the gut microbiome and the efficacy and side effects associated with

glucocorticoid therapy (Figure 3).

6 CONCLUSION

The bidirectional gut–muscle axis allows for manipulation of both the

gut environment and muscle development. Importantly, exercise and
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use of muscles can positively alter gut microbial populations as well as

improve overall health; however, in the context of DMD, exercise can

causeundue stressonvitalmuscles resulting inquickerdecline.Mostof

the current literature revolving around the gut–muscle axis is primarily

focusedonanimalmodels; however, a disruptionof gutmicrobial status

is evident in athletic humans and those that experience other forms

of muscle wasting such as sarcopenia and cachexia, making the gut

microbiome a biomarker of human health. Growing evidence points to

the potential for a combined pro- and prebiotic regimen designed to

populate the gut with an optimal microbial profile and complementary

provision of optimal substrates to alleviate muscle wasting via positive

modulation of the gut microbiota. While it is too soon to tell whether

the adverse phenotype in muscular dystrophies can be ameliorated,

it is promising to consider that, based on animal studies, microbe-

based therapeutics could potentially translate to humans and mitigate

muscle wasting and prolong life expectancy, particularly when paired

with other established interventional strategies such as prednisone

treatment and exercise.
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