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Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract of unclear aetiology of which
twomajor forms are Crohn’s disease (CD) and ulcerative colitis (UC). CD andUC are immunologically distinct, although they both
result fromhyperactivation of proinflammatory pathways in intestines and disruption of intestinal epithelial barrier.Members of the
tumour necrosis factor superfamily (TNFSF) are molecules of broad spectrum of activity, including direct disruption of intestinal
epithelial barrier integrity and costimulation of proinflammatory functions of lymphocytes. Tumour necrosis factor (TNF) has a
well-established pathological role in IBD which also serves as a target in IBD treatment. In this review we discuss the role of TNF
and other TNFSF members, notably, TL1A, FasL, LIGHT, TRAIL, and TWEAK, in the pathogenesis of IBD.

1. Introduction

Inflammatory bowel disease (IBD) is a group of inflammatory
conditions of the gastrointestinal (GI) tract. Its two major
forms are ulcerative colitis (UC) and Crohn’s disease (CD).
Crohn’s disease affects mainly small intestine and colon,
although any other segment of the GI tract may also be
involved. CD is characterized by discontinuous ulcerations
and bowel wall inflammation. UCmanifests by inflammation
of the colonmucosa that in most cases extends to the rectum.
Typical symptoms of IBD are abdominal pain, diarrhoea,
and rectal bleeding as well as weight loss, fever, and fatigue.
Furthermore, CD patients often develop strictures between
segments of the bowel or between the bowel and other organs
[1]. IBD is an autoimmune disorder of unknown aetiology
that results from excessive immune responses to intestinal
microbiota which are triggered by increased activity of
effector T cells and/or decreased activity of regulatory T cells,
changes in the composition of intestinal microflora, and/or
damaged epithelial barrier [1, 2]. Recently, Hand et al. [3]
showed in a mouse model that acute infection of the GI
tract results in the loss of CD4(+) T cell tolerance of com-
mensal antigens and priming of adaptive immune response
directed against commensal bacteria which contributes to

the development of IBD. Furthermore, 5–16% of IBD patients
report a family history of the disease [4] which indicates
that it may be associated also with a genetic background.
Indeed, there are several genetic factors that contribute to
the pathogenesis of the IBD which include genetic mutations
leading to enhanced inflammatory response [5–7], defective
elimination of intracellular bacteria [8, 9], or disruption of
the intestinal epithelial barrier [10]. There are also certain
environmental risk factors for IBD that include (1) treatment
with nonsteroidal anti-inflammatory drugs which damage
intestinal mucosa, making it more permeable to bacteria; (2)
taking oral contraceptives that elevate the level of estrogens
which act as enhancers of humoral immunity; (3) smoking
that increases risk of acquiringCD, although it appears to play
a protective role in UC through yet unknown mechanisms;
and (4) limitation of exposure to enteric pathogens in
childhood due to antibiotic treatment or living in hygienic
environment [2]. Association of IBDwith other environmen-
tal factors such as diet rich in sugars and fats and living in
urban environment or stress remains currently controversial
[2].

Considering the type of immune response, IBD is not a
uniform disease; in CD the inflammation is mainly driven
by T helper 1 (Th1) or T helper 17 (Th17) cells, while UC
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is considered to be generally a T helper 2- (Th2-) medi-
ated condition [11]. It has to be noted, however, that the
strict polarization model of Th1, Th2, and Th17 is not fully
applicable in IBD due to a redundancy of effector and
regulatory pathways affected by factors such as the phase of
the disease (remission or acute bouts), innate inflammatory
mechanisms, or anti-inflammatory treatment of patients [12].
For example, during the remission phase of the disease, the
level of a Th2 cytokine, interleukin 13 (IL-13), is higher in
peripheral blood mononuclear cells (PBMCs) isolated from
patients with CD than in PBMCs isolated from patients
with UC [13]. Other reports show that the frequency of Th1
(IFN-𝛾(+) CD4(+)) T cells is lower in the peripheral blood
of paediatric IBD patients than in healthy control subjects
[14, 15] and it increases with patients’ age [15]. Furthermore,
the cytokine expression profile in IBD patients does not
usually reflect fully differentiated Th1, Th2, or Th17 immune
responses [12]. In UC, expression of a typical Th2 cytokine,
IL-4, was not elevated in intestinal mucosa of UC patients
[12]. Instead, it has been suggested that the central role in
the pathogenesis of UC is played by IL-13 [12, 16] which not
only acts as a Th2 effector cytokine [17] but also disrupts
the continuity of colonic epithelium by inducing apoptosis
of epithelial cells and upregulating expression of claudin-
2, a pore-forming tight junction protein [18]. To add more
complexity to the pathogenesis of IBD, a recent report by
Mannon et al. [19] has showed that in some patients UC
is characterized by elevated production of a Th17-specific
cytokine, IL-17A, by intestinal lamina propria T cells.

2. Tumour Necrosis Factor Superfamily

There are 19 ligands and 29 receptors identified to date that
constitute the tumour necrosis factor superfamily (TNFSF)
[20]. Their expression pattern and structural attributes allow
them to activate signalling pathways that lead to cell survival,
proliferation, differentiation, or apoptosis. TNFSF receptors
can be divided into two groups depending on the presence
or absence of the intracellular death domain (DD). Sig-
nalling via the death domain requires the participation of
adaptor proteins FADD (Fas-associated death domain) and
TRADD (TNF receptor-associated death domain) and leads
to activation of caspases which typically results in apoptotic
death of a cell [21]. The second group of TNFSF receptors
signals only via adaptor proteins termed TRAFs (tumour
necrosis factor receptor-associated proteins), although DD-
containing receptors can also utilize this pathway. TRAFs
bind either to TRADD or directly to the cytoplasmic part
of the receptor and initiate signal transduction pathways
that lead to the activation of several transcription factors,
such as AP-1 and NF-𝜅B, responsible for the activation of
prosurvival genes [21], although they are involved also in
proapoptotic signalling [22–24]. Hence, functional activity of
TNFSF receptors largely depends on the cellular context and
the balance between pro- and antiapoptotic factors inside the
cell and in the environment.

Most TNFSF members are expressed on cells of the
immune system and play an important role in maintaining

the equilibriumof T cell-mediated immune responses by pro-
viding direct signals required for full activation of effector and
regulatory T cells, regulation of their expansion, contraction
of the T cell effector pool, and survival ofmemory T cells [25–
30]. For these reasons, members of the TNFSF are involved
in the pathogenesis of many T cell-mediated autoimmune
diseases, such as asthma, diabetes, or arthritis [26]. Many
recent reports indicate that certain TNFSFmembers, notably,
TNF (tumour necrosis factor, TNFSF2, also known as TNF-
𝛼) [31], TL1A (TNF-like protein 1A, TNFSF15) [32, 33],
FasL (TNFSF6) [34–36], LIGHT (lymphotoxin-like inducible
protein that competes with glycoprotein D for binding her-
pesvirus entry mediator on T cell, TNFSF14) [37], TRAIL
(TNF-related apoptosis inducing ligand, TNFSF10) [38], and
TWEAK (TNF-like weak inducer of apoptosis, TNFSF12)
[39], contribute to the pathogenesis of IBD not only by
enhancing proinflammatory function of T cells but also by
direct disruption of the integrity of intestinal epithelium
(Table 1).

3. TNF

Tumour necrosis factor (TNF; TNF-𝛼; TNFSF2) is biolog-
ically active in the form of homotrimeric transmembrane
or soluble protein [40]. It is expressed by macrophages, T
cells, B cells, NK cells, mast cells, endothelial cells, fibroblasts,
and neurons; its expression is strongly upregulated by certain
proinflammatory factors such as lipopolysaccharide (LPS) or
other bacterial products and IL-1𝛽 [20, 24, 41]. There are two
types of TNF receptors, the death domain-containing TNFR1
(TNF receptor 1, also known as p55 or TNFRSF1A), which is
constitutively expressed on most nucleated mammalian cells
and is activated by both the transmembrane and soluble form
of TNF [20], and TNFR2 (TNF receptor 2, also known as
p75 or TNFRSF1B) which does not contain the death domain
and is activated only by the transmembrane form of TNF
[24]. Expression of TNFR2 is strictly regulated and found
mostly on certain populations of lymphocytes, including T-
regulatory cells (Tregs), endothelial cells, microglia, neuron
subtypes, oligodendrocytes, cardiac myocytes, thymocytes,
and human mesenchymal stem cells [20, 42].

Elevated expression of TNF was detected in IBD patients
more than 20 years ago [52]. The level of TNF mRNA was
upregulated in involved colonic tissue of CD patients [53] as
well as in both involved and uninvolved colonic tissue of UC
patients [54] compared to healthy subjects. A recent report
[55] showed that elevated concentration of TNF protein that
correlated with the activity of the disease was present in
blood serum of CD patients while other groups [52, 56]
found increased levels of TNF protein both in serum [52, 56]
and in the intestinal lamina propria of both CD and UC
patients as well as the intestinal submucosa of CD patients
[57]. The production of TNF in the colon mucosa of UC
patients was localized to lamina propria macrophages [57].
Although several groups did not detect increased levels of
TNF protein or mRNA in blood serum or colon mucosa of
IBD patients, respectively [58, 59], successful use of anti-TNF
agents in IBD therapy [31] documents that TNF belongs to
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Table 1: Overview of the expression and function of the major members of TNSF superfamily in IBD.

TNFSF member and
its expression Receptors and their expression Role in IBD pathogenesis References

TNF—macrophages,
NK cells, T cells, and
B cells

(i) TNFR1—intestinal epithelial cells
(ii) TNFR2—intestinal epithelial cells

Disruption of intestinal epithelium
integrity by induction of adhesion
proteins rearrangement and induction of
intestinal cells apoptosis

[20, 43, 44]

TL1A—antigen-
presenting cells and T
cells

(i) DR3—T cells, NK cells, NKT cells, and
regulatory T cells
(ii) DcR3 (decoy)—activated T cells

Promotion of proinflammatory activity of
T cells and inhibition of suppressive
activity of regulatory T cells

[45, 46]

FasL—T cells, NK
cells, monocytes, and
Paneth cells

(i) Fas—intestinal epithelial cells and T cells
(ii) DcR3 (decoy)—activated T cells

Possible disruption of intestinal
epithelium integrity by induction of
epithelial cells apoptosis. Possible
involvement in accumulation of
proinflammatory T cells in intestinal
lamina propria

[20, 47, 48]

LIGHT—T cells,
monocytes,
granulocytes, and
dendritic cells

(i) HVEM—T cells, B cells, and monocytes
(ii) LT𝛽R—nonlymphoid hematopoietic
cells and stromal cells
(iii) DcR3 (decoy)—activated T cells

Possible promotion of proinflammatory
activity of Th1 cells [20, 49]

TRAIL—intestinal
epithelium, T cells,
NK cells, and
dendritic cells

(i) TRAIL-R1—almost all cell types
(ii) TRAIL-R2—almost all cell types
(iii) TRAIL-R3 (decoy)—almost all cell types
(iv) TRAIL-R4 (decoy)—almost all cell types
(v) OPG (decoy)—osteoclasts’ precursors,
endothelial cells, and other cell types

Disruption of intestinal epithelium
integrity by induction of epithelial cells
apoptosis. Possible contribution to
development of fistulas and strictures in
CD patients

[20, 38, 50]

TWEAK—T cells,
macrophages, and
dendritic cells

Fn14—intestinal mucosa and fibroblasts

Possible upregulation of proinflammatory
cytokines and infiltration of lamina
propria by inflammatory cells. Induction
of intestinal cells apoptosis in
cooperation with IL-13

[20, 39, 51]

the major effector molecules involved in the pathogenesis
of CD and UC. It is worth to note, however, that a recent
study on a mouse model of T cell-mediated colitis has
shown that only neutralization of the transmembrane, but
not soluble, TNF form induced remission of experimental
colitis [60]. Pathogenesis of IBD is associated alsowith altered
expression of TNF receptors since both CD and UC patients
showed elevated expression of TNFR2 on colonic epithelial
cells [61]. Moreover, a positive correlation was observed
between CD and UC activity and serum concentration of
soluble forms of TNFR1 and TNFR2 [55]. Furthermore,
upregulated expression of TNFR2 (but not TNFR1)was found
on intestinal lamina propria CD4+ cells as well as peripheral
blood T cells of CD patients [62].

3.1. Role of TNF in the Dysregulation of Intestinal Barrier
Permeability. Several studies showed that TNF contributes
to the disruption of intestinal epithelial barrier which allows
for intestinal penetration of luminal antigens and promotes
intestinal inflammation (Table 2) [63–65]. Intestinal epithe-
lium integrity is provided by the presence of tight junctions
(TJ) located in the apical region of intestinal epithelial
cells. Data obtained in vitro by Ma et al. [63] showed that
stimulation of colonic epithelial Caco-2 cells withTNFdown-
regulated the expression of TJ-associated zonula occludens-1

proteins and altered their junctional localization in an NF-
𝜅B-dependent manner.

Transmembrane expression of TNF is regulated by a
pleiotropic metalloproteinase ADAM17 which is involved
in the cleavage of transmembrane TNF and its shedding
from the cell surface [66]. Cesaro et al. [67] reported
early posttranscriptional upregulation of ADAM17 in
intestinal mucosa of patients with highly active CD and, in
an in vitro model, in intestinal epithelial cells, which was
linked to transepithelial migration of polymorphonuclear
neutrophils. Treatment of TIMP3-deficient colonic epithelial
cell line HT29-C1.16E with TIMP3, an inhibitor of ADAM17
activity, decreased TNF shedding and sensitized the cells
to TNF-mediated epithelial hyperpermeability due to the
downregulation of zonula occludens-1 proteins [64]. Other
reports showed that IBD patients had also elevated mucosal
expression of another TNF sheddase, metalloprotease
ADAM19, localized mainly in epithelial cells [68], whereas
a mouse study demonstrated that shedding of TNF can be
mediated also by matrix metalloproteinase 13 (MMP13)
[69].

Epithelial barrier dysfunction can be mediated also by
increased expression of myosin light chain kinase (MLCK)
followed by subsequent phosphorylation of myosin II reg-
ulatory light chain (MLC) which results in the contraction
of the perijunctional ring composed of actin and myosin
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Table 2: Biological effects of TNF exerted on intestinal epithelium.

TNF function Model References
(1) Rearrangement of cytoskeletal elements

(i) Downregulation of zonula occludens-1 expression and
alteration of its intracellular localization

(i) Caco-2 cells (in vitro)
(ii) HT29-C1.16E cells (in vitro) [63, 64]

(ii) Upregulation of myosin light chain kinase expression (i) Caco-2 cells (in vitro)
(ii) Mouse model (in vivo) [65, 70]

(iii) Redistribution of zonula occludens-1, occludins, claudins,
E-cadherins, and myosin light chain kinase to basolateral
membranes of intestinal cells

Mouse model (in vivo) [71]

(2) Induction of intestinal epithelial cells’ apoptosis
(i) Induction of intestinal cells’ apoptosis via activation of caspase-3 Mouse model (in vivo) [71]
(ii) Induction of intestinal epithelial cells’ apoptosis via
upregulation of iNOS and p53 Mouse model (in vivo) [44, 72]

filaments [73]. Expression of MLCK was elevated in ileal and
colonic epithelium of CD and UC patients and correlated
with the activity of the disease [74]. In vitro investiga-
tion showed that TNF upregulated expression of MLCK
in Caco-2 cells pretreated with IFN-𝛾 which increased
expression of TNF receptors on the cell surface [65]. A
recent study on TNFR1 or TNFR2-deficient mice showed
that upregulation of MLCK and the loss of intestinal
epithelial barrier in CD4(+) CD45RB (high) T cell trans-
fer model of intestinal inflammation were dependent on
TNFR2 expressed on intestinal epithelium but not TNFR1
[70].

In an elegant in vivo study on mouse models, Marchi-
ando et al. [71] showed that TNF induced redistribution of
several TJ and adherens junction proteins, including zonula
occludens-1, occludins, claudins, and E-cadherin, as well as
MCLK, to basolateralmembranes of intestinal epithelial cells.
Furthermore, administration of TNF resulted not only in
the rearrangement of junctional proteins but also in the
shedding of whole cells from intestinal epithelium. These
events were preceded by caspase-3 activation due to the TNF-
induced activation of NF-𝜅B-dependent signalling pathway
and of proapoptotic pathways [71]. These data suggest that
TNF-triggered loss of intestinal epithelium integrity is a
complex process which involves not only rearrangement of
cytoskeletal elements but also direct induction of intestinal
cells’ apoptosis by TNF. Indeed, studies onmice showedTNF-
induced apoptosis of intestinal epithelial cells in a TNFR1-
and TNFR2-dependent manner [44, 72] which resulted in
increased intestinal permeability in vivo [44]. TNF signalling
upregulated expression of inducible nitric oxide synthase
(iNOS) which led to enhanced expression of a proapoptotic
protein p53 [72]. On the other hand, TNF participates
also in transactivation of epidermal growth factor receptor
(EGFR) [75] which signaling upregulates the expression
of cyclooxygenase-2 (COX-2) [76]. Increased expression of
COX-2 has been associated with enhanced cell resistance to
apoptosis, inflammation, and promotion of tumour progres-
sion [77]; therefore this aspect of TNF activity might have
relevance to development of IBD-associated cancers of the GI
tract [78].

3.2. Anti-TNF Agents in IBDTherapy. Currently, IBD therapy
based on blocking biological activity of TNF involves the
use of the following anti-TNF agents approved by Food
and Drug Administration (FDA) and European Medicines
Agency (EMA): (1) infliximab: chimeric monoclonal anti-
TNF antibody (approved by FDA and EMA for treatment
of CD and UC); (2) adalimumab: human monoclonal anti-
TNF antibody (approved by FDA for treatment of CD in
adults and by EMA for treatment of CD and UC); (3)
certolizumab pegol: humanized Fab’ fragment of anti-TNF
antibody conjugated to polyethylene glycol (approved by
FDA only for treatment of CD) [79]; (4) golimumab: human
monoclonal anti-TNF antibody (approved by FDA and EMA
for treatment of UC) [80]. Infliximab, adalimumab [81], and
certolizumab pegol [82] are effective in the treatment of
patients with moderate and severe CD who do not respond
to standard anti-inflammatory drugs and also when used as
a first-line therapy in CD. Moreover, randomised, controlled
trials showed also that infliximab [83, 84], adalimumab [85,
86], and golimumab [87, 88] induced remission in steroid-
or immunosuppressant-refractory patients with moderate or
severe UC. However, 10 to 40% of CD patients (depending
on selection criteria) and up to 50% of UC patients do not
respond to anti-TNF therapy (primary resistance) and about
one-third become resistant (secondary loss of response) at
12 months after initiation of anti-TNF treatment [89–91].
Interestingly, switching to another anti-TNF agent is effective
in over 50% of nonresponsive patients [92, 93]. Failure to
respond to anti-TNF therapy may result from pharmacoki-
netics of drugs, development of antibodies against the drugs,
or activity of other, TNF-independent, proinflammatory
pathways in IBD patients [91, 94, 95].

It has also to be noted that blockade of TNF biological
activity in IBD therapy may result in several adverse side
effects [82], including acute or delayed hypersensitivity reac-
tions to anti-TNF agents [96, 97], elevated risk of bacterial,
mycobacterial, viral, and fungal infections [98] (although
meta-analysis of clinical trials did not show increased rate
of infections in the course of anti-TNF treatment [89]), or
neurological complications [99–101]. Combinatory therapy
of CD patients with glucocorticoids, immunomodulators,
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and TNF inhibitors may be associated with an increased
risk of non-Hodgkin’s lymphoma, lung, skin, and other types
of cancers, although no causative relationship of anti-TNF
antibodies and carcinogenesis has been proven [90]. Anti-
TNF therapy may lead also to paradoxical inflammatory skin
(eczema and psoriasis) and joint (polyarthralgia) or ocular
(uveitis and scleritis) manifestations [102]. Other paradoxical
reactions include also demyelinating central nervous system
disorders, sarcoidosis, development of anti-nuclear antibod-
ies, and, in rare cases, lupus [89].Mechanisms leading to these
paradoxical reactions are not currently well known and most
probably involvemultiple pathogenic pathways. For example,
it has been recently reported that psoriasiform skin lesions
characterised by Th17 and Th1 cell infiltrates developed in
nearly 5% of anti-TNF-treated patients with IBD and that
smoking was identified as a main risk factor. Interestingly,
anti-IL-12/IL-23 antibody treatment was found to be a highly
effective therapy for these lesions [103].

Despite high efficacy of the majority of anti-TNF anti-
bodies in the therapy of a considerable proportion of both
CD and UC patients [90], the precise mechanisms of action
underlying the efficacy of anti-TNF agents in IBD therapy
have not been fully explained. In the last decade multiple
mechanisms of the anti-TNF antibodies such as blocking and
neutralizing of TNF molecules, regulation of cell adhesion
molecule expression, induction of regulatory macrophages,
or direct induction of apoptosis of T lymphocytes and
macrophages in the mucosal lamina propria and peripheral
blood have been proposed [104, 105]. However, the results of
newer studies suggest that increased apoptosis of Treg cells,
an important subset of T lymphocytes,may play an important
role in the pathogenesis of IBD and can be reversed by anti-
TNF𝛼 treatment [106, 107]. Moreover, infliximab and adal-
imumab (but not etanercept and certolizumab) were shown
to induce regulatorymacrophages (CD206+) in an Fc region-
dependent manner. In vitro these macrophages produced
anti-inflammatory cytokines and inhibited proliferation of
activated T cells [108], whereas in vivo a significant induction
of regulatory macrophages was observed in IBD patients
withmucosal healing after treatment with infliximab and this
induction was absent in patients without mucosal healing
response [109].

Recently, Leal et al. [110] using whole-genome transcrip-
tional analysis have found that anti-TNF treatment reduced
expression of a set of proinflammatory genes (including IL-
6, IL-23p19, and MMP9) as well as genes of cell-activation
markers (CD69, CD83, and VCAM-1) in patients who both
did and did not respond to this kind of therapy, suggesting
that it is not only the proinflammatory function of TNF that is
targeted by anti-TNF therapy. Moreover, they identified IL1B
and IL17A as genes that remained altered in nonresponders,
which suggests that respective proteins or their signaling
pathways may present a novel therapeutic target in IBD.

Since many studies have linked TNF to increased perme-
ability of intestinal epithelium [63–65], it is highly possible
that anti-TNF agents are involved in the protection of epithe-
lial barrier. Indeed, administration of infliximab restored
the proper function of intestinal epithelium in CD patients
[42, 111] and prevented TNF-induced rearrangement of tight

junction proteins (notably, occludin and zonula occludens-
1) in dinitrobenzene sulfonic acid- (DNBS-) induced col-
itis in mice [112]. These findings have been supported by
a recent in vitro study on intestinal epithelial cell lines
Caco-2 and T84 which showed that adalimumab restored
expression of tight junction proteins claudin-1, claudin-2,
and claudin-3 downregulated by exposure to TNF and IFN-
𝛾 [113]. Other studies demonstrated that infliximab and
adalimumab induced apoptosis of CD4(+) helper T cells
expressing TNFR2 and macrophages isolated from colonic
lamina propria of CD patients but not healthy subjects [23].
Furthermore, Eder et al. [114, 115] found that infliximab and
adalimumab promoted apoptosis of intestinal lamina propria
mononuclear cells present in inflamed but not noninflamed
areas of CD patients’ colonic mucosa via intrinsic pathway
mediated by Bcl-2 family proteins. Thus, infliximab and
adalimumab not only protect intestinal epithelial integrity
but also may suppress inflammatory process by inducing
apoptosis of immune cells present in intestinal mucosa.

The ongoing research aimed at the elucidation of the
cellular and molecular mechanisms of the anti-inflammatory
activity of some but not all anti-TNF antibodies in IBD should
help in designing more target-effective biological drugs.
Etanercept, a nonantibody soluble fusion protein composed
of the extracellular domain of TNFR2 and the hinge and
Fc fragments of human IgG1 antibody [116], is an anti-
TNF agent approved by FDA and EMA for treatment of
rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing
spondylitis, and juvenile idiopathic arthritis but not IBD.
Even though experiments on mice with DNB-induced colitis
showed that etanercept reduced levels of circulating TNF and
prevented apoptosis of enterocytes equally well as infliximab
[112], studies on humans proved that response rates to
etanercept in CD treatment were comparable to placebo
[117]. A study by Scallon et al. [116] showed that infliximab
binds both monomeric and trimeric forms of soluble and
transmembraneTNF,whereas etanercept forms only unstable
complexes with soluble TNF which may contribute to pro-
longed half-life of circulating TNF. Furthermore, in contrast
to infliximab, etanercept did not induce apoptosis of acti-
vated T cells isolated from CD patients and healthy control
subjects [104]. The failure of etanercept in IBD therapy can
be attributed to its inability, in contrast to infliximab and
adalimumab, to inhibit T cell proliferation and to induce
regulatorymacrophages [108], caused probably by differences
in infliximab and etanercept binding to TNF.

4. TL1A

TL1A (TNF-like molecule 1A; TNFSF15) is the most recently
discovered member of the TNF superfamily, identified for
the first time in 2002 [118]. In humans, there are three dif-
ferent isoforms of the protein generated from TNFSF15gene
as a result of alternative splicing: VEGI-174 (174 amino
acids), VEGI-192 (192 amino acids), and the full-length
product, TL1A (VEGI-252; 252 amino acids) [118–120],
although VEGI-174 is most probably a cloning artefact
[118]. Primary function of VEGI-192 is the inhibition of
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angiogenesis [121], whereas TL1A is a proinflammatory factor
involved in the pathogenesis of several autoimmune diseases,
including arthritis, allergic lung inflammation, autoimmune
encephalomyelitis, and inflammatory bowel disease [26, 122–
124].

Similarly to TNF, TL1A exists in a soluble or transmem-
brane form [125–128]. It has been shown that recombinant
human TL1A forms a homotrimer resembling the trimeric
structure of other TNF superfamily members [129]; however,
still very little is known about the quaternary structure of the
native form of TL1A molecule.

TL1A expression is primarily found on activated cells of
the immune system, such as dendritic cells, macrophages
[128], andCD4(+) andCD8(+)T cells [122, 123], whereas very
little TL1A was found on nonactivated immune cells [118].
Known inducers of TL1A expression are TNF, IL-1 [118], Fc
fragments of IgG1 antibodies [128], and certain parasite- or
bacteria-related toll-like receptors (TLR) ligands, including
synthetic bacterial lipoprotein Pam3CSK4 (ligand for TLR1
and TLR2), lipopeptide FSL (ligand for TLR2), polyinosinic-
polycytidylic acid (ligand for TLR3), LPS (ligand for TLR4),
single-stranded RNA (ligand for TLR7), unmethylated DNA
sequences (ligands for TLR9), and tachyzoite antigen (ligand
for TLR11) [123, 130].

The main receptor for TL1A is death receptor 3 (DR3;
TNFRSF25) [118], structurally similar to TNFR1 [131]. DR3
was found to be strongly upregulated on activatedmonocytes
[132], NK cells [133], NKT cells [122], and B cells [134], as well
as CD4(+) T helper and CD8(+) T cytotoxic cells [133, 135].
TL1A, similarly to FasL and LIGHT, binds also soluble decoy
receptor 3 (DcR3, TNFRSF6B) which prevents functional
TL1A/DR3 signalling [127, 136].

Even though DR3 contains the death domain, TL1A has
been shown to induce apoptosis only in the erythroleukaemic
cell line TF-1 treated with an inhibitor of protein synthesis,
cycloheximide (CHX) [118, 137]. In activated T cells, however,
TL1A did not induce apoptosis even in the presence of CHX
[118]. Instead, TL1A/DR3 interactions in lymphocytes trig-
gered proliferative and costimulatory signals through acti-
vation of NF-𝜅B-mediated pathways [123, 133]. Thus, TL1A
is a proinflammatory molecule which primarily costimulates
proliferation and effector functions of CD8(+) cytotoxic T
cells [138] as well asTh1,Th2, andTh17 [30, 123, 126, 139, 140]
cells in the presence of TCR stimulation; however, in physio-
logical conditions, TL1A is not required for the differentiation
of these lymphocytes [123]. Furthermore, TL1A promotes
also maturation of dendritic cells [141, 142] and production
of proinflammatory cytokines (TNF, IL-8, and monocyte
chemotactic protein 1, MCP-1) by macrophages [132]. Apart
from conventional CD4(+) and CD8(+) T cells, TL1A/DR3
interaction promotes also proliferation of regulatory T cells
(Tregs) [143, 144], although sustained TL1A stimulation
in vitro dampens suppressive activity of Tregs [143–145].
Interestingly, in vitro studies also showed that TL1A inhibited
differentiation of Tregs from their precursor cells [143, 145].

Certain alleles of TNFSF15gene which encode TL1A
are associated with enhanced activity of TNFSF15promoter
region and are considered to increase susceptibility to Crohn’s
disease [146]. TL1A protein and mRNA were upregulated in

IBD and their synthesis was localized in CD patients to lam-
ina propria infiltrating cells such as macrophages, dendritic
cells, and CD4(+) and CD8(+) T cells [139, 140, 147] as well
as plasma cells isolated from colon mucosa of UC patients
[125]. IBD patients had also a higher proportion of DR3-
expressing lamina propria T cells than healthy subjects [125,
126] and the amount of TL1A protein as well as the number of
TL1A-positive cells correlated positively with the severity of
inflammation, most significantly in CD [125]. Furthermore,
studies on transgenic mice showed that constitutive elevated
expression of TL1A on T cells or dendritic cells resulted in
enhanced T cell activation and upregulation of IL-13, IL-17A,
and IFN-𝛾mRNA levels in intestinal mucosa and mesenteric
lymph nodes as well as spontaneous development of bowel
inflammation [143, 144].

Recently, a population of CD161(+)CD4(+) T cells has
been identified as a primary target of TL1A in IBD [148],
although other subpopulations of T cells may also respond
to TL1A costimulation. CD161(+)CD4(+) T cells express
DR3 [149] and their gut tropism is established by high
expression of intestine-homingmolecules such as integrin 𝛽7
and chemokine CCR6 [149, 150]. They bear characteristics of
Th17 cells and have been shown to produce proinflammatory
cytokines IL-17, IL-22, and IL-13. In inflammatory conditions,
however, they may revert their phenotype to Th1 type and
produce IFN-𝛾 [149–151]. In synergy with other proinflam-
matory cytokines, such as IL-12 and IL-18 or IL-23, TL1A
further enhances the inflammatory process by increasing
production of IFN-𝛾, IL-8, and IL-6 by lymphocytes [30, 125,
139, 140]. Thus, TL1A involvement in IBD pathomechanisms
may result from enhanced costimulation of effector T cells
and local upregulation of proinflammatory cytokines produc-
tion in parallel to defective generation of peripheral Tregs
and inhibition of suppressive activity of preexisting Tregs
[45, 46].

As one of the key regulators of inflammatory pathways,
TL1A appears to be a promising therapeutic target for patients
with T cell-mediated autoimmune diseases, including IBD,
although to this day none of TL1A blocking agents has yet
been tested in clinical trials. There are, however, reports
showing that antibody-mediated inhibition of TL1A biolog-
ical activity prevents the development of dextran sodium
sulphate- (DSS-) induced and T cell transfer-induced exper-
imental bowel inflammation in mice [139].

5. FasL

Fas ligand (FasL, CD95L, and TNFSF6) and its receptor
Fas (CD95, TNFRSF6) are other members of the TNF
superfamily involved in the pathogenesis of IBD. Cytotoxic T
cells and natural killer (NK) cells use FasL to kill tumour cells
or viruses-infected cells which express Fas. FasL is involved
also in maintaining immune homeostasis and preventing
autoimmunity via amechanism known as activation-induced
cell death (AICD) which relies on killing activated T cells
following their expansion and differentiation in a FasL-/Fas-
dependentmanner, thus preventing hyperactivation of T cell-
mediated immunity [47, 152].



Mediators of Inflammation 7

FasL is a transmembrane molecule, although it can be
enzymatically cleaved from cells [153]. An in vivo mouse
study showed, however, that only the transmembrane, but not
soluble, FasL was capable of triggering cell death [154]. In
contrast to Fas which is constitutively or inducibly expressed
on many different cell types, including colon epithelial
cells [155], FasL expression is tightly regulated and limited
to activated CD4(+) and CD8(+) T cells, NK cells, and
monocytes [47]. In physiological conditions, Paneth cells
are the only cells of the intestinal epithelium which express
FasL [156]. Expression of FasL was found also in tissues and
organs that lack resident or infiltrating lymphocytes (e.g., eye,
trophoblast, or testis) and onneurons and astrocytes aswell as
in several tumours where itmay contribute to the suppression
of local immune responses via induction of T cell apoptosis
[47].

The majority of studies concerning the role of FasL and
Fas in IBD have been conducted in patients with ulcerative
colitis rather than Crohn’s disease. Expression of FasL was
significantly elevated on CD3(+) lymphocytes infiltrating
colonic lamina propria in patients with active UC but not in
UC remission, active or remissionCD, or healthy subjects [34,
35]. Furthermore, serum concentration of systemic soluble
Fas was lower in patients with active UC compared to healthy
controls [35]. Nevertheless, there are also studies which
showed upregulation of FasL in colonic lamina propria and
intraepithelial lymphocytes of CD patients’ mucosa [36].

The exact role of Fas/FasL system in IBD has not been
fully elucidated. Taking into account the primary, proapop-
totic function of Fas/FasL signalling, its possible role in IBD
initially appeared to be similar to TNF/TNFR1 signalling:
intestinal epithelial cells expressing Fas targeted by FasL(+)
lymphocytes undergo apoptosis which may lead to the
increased permeability of intestinal epithelium [157]. Indeed,
an in vitro study demonstrated that ligation of Fas resulted
in apoptotic death of intestinal epithelial cells isolated from
mucosa of UC patients [158]. This concept was supported
also by the fact that in healthy colon expression of FasL
was restricted only to few mononuclear cells of lamina
propria, suggesting that proapoptotic function of Fas/FasL
systemwas not involved in regeneration of colonic epithelium
but in pathogenesis of IBD [159]. A more recent study,
however, showed that colonocytes isolated from patients with
active UC had attenuated response to Fas-mediated apoptosis
induction compared to healthy subjects and patients in
remission [160]. Furthermore, authors of two mouse studies
demonstrated that Fas-deficient mice were hypersensitive to
dextran sodium sulphate- (DSS-) induced colitis [161] and
did not show any significant reduction in tissue damage,
even though they exhibited an increased rate of intestinal
epithelial cell apoptosis in gut inflammation model based
on administration of T cell activating anti-CD3 antibody
[162]. These findings suggest that colonocytes may activate
cytoprotective programs in response to inflammation and
may not be oversensitive to Fas-dependent apoptosis as had
been initially proposed [160].

Several studies showed that T cells from inflamed
mucosa of CD and UC patients were more resistant to
Fas-mediated apoptosis than control T cells from healthy

individuals [163–165]. Suzuki et al. [166] found that in UC
mucosa the population of CD45RO(+)CD4(+) T cells was
less prone to Fas-mediated cell death than the population
of CD45RO(+)CD8(+) T cells. Thus, potentially harmful,
proinflammatory T cells may accumulate in the intestinal
mucosa of IBD patients and induce tissue damage.

Fas and FasL, while playing an important role in the
regulation of apoptosis, have also nonapoptotic functions.
Fas contains the death domain and, in contrast to TNFR1,
had been thought to be involved only in proapoptotic but
not prosurvival signalling [167]. However, it has been shown
recently that although strong Fas stimulation blocked activa-
tion of human CD4(+) helper T cells, weak Fas stimulation
together with TCR signalling augmented their proliferation
via activation of MAP kinases, transcription factors, and cell
cycle activators [168].

FasL contributes to costimulation of T cells also by a
phenomenon termed “reverse signalling.” Under this con-
dition ligation of transmembrane FasL by functional Fas
or DcR3 (a soluble decoy receptor for FasL, TL1A, and
LIGHT) triggers signal transduction from FasL, resulting in
the enhanced proliferation of mouse CD8(+) cytotoxic T
cells [169–172]. These findings add much more complexity to
possible roles of Fas/FasL system in the pathomechanisms of
IBD which, theoretically, can be involved not only in direct
disruption of epithelial continuity but also in costimulation
of proinflammatory T cells. Since the details of Fas/FasL role
in IBD still remain largely unknown, agents directly inter-
fering with Fas signalling have yet not been tested for IBD
treatment.

6. LIGHT

LIGHT (lymphotoxin-like inducible protein that competes
with glycoprotein D for binding herpesvirus entry mediator
on T cell, TNFSF14), ligand for the lymphotoxin beta recep-
tor (LT𝛽R, TNFRSF3), and the herpesvirus entry mediator
(HVEM; TNFRSF14) are expressed mostly on activated T
cells, although they were found also on monocytes, granu-
locytes, and immature dendritic cells [173, 174]. LT𝛽R and
HVEM receptors do not contain the death domain; therefore
they are considered to be involved in prosurvival signalling
[167]. Indeed, interaction between LIGHT and HVEM was
found to enhance proliferation and effector functions of
CD8(+) cytotoxic T cells [25], stimulate expansion of CD4(+)
helper T cells, and promote their differentiation intoTh1 cells
[28].

Several studies indicate that LIGHT contributes to the
development of intestinal inflammation. Transgenic mice
with elevated expression of LIGHT spontaneously develop
colitis [175]. Adoptive transfer of mesenteric lymph node
cells expressing LIGHT into immunodeficient RAG−/−mice
resulted in Th1-mediated intestinal inflammation dependent
on both LIGHT receptors (LT𝛽R and HVEM) [49]. Fur-
thermore, induction of colitis in mice by DSS resulted in
strong upregulation of LIGHT mRNA in colon mucosa,
whereas LIGHT-deficient mice showed significantly reduced
symptoms of DSS-induced colon inflammation [176].
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The pathological role of LIGHT in human IBD has been
hardly investigated, although in IBD patients upregulation
of LIGHT mRNA in inflamed intestinal mucosa when com-
pared to noninflamed areas has been demonstrated [37].
Blockade of LIGHT as a way of IBD treatment has not been
tested in clinical settings, although administration of anti-
LIGHT antibodies reduced symptoms of DSS-induced colon
inflammation in mice [176].

7. DcR3

DcR3, soluble receptor for TL1A, FasL, and LIGHT, is a
member of the TNF receptor superfamily that does not
contain the transmembrane domain [127, 136]. As a soluble
receptor, it inhibits the interaction between its ligands and
their membrane-bound receptors, thus suppressing their
biological activity. Elevated expression of DcR3 was detected
in inflamed mucosa and serum of CD and UC patients [177–
179].The biological significance of this phenomenon remains
unclear, although DcR3 is thought to play a protective role
in IBD. For example, Funke et al. [179] showed that DcR3,
acting as a soluble decoy receptor, limited the bioavailability
of FasL and protected intestinal epithelial cells from FasL-
mediated apoptosis. In a similar way, DcR3 may also prevent
the proinflammatory effect exerted by TL1A; thus, it has
been proposed that upregulation of DcR3 expression during
intestinal inflammationmay have a compensatory, protective
effect [45].

8. TRAIL

Certain reports indicate that another member of the TNF
superfamily, TRAIL (TNF-related apoptosis inducing ligand,
TNFSF10), expressed in a large variety of tissues including
intestines may be involved in the pathogenesis of IBD [159].
Similarly to TNF, TRAIL is able to induce apoptosis and can
also activate the prosurvival transcription factor NF-𝜅B. Five
receptors of TRAIL have been identified to date. TRAIL-
R1 (TNFRSF10A; DR4) and TRAIL-R2 (TNFRSF-10B; DR5)
contain the death domain in their cytoplasmic fragments
and are involved in functional TRAIL signalling [128].
Other molecules, TRAIL-R3 (TNFRSF10C; DcR1) without
the death domain and TRAIL-R4 (TNFRSF10D; DcR2) with
defective death domain and soluble osteoprotegerin (OPG,
TNFRSF11B), are considered to be decoy receptors [167].

Expression of TRAIL was found to be downregulated in
intestinal epithelial cells of IBD patients [180]; however, it
was significantly elevated inmononuclear cells of the resected
inflamed mucosa in both CD and UC patients with highly
active, steroid-refractory disease [38, 180].

Even though the exact role of TRAIL in IBD pathogenesis
remains undefined, the available data suggest that TRAIL-
expressing mononuclear cells present in lamina propria
disrupt the integrity of intestinal epithelium by inducing
apoptosis of enterocytes. This notion was supported by an
ex vivo study on ileal organ cultures which revealed that
under inflammatory conditions TRAIL became a potent
inducer of apoptosis in intestinal epithelial cells [38]. TRAIL

is also a potent mediator of apoptotic death of intestinal
fibroblasts in fibrostenosing intestinal areas in CD. Since
collagen deposits and fibroblast proliferation are factors
contributing to the development of strictures and fistulas,
relatively common in CD patients, TRAIL can be involved
also in tissue remodelling associated with CD [50].

9. TWEAK

TWEAK (TNF-like weak inducer of apoptosis, TNFSF12)
acts through its receptor Fn14 (TNFRSF12; TWEAK-R) and
has multiple biological activities, including stimulation of
cell growth, induction of proinflammatory cytokines, and,
in certain experimental settings, induction of apoptosis.
TWEAK protein is expressed mostly in immune cells such
as T cells, macrophages, or dendritic cells, although it was
found also in nonhematopoietic cell types like astrocytes
or endothelial cells [181]. Expression of TWEAK receptor,
Fn14, was found on a variety of cells, including cells of
intestinal mucosa. Fn14 does not contain the death domain
and its stimulation with TWEAK results in activation of the
transcription factor NF-𝜅B [181, 182].

There are very few studies concerning the role of TWEAK
in IBD pathogenesis; however in the intestinal mucosa of
UC patients messenger RNA levels of IL-13, TWEAK, and
Fn14 increased with disease activity [39]. TWEAK deficiency
or reduction of its biological activity by anti-TWEAK mon-
oclonal antibodies reduced expression of proinflammatory
cytokines, neutrophil, and macrophage infiltration decreas-
ing severity of trinitrobenzenesulfonic (TNBS) acid-induced
colitis inmice [51]. Furthermore, even though TWEAK alone
did not induce damage or apoptosis of intestinal epithelial
cells, it was required, together with Fn14 and TNF, for IL-13-
induced activation of caspase-3 in enterocytes isolated from
𝛾-irradiatedmice [39]. In vitro studies on rhabdomyosarcoma
cell line Kym-1 showed that TWEAK upregulated expression
of transmembrane TNF which in turn induced cell apoptosis
via TNFR1 [183]. Furthermore, TWEAK stimulation syner-
gistically enhanced TNFR1-mediated apoptotic cell death of
Kym-1 cells [183] which can be explained by the fact that
TWEAK induces translocation of antiapoptotic adaptor pro-
tein TRAF2 from the TNFR1 signalling complex, enhancing
proapoptotic signalling of this receptor [184]. The question
whether these mechanisms are active also in vivo in intestinal
epithelium has not yet been studied.

10. Conclusions

Members of the TNF superfamily contribute to the patho-
genesis of IBD in two ways. (i) They disrupt the integrity of
intestinal epithelium by altering the arrangement of adhesion
proteins in enterocytes (TNF), inducing apoptotic death
of enterocytes (TNF, FasL, TRAIL, and TWEAK), and/or
(ii) they promote the proinflammatory activity of mucosa-
infiltratingmononuclear cells (TNF, TL1A, LIGHT, TWEAK,
and possibly FasL) and affect the activity of regulatory T cells
and regulatory macrophages (Figure 1).
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Figure 1: Two major mechanisms which implicate the molecules belonging to the TNFSF in the pathomechanisms of IBD. (a) Disruption of
intestinal epithelium integrity allows luminal bacterial antigens to cross the epithelial barrier and migrate into the intestinal mucosa where
they elicit immune responses. (b) Activation of mucosa-infiltrating T lymphocytes.

TNF superfamily members have attracted large attention
as potential therapeutic targets in IBD treatment. Currently,
however, the only TNFSF member targeted in clinical treat-
ment of IBD is TNF. Another promising target, although still
not tested in clinical trials, is TL1A which appears to be one
of the key factors regulating the inflammatory pathways in
IBD. The other members of TNF superfamily involved in
IBD pathogenesis (FasL, LIGHT, TRAIL, and TWEAK) still
require more in-depth studies to clearly define their function
in intestinal inflammation. It has to be emphasized, however,
that inflammatory injury of intestinalmucosa, amajor feature
of IBD, is mediated not only by the cross talk between various
TNF superfamily members and their respective receptors
since it results from the interactions of many cell types and
inflammatory mediators which trigger multiple intracellular
signalling pathways. Therefore, despite great therapeutic
progress achieved in the treatment of Crohn’s disease and
ulcerative colitis by targeting TNF with various types of
antibodies, further detailed studies are necessary to better
understand the pathomechanisms of tissue injury in IBD
aimed at defining more specific therapeutic targets.
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