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ABSTRACT

The non-linear problem of simulating the structural
transition between two known forms of a macro-
molecule still remains a challenge in structural
biology. The problem is usually addressed in an
approximate way using ‘morphing’ techniques,
which are linear interpolations of either the
Cartesian or the internal coordinates between the
initial and end states, followed by energy minimiza-
tion. Here we describe a web tool that implements
a new method to calculate the most probable
trajectory that is exact for harmonic potentials;
as an illustration of the method, the classical
Calpha-based Elastic Network Model (ENM) is
used both for the initial and the final states but
other variants of the ENM are also possible. The
Langevin equation under this potential is solved
analytically using the Onsager and Machlup action
minimization formalism on each side of the transi-
tion, thus replacing the original non-linear problem
by a pair of linear differential equations joined by
a non-linear boundary matching condition. The
crossover between the two multidimensional
energy curves around each state is found numeri-
cally using an iterative approach, producing the
most probable trajectory and fully characterizing the
transition state and its energy. Jobs calculating
such trajectories can be submitted on-line at: http://
lorentz.dynstr.pasteur.fr/joel/index.php.

INTRODUCTION

Both structural and dynamical properties of macromole-
cules are essential to understand in order to account for
their biological function. There are numerous examples (1)

of large-scale and biologically important structural
rearrangements in the Protein Data Base (PDB), including
allosteric molecules, molecular motors and receptors that
undergo a transition from an open to a closed state upon
ligand binding (induced fit).
While experimental methods such as X-Ray crystal-

lography can give an atomic description of the two end
states, the transition state is inaccessible to such structural
methods because it is by nature unstable. NMR might be
amenable to give some answers to the dynamical aspects
of the transition as shown very recently (2) but such
applications will likely be very difficult for large macro-
molecular systems such as molecular motors.
Yet it would be of tremendous importance to have

access to the structural characteristics of such a transition
state. Indeed this would open the way to design drugs
against transiently formed intermediate structures
instead of just the starting or end points of the transition.
Also, it would help to understand enzymology at the
molecular level, which proceeds through the stabilization
of the transition state complex with the substrate(s) (3).
When studying structural transitions, it is important to

distinguish between morphing techniques (4), which
interpolate linearly between the starting and end states,
and reaction path direct determination using physical
potentials. Indeed, interpolation techniques will likely fail
for large amplitude transitions and a physical description
of the transition is to be preferred, if feasible, over a purely
geometrical one in all cases.
Simulation techniques such as molecular dynamics

(MD) can in principle be used to study such transition
in atomic detail, but the time scale accessible to such
methods is several orders of magnitude smaller than the
time scale during which these phenomena occur in
solution. A common strategy then is to resort to coarse-
grained models. Among the various existing coarse-
grained models, two of them have been intensively studied
in the past for structural transitions, namely the elastic
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network model (ENM) (5) and the Go model (6). While it
is clear that ENM has the potential to describe a good part
of naturally occurring and documented structural transi-
tions through a handful of low-frequency normal modes
derived from this simple model (7) the problem remains
that the ENM has by definition only one minimum and is
therefore inadequate to describe the full transition. This
problem is also present in the Go model, which basically
assumes that only native-like contacts can occur during
the transition whereas in reality non-native contacts may
well appear and disappear in the process.
Recently, several groups have started to address these

points through innovative ways, taking into account the
double-well character of the energy landscape. The main
difficulty with these methods is that they have to make
simplifying assumptions in order to locate the crossing
points of the two energy surfaces (8–11).
Here we revisit the original Kramers problem (12) of

finding the trajectory between two stable states experienc-
ing each a harmonic potential. We use an entirely different
method, the so-called Onsager–Machlup method, which
reformulates the Langevin equation as an action mini-
mization problem (13). Such an approach has been used
recently by several groups to study both peptide (14,15)
and protein folding-unfolding transitions (16–19), using
classical force fields and numerical simulations. Here we
show that by using a normal mode representation we can
solve the equations on each side of the transition
analytically, i.e. without any approximation; the problem
is then narrowed down to finding the crossing point of
these two solutions, which is achieved numerically
through a one-dimensional search.
We have implemented the technique on a web server

that will automatically generate a trajectory between two
states provided by the user, given just a few parameters:
the energy difference between the two states (usually close
to zero or a few kT), the relative spring constants of the
harmonic potentials, which can be estimated through a fit
with the experimental B-factors, and the cutoff radius of
the ENM (typically 10–12 Å).

MATERIALS AND METHODS

We assume that the energy landscape around each state
(initial and final) is harmonic. To describe the transition
between the two states we must solve the Langevin
equation in the following energy landscape:

UðXÞ ¼
1

2
ðX� XiÞ

TQðX� XiÞ þ�E

for the left side of the transition state and

UðXÞ ¼
1

2
ðX� XfÞ

TPðX� XfÞ

for the right side of the transition state, where Q and P are
the Hessians around the initial states Xi and the final state
Xf, respectively, and iE accounts for a difference in
energy between the two states Xi and Xf.
Assuming an overdamped regime and following

Onsager and Machlup (13), the stochastic Langevin

equation is transformed into a deterministic differential
equation by asking for a minimum mechanical action of
the form S ¼

R
ðdX=dtþ @V=@XÞ2 dt. This leads to:

d2X

dt2
¼ QTQðX� XiÞ for t < t0

and

d2X

dt2
¼ PTPðX� XfÞ for t > t0

where we require continuity for both positions and
velocities at the crossing point t¼ t0.

An analytical solution can be found for both the left
and right sides using boundary conditions X(t¼ 0)¼Xi

and X(t¼ t0)¼X#, and X(t¼ t0)¼X# and X(t¼T)¼Xf,
respectively, by decomposing both Q and P into eigen-
states (normal modes) and solving each mode separately
(the null space corresponding to the three overall
translations and three overall rotations is treated sepa-
rately). Continuity of speed dX/dt is also required at the
crossing point t0 to fully specify the analytical solution. An
initial guess is made for t0, which is then progressively
refined numerically until U<(X(t0))¼U>(X(t0)), up to
machine precision; we find that this requires the use of all
3N normal modes (Franklin et al., in preparation).

In order to study both a simple and realistic model of
the system, we use the ENM based on a C-alpha (CA)
representation of the molecule, that captures well collec-
tive and large-scale amplitude movements which typically
occur in macromolecular transitions (7,20). The Energy
thus reads E ¼ 1=2k

P
ðijÞ ðdij � d0

ij
Þ
2 where the sum is

restricted to those pairs with an inter-atomic distance
less than Rc in the ground state (5). The spring constant k,
which sets the scale of the energy E, can be taken to be
different for the initial state (k<) and the final state (k>).
Also, it is possible to assign a much stronger elastic
constant (100k) for distances involving between consecu-
tive CAs, which should remain at 3.8 Å, except for the rare
cis-peptides bonds (21).

Protocol

A typical run of the program consists of the following
steps (Figure 1):

(i) Extract the CAs atoms from both the initial and final
states and superimpose them with Profit (http://
www.bioinf.org.uk/software/profit/index.html). For
nucleic acids, we would typically use three atoms per
nucleotide (P, C1’ and C4’).

(ii) Fit the experimental B-factors, if they are known, of
each form, to the computed <ir2>, to estimate
both k< and k>. The default is k<¼ k>¼ 0.1 kcal/
mol/Å2

(iii) Submit the trajectory job. The only physical para-
meter remaining to be chosen is iE, the energy
difference between the two states. In general iE is
unknown but of the order of a few kcal/mol and can
be refined in the following step of the procedure. The
length of the simulation T is fixed by the prescription
that Stot has reached a plateau. A few increasing trial
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values may be necessary to ensure this prescription,
which is usually met with T¼ 150–200. The number of
sampling points is arbitrary since the maximum
likelihood trajectory is obtained analytically so that
one can sample it at any arbitrary set of time
snapshots, at the user’s convenience.

(iv) Once a trajectory has been calculated, both Stot and
E# are examined: Stot to check for asymptotic
behavior and E# to compare with iG#

exp, if
available. Different values of iE [step (iii)] can be
tried to achieve the desired value of iG#

exp which is
related to the observed rate constant of the reaction.

(v) Once a satisfactory trajectory has been obtained, all
atom models for the transition state and possibly
each frame of the trajectory can be reconstructed
using online tools. In particular, all atoms can be
generated for proteins from CA-only coordinates by
first generating backbone atoms using a library of
fragments of the PDB of length 4 (22) and then
generating all sidechain atoms using the self-
consistent Mean Field method (23). This will
inevitably deform somewhat the CA positions,
usually within 0.5–0.7 Å. The whole procedure can
therefore be described as essentially coarse-grained,
producing trajectories for CAs only and then
building sidechains. This is in line with the descrip-
tion of the dynamics of proteins made earlier by
Hinsen and Kneller (24), which they describe as
essentially harmonic and where anharmonicity

enters in the rigid-body movement of side chains
(described here as rotamers).

One might argue that the reconstruction of all atoms
introduces some damage in the continuity of the
trajectory. An interpolation technique could be used to
restore this continuity, or, alternatively, these snapshots
could be used for ‘steered’ MD simulations using
harmonic restraints on the CA positions.

RESULTS

We tested the structural transitions studied in (25) for
which the root mean square distance (rmsd) between the
two forms is in the range of 3.0 Å to 15 Å. In all cases the
algorithm produced a solution that was subsequently
checked visually using PyMol (http://www.pymol.org) or
VMD (www.ks.uiuc.edu/Research/vmd) and with a post-
processing program that showed they were satisfying both
in terms of the absence of steric clashes and of the small
deviation of consecutive CA–CA bond lengths around the
ideal value of 3.8 Å (Table 1). This allowed in all cases the
reconstruction of all atom models for the transition states.
The largest computation was performed on citrate
synthase, a dimer of 852 CA atoms, for which it takes
about 2 h c.p.u. time on a 2.8GHz Pentium IV Linux
workstation. The same computation takes about 1min for
calmodulin (138 residues). We do not recommend
submitting jobs with files containing more than 1000
atoms. A couple of transitions were taken from (20), in
order to have a representative set of protein sizes: this
allowed to determine the power law of the c.p.u. time as a
function of size namely O(N3.6).
Particularly impressive was the ability of the program to

generate a continuous trajectory for calmodulin (in which
case the rmsd between the final and initial states is 15 Å),
for which a morphing technique (26) that interpolates all
intramolecular distances within Rc and recently imple-
mented on a web server by both this group (27) and ours
(28) required adjusting Rc by trial and error. Due to the
large-scale character of the transition, calmodulin dis-
played the largest deviations of CA–CA distances but this
did not prevent reconstruction of all atoms.
We now discuss in more detail the case of adenylate

kinase (rmsd of 7.1 Å between final and initial state),
which is a widely used and studied example of an induced-
fit mechanism in the field of simulating structural
transitions (8,10,11). We, as others, observe that the
closure of the LID domain occurs first and is nearly
completed once the rearrangement of the catalytic domain
begins. The transition state is located near the end of the
LID domain closure. This may be related to the
observation that a few low-frequency normal modes
suffice to describe the closure of the LID (25). There has
been some speculation that the transition is accompanied
by unfolding and ‘cracking’ due to the accumulation of
elastic strain at some points in the trajectory (10,11). Note,
however, that we use all 3N normal modes to describe the
transition, not just a handful of low-frequency ones
(10,11). To test this strain and cracking hypothesis we
calculated a Q1 vs Q2 plot for this transition, where Q(t)

Figure 1. Flow chart of the web site. The input consists of two PDB
files of one macromolecule in two different conformations, the
estimated energy difference between the two states, the ENM cutoff
(10–12 Å) and the elastic constants for the two states, which can be
estimated on-line. The returned output is the most probable trajectory
between the two states (loadable by PyMol) and the coordinates of the
transition state, its energy E# with respect to the initial state and
the value of the minimized action Stot in the trajectory.
Insert: One-dimensional representation of the shift on the crossing
point of the two harmonic curves when using different energy
differences between the two states, and when using an increasing
elastic constant for the end state.
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measures the fraction of native contacts at time t along
the trajectory, defined as pairs of atoms with dij<Rc, and
where the index 1 or 2 refers to the state that is considered
as ‘native’: 1 for the initial state and 2 for the final state
(Figure 2). We observe a clear decrease in Q1 in the first
phase while the increase in Q2 occurs in the very last steps
of the trajectory, once the transition state barrier has
been overcome. The plot clearly demonstrates the non-
linear character of the trajectory generated by our method.
The same kind of plot is also shown for the UMMS
method of Kim and colleagues (26,27), which always
wanders around the straight line joining state 1 (Q1(1)¼ 1,
Q2(1)<1) to state 2 (Q1(2)<1, Q2(2)¼ 1), by construc-
tion. On the contrary, the present method will avoid high-
energy regions and depart markedly from this kind of
linear trajectory. This is also demonstrated in the
energy plot of the transition path for both our method
and the UMMS method (Supplementary Figure S1),
which clearly shows that elastic energy is much better
in our case.
Another possibility is to plot Q’1(t)–Q’2(t) versus

Qcommon(t), i.e. the difference of the number of contacts
specific to each state vs the number of contacts seen in
both states, for each snapshot (9,11). It is then seen that
only about 5% of the common contacts are temporarily
lost during the transition (Supplementary Figure S2).
Finally, because the calculation is very rapid for

adenylate kinase, it is even possible to screen the effect
of mutations of each residue on the kinetics of the
transition: for each residue, in turn, we assign a different
elastic constant (10k) describing its interactions with its
neighbors, and we report the transition state energy of the
calculated trajectory (Supplementary Figure S3). This is a

new application analogous to the phi-values in protein
folding studies, allowing direct comparison with
experiments.

DISCUSSION

There exists several variants of the ENM that have also
been implemented by us, namely (i) the chemical bond

Table 1. Structural transitions for which a path has been calculated (20,25)

Name PDB Rmsd (Angstrom) # aa C.p.u. (mn) d(i, iþ 1) trans. state

Calmodulin 1K9K 4.52 89 <1 4.05 (0.55)
1K9P

Calmodulin 1CTR 15 138 1 4.66 (0.93)
1CLL

Dihydrofolate reductase 1RX2 1.22 160 1 3.80 (0.09)
1RX6

T4 178L 3.45 162 1 3.80 (0.11)
lysozyme 256L
Adenylate kinase 4AKE 7.1 214 2 3.97 (0.19)

1AKE
Glutamine binding 1GGG 5.3 225 2 3.87 (0.21)

1WDN
Ornithine binding 2LAO 4.7 242 2 3.87 (0.16)

1LST
DNA Pol 1BPX 2.8 326 6 3.78 (0.12)
beta 1BPY
Maltodextrin binding 1ANF 3.8 370 9 3.86 (0.126)

1OMP
Pol I 3KTQ 1.96 528 27 3.84 (0.36)
Taq 2KTQ
Pol I 1L3V 2.06 580 35 3.82 (0.12)
Bacillus 1LV5
Lactoferrin 1LFG 4.7 691 76 3.87 (0.16)

1CB6
Citrate synthase 5CSC 3 852 160 3.84 (0.21)

6CSC

Figure 2. Q1 versus Q2 plot for adenylate kinase transition (4AKE and
1AKE). Q1 (resp. Q2) is the fraction of native contacts (dij<Rc) as in
the initial form (resp. in the final form). The trajectory is identical,
within machine precision, if one exchanges the role of the initial and
final states. For comparison, the same plot is drawn for a trajectory
generated according to UMMS (26,27).

W480 Nucleic Acids Research, 2007, Vol. 35,Web Server issue



model (21), to take care of possible outliers in CA–CA
bond distances and (ii) a distance-dependent weighting
scheme for the spring constant as in Hinsen (29), who used
kij ¼ k� expð�d 0

ij
=R0Þ or Bahar and colleagues (30), who

used kij ¼ k� ð1=d0ijÞ
2. This has the effect of putting more

constraints to short distances, which are the most critical
ones (they should never come close to zero). Also, one
must mention the fact that the Langevin equation used
here has constant atomic friction coefficients (set to unity);
one way to use more realistic environment-dependent
friction coefficients is described in (24) and has also been
implemented by us, with qualitatively little effect on the
trajectory. The robustness of the trajectory with respect to
systematic variations of the k</k> ratio, on one hand, or
iE, on the other hand, has been checked (Supplementary
Figures S4 and S5).

The method works if the harmonic approximation for
the energy landscape around each state is valid. It would
not make any sense to generate a trajectory between two
states when it is known that there is an obligatory
intermediate state, just to see if this intermediate shows up
during the simulation; indeed, in this case, the harmonic
approximation would not be valid any more. However, we
note that the method can easily be generalized to an
energy landscape with three harmonic wells, leading to a
search for t0 to be conducted in a plane instead of a line.

The procedure presented here is quite general, and not
limited to proteins. In particular, we are interested in
looking at structural transitions occurring in nucleic acids,
both DNA and RNA. In both cases however, we still need
a method for generating a full atom model based on a
coarse representation of the molecule (for example, only
including P, C4’ and C1’ atoms for each base). We are
currently working on this problem.

CONCLUSION AND FUTURE WORK

In summary, we have presented a new method that
combines the action minimization formalism and the
ENM to generate trajectories between two known
structural states of a given macromolecule. The method
is exact if each state is experiencing a harmonic potential
and, contrary to other similar methods, does not resort to
numerical optimization methods such as Monte Carlo or
simulated annealing. It was tested on a large test set of
large amplitude structural rearrangements, involving
rmsds between the two forms of up to 15 Å. Extensive
comparisons with other methods were done in the case of
adenylate kinase, which is the most documented
example in this field, leading to the systematic use of Q1
versus Q2 plots to characterize the transition.

More tests and comparisons with experimental results
will be necessary to assess further the usefulness of the
method. This will be made possible by the present web
server, which allows experimentalists to look at possible
scenarios that can be easily visualized and checked with
PyMol or VMD for the structural transition they are
interested in.

We are planning to extend the method to the simulation
of a transition driven by an applied force (Franklin et al.,

in preparation), for which direct comparison with
single-molecule experiments will then be made possible.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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