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Abstract

An increasingly appreciated conundrum in the discovery of antibody drug conjugates

(ADCs) is that an antibody that was selected primarily for strong binding to its cancer target

may not serve as an optimal ADC. In this study, we performed mechanistic cell-based

experiments to determine the correlation between antibody affinity, avidity, internalization

and ADC efficacy. We used structure-guided design to assemble a panel of antibody

mutants with predicted Her2 affinities ranging from higher to lower relative to the parent anti-

body, Herceptin. These antibodies were ranked for binding via SPR and via flow-cytometry

on high-Her2 SKOV3 cells and low-Her2 MCF7 cells, the latter acting as a surrogate for low-

Her2 normal cells. A subpanel of variants, representative of different Her2-binding affinities

(2 strong, 2 moderate and 3 weak), were further screened via high-content imaging for inter-

nalization efficacies in high versus low-Her2 cells. Finally, these antibodies were evaluated

in ADC cytotoxicity screening assays (using DM1 and MMAE secondary antibodies) and as

antibody-drug conjugates (DM1 and PNU159682). Our results identified specific but weak

Her2-binding variants as optimal candidates for developing DM1 and PNU ADCs since they

exhibited high potencies (low to sub-nM) in high-Her2 SKOV3 cells and low toxicities in low-

Her2 cells. The 2 strong-affinity variants were highly potent in SKOV3 cells but also showed

significant toxicities in low-Her2 cells and therefore are predicted to be toxic in normal tis-

sues. Our findings show that pharmacological profiling of an antibody library in multiple bind-

ing and functional assays allows for selection of optimal ADCs.

Introduction

The efficacy of an ADC relies on numerous factors including characteristics of the ADC itself

as well as the biologic features of the target and tumor cell. Key factors include the binding

affinity of the antibody, internalization and trafficking of the ADC, transport and release of the
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drug from the endocytosed compartment to the cytosol, the cytosolic concentration and mode

of action of the drug [1, 2].

The commonly used payload drugs in ADCs are highly potent cytotoxic molecules. Some

examples are derivatives of calicheamicin (DNA targeting) and microtubule inhibitors such as

maytansine (i.e. DM1 and DM4) and auristatins (i.e. monomethyl auristatin E, MMAE). Off-

target platform-related toxicities are frequently seen for ADCs that incorporate these potent

drugs, largely due to premature drug release in the blood stream and subsequent systemic

exposure. The typical clinical manifestations seen with conventional ADCs containing aurista-

tins and maytansines are bone marrow toxicity and peripheral neuropathy [3, 4]. Furthermore,

on-target (off-tumor) toxicity, due to specific binding of an ADC to normal tissues expressing

low levels of target antigen, presents another formidable challenge and is not always predict-

able [5, 6]. One example is an early clinical trial with AML (acute myeloid leukemia) patients

treated with an anti-CD33 calicheamicin (gentuzumab ozogamicin, aka Mylotarg) [7]. Severe

bone marrow hypoplasia and myelosuppression (neutropenia) were observed and one patient

died. This was attributed to on-target binding of CD33 on the surface of myeloid progenitor

cells. Other examples are; bivatuzumab mertansine, which induced severe skin toxicities due

to binding to CD44v6 target on normal keratinocytes, and MEDI-547 (anti-Ephrin A2 recep-

tor antibody-auristatin) which caused significant bleeding and coagulation, requiring termina-

tion of clinical development of these ADCs [8, 9]. Toxicity concerns are further compounded

when using more potent anthracycline-based drugs such as PNU159682 which intercalate

DNA and can target non-dividing cells [10]. Hence, it is important to minimize these serious

side-effects and find the right balance between ADC potency and toxicity in order to achieve

the optimal therapeutic window.

Recent seminal reports have demonstrated that there is a significant interplay between anti-

body affinity, target density/avidity and antibody valency. Harms et al [11] used kinetic

computational models and flow cytometry measurements to evaluate the effect of different

EGFR target densities on the binding of anti-EGFR Fab and full-size antibodies (FSAs) on

cells. Strength of binding was shown to be strongly augmented by high target density/avidity.

Another group examined a panel of EGFR single-chain Fv (scFv) and Fab antibody fragments

that bind to the same EGFR epitope with varying affinities [12]. Binding measurements of the

respective monovalent scFv or Fab versus bivalent FSA versions to EGFR-expressing cells

showed a dramatic increase in apparent binding affinities (by 100- to 1000-fold) for the weak-

affinity Fabs/scFvs when converted to bivalent FSA formats. Large-magnitude changes in

apparent affinity due to avidity effects were observed in another study that tested the binding

of affinity variants of an anti-Her2 monoclonal antibody to Her2-expressing cancer cells [13].

Beyond cell surface binding, this above mentioned study also showed that both affinity and

rate of Her2 internalization dictate the intracellular distribution of anti-Her2 antibodies, thus

determining their catabolic fate.

More recently, target avidity was exploited in terms of developing better T cell-dependent

bispecific (TDB) antibodies. In this study, the strong contribution of target avidity for promot-

ing Her2 tumor selectivity was shown using anti-Her2/CD3 bispecific TBD constructs having

one arm comprised of a bivalent-Fab with a range of monovalent Her2 affinities [14]. Low

affinity TDBs showed cell surface binding and enabled selective killing of high-Her2 tumor

cells (SKBr3) while exhibiting no binding to, or killing of, low-Her2 cells (MCF7). High affinity

TBDs readily killed both cell types.

The above studies, which dealt with non-conjugated antibodies as therapeutics, convey the

importance of evaluating a wide affinity range and exploiting differential target density/avidity

effects at the cell surface. Considering that ADC targets are typically chosen due to differential

expression in tumor versus normal tissue, it follows that similar assessments should be
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incorporated upfront in any procedure for screening antibodies for their potential as ADCs.

Since high target density on the surface of a cancer cell has been shown to promote binding of

low-affinity antibodies, it is apparent that weaker antibodies should not be de-prioritized in

the early-phase ADC selection processes.

We proposed to develop a predictive in vitro screening approach to assess antibodies with

varying affinities for their potential as ADCs. Our method begins with the classification of

antibodies based on binding affinities and target avidity at the cell surface. This is followed by

assessments focused on the intracellular mechanisms required for ADC activities. Notably,

after binding to the cell surface, an ADC must internalize efficiently and traffic to the appropri-

ate cellular compartment (e.g. endosome, lysosome) for processing and drug release. Accord-

ingly, in this study candidate ADC antibodies were evaluated for internalization efficiency,

intracellular accumulation and cytotoxic potency.

As proof-of-principle, we applied our screening procedure to a rationally designed panel of

Herceptin variants ranging from high to low affinity for Her2. These antibodies were ranked

based on relative binding affinity to cells having high or low-Her2 densities and were classified

as strong, moderate or weak binders. Representative variants from each group were further

tested for internalization, followed by cytotoxicity testing with three drugs; DM1, MMAE and

PNU159682 (PNU). Our results demonstrate that weak binding antibodies, with affinity KDs

of ~70 nM or more, can exhibit significant ADC potencies in high-Her2 cancer cells while hav-

ing low toxicities in low-Her2 cells. In contrast, strong binding Her2 antibodies with affinity

KDs of ~1 nM or less exhibit high toxicities on both high- and low-Her2 cells, which may be

disadvantageous particularly in the context of very potent payload drugs such as PNU.

Results

Design of Herceptin Fab variants with a wide range of antigen binding

affinities

We set out to assemble a panel of about 20 mutational variants of Herceptin Fab that would

cover over 4 orders of magnitude in antigen binding affinity as indicated by the monovalent

dissociation constant, KD. It proved to be a challenge to find mutations that increased binding

affinity above that naturally occurring with Herceptin (KD of 0.5 nM) [15]. However, we iden-

tified a few variants with higher affinity and a large number of variants with a wide range of

weakened antigen binding affinities. Together, these variants enabled us to examine the prem-

ise that a weakened monovalent binding affinity, coupled with the avidity potential of bivalent

mAbs, would confer preferential targeting of cells overexpressing the antigen and thus lead to

reduced ADC toxicity on cells expressing a low level of antigen.

The panel included Herceptin Fab (termed Parent 1) and derived variants generated by

structure-based computational design. As well, a previously characterized Herceptin-derived

variant, bH1 Fab, which is a dual-action Fab (DAF) that binds both Her2 and VEGF, was

included. This phage-display-derived bH1 Fab, which we term Parent 2, is a variant of Hercep-

tin with a 4-amino-acid residues insertion in the CDR-L1 loop as well as a few point muta-

tions. It has a binding affinity to Her2 of 20 nM (40-fold weaker relative to Herceptin Fab)

[15].

Computational design was initiated with the Her2-complexed crystal structures of Parent 1

and Parent 2 aiming to generate variants with altered antigen binding affinities that can be

binned into 4 classes: Strong, Wild-Type-like (WT), Moderate and Weak. In this classification,

Parent 1 belongs to the WT class whereas Parent 2 (40-fold increase in KD, equivalent to 2.15

kcal/mol increase in binding free energy) is placed in the Moderate class. Table 1 lists the pre-

dicted binding affinity ranking and classes for an additional 18 mutants derived from Parent 1
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(15 variants) and Parent 2 (3 variants). According to these structure-based computational

predictions, the distribution in the Strong, WT, Moderate and Weak classes is 4, 4, 5 and 7 var-

iants, respectively. This meets the design criteria for the Fab panel. No significant destabiliza-

tion of Fab folding was predicted for any of the designed variants. One or more of 7 amino-

acid positions located in the CDR loops were utilized to derive the variants originating from

Parent 1 (Fig 1A upper panel) and 2 positions for the variants derived from Parent 2 (Fig 1A

bottom panel). Overall, mutagenesis targeted only 4 sites in either the heavy chain (D31, Y57,

D98 and G99) or the light chain (D28, N30, F53 and Y92) of the Fab.

Various molecular mechanisms were engaged in the design of mutants in these affinity clas-

ses. The affinity-improved variants in the Strong class, which originated from an ADAPT

affinity maturation campaign of Parent 1 [16], are double- and triple-point mutants that elimi-

nate electrostatic repulsions with D586 and E598 of Her2 (Fig 1B upper panel) by replacing

some negatively charged residues of Parent 1 with non-polar or positively charged residues

(L-D28K, H-D31K/M, H-D98F). Because single-point mutants at these Fab positions led to

smaller affinity-strengthening effects they were placed in the WT class (Table 1).

The eight affinity-weakened variants in the Moderate and Weak classes derived from Parent

1 were based on a completely distinct strategy (Fig 1B middle panel). This relied on removing

a few favorable non-polar packing contacts between one or more aromatic residues of the Fab

Table 1. Structure-based computational design of the Fab-mutant set with varied binding affinities to Her2 ectodomain.

ID Mutations Relative binding affinity (Gbind) b Consensus score c Predicted class d

FoldX Rosetta SIE-Scwrl

SUBSET 1
12–9 H-D98F, H-D31K, L-D28K -1.60 -0.92 -0.83 -1.10 Strong

11–9 H-D98F, H-D31M, L-D28K -1.12 -0.90 -0.61 -0.86 Strong

11–1 H-D98F, H-D31K -0.96 -0.44 -0.81 -0.79 Strong

12–1 H-D98F, H-D31M -0.60 -0.42 -0.60 -0.59 Strong

10–1 H-D98F -0.23 -0.48 -0.26 -0.33 WT

2–9 L-D28K -0.43 -0.47 0.06 -0.21 WT

2–1 Parent 1 (Herceptin-Fab); KD = 0.5 nM a 0.00 0.00 0.00 0.00 WT

2–4 L-Y92A 0.38 1.73 0.70 0.97 WT

7–1 H-Y57A 2.07 1.07 0.49 1.07 Moderate

2–3 L-F53N 1.92 1.88 0.39 1.22 Moderate

2–6 L-N30D 3.09 0.86 1.57 1.84 Moderate

2–5 L-F53N, L-Y92A 2.07 3.61 0.78 1.97 Moderate

7–4 H-Y57A, L-Y92A 2.26 2.81 1.69 2.27 Weak

7–3 H-Y57A, L-F53N 3.98 2.95 0.87 2.28 Weak

7–6 H-Y57A, L-N30D 5.18 1.93 2.06 2.91 Weak

7–5 H-Y57A, L-F53N, L-Y92A 4.30 4.68 1.65 3.28 Weak

SUBSET 2
2–13 Parent 2 (bH1-Fab); KD = 20 nM a 0.00 0.00 0.00 0.00 Moderate

15–13 H-G99D 7.71 2.11 0.24 1.37 Weak

16–13 H-G99R 9.44 13.73 -0.93 1.47 Weak

14–13 H-D98W, H-G99D 10.19 1.77 0.31 1.71 Weak

a Data from Ref. [15]
b Calculated data with indicated methods, in kcal/mol units.
c Average of Z-scores for indicated methods, relative to respective Parent, in standard deviation (SD) units (see Methods section).
d Consensus score increments between classes are of +1 SD, except for the Strong class with a -1/2 SD increment, relative to respective Parent.

https://doi.org/10.1371/journal.pone.0226593.t001
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and several Pro residues of Her2 (P557, P571, P603 and P605). Size-reduction mutations at

three Fab positions (L-F53N, L-Y92A, H-Y57A) led to mild reductions of Fab binding affinity

with this Pro-rich region of the antigen’s protein-protein interface. Double- and triple-point

combinations of these mutations had larger effects than individual single-point mutants

(Table 1).

The three affinity-weakened variants in the Weak class derived from Parent 2 (itself in the

Moderate class, see Table 1) also implicated a distinct mechanism. For these variants, a combi-

nation of size increase in the CDR-H3 loop of the Fab (H-G99D/R, H-D98W) and modulation

of electrostatic interactions with the charged residue D570 of Her2 (Fig 1B bottom panel) were

utilized in order to only mildly weaken the affinity of Parent 2.

SPR measurement of Her2 binding affinities and ranking of Herceptin full-

size antibody variants

Full-size antibody (FSA) versions of the 20 variants were produced and then analyzed via SPR

to determine Her2 binding affinities. Prior to our assays, we also monitored the quality of the

FSA samples via size exclusion chromatography (SEC) to ensure purity and rule out biophysi-

cal aberrations (i.e. aggregation) that could cause artifacts (S1 Fig). Capturing the antibody on

an immobilized anti-Fc antibody surface, followed by flowing soluble Her2 ectodomain in a

dilution series, allowed us to measure monovalent Her2 binding. Table 2 and Fig 2A show the

SPR-based affinity KD values and the ranking of variants from lowest to highest KD. The vari-

ants were classified into three main groups; WT/strong (KD = 0.5–2.5 nM), moderate (KD =

2.5–25 nM) and weak (KD > 25 nM) Her2 binders (Fig 2A). Most variants predicted computa-

tionally to be moderate or weak binders (Table 1) fell into their predicted classes when

Fig 1. Structure-based computational design of a Fab mutant set with varied binding affinity to Her2 ectodomain.

(A) Structural overview of the parent antibodies Herceptin and bH1 binding the same epitope of the Her2 antigen.

Crystal structures with PDB codes 1N8Z and 3BE1 are used for Herceptin-Fab/Her2 and bH1-Fab/Her2 complexes,

respectively (see Materials and methods). Measured Her2 binding affinities of the corresponding Fab fragments are

from Bostrom et al. [15] Only the antigen-binding Fv domains of the antibodies are shown as ribbons colored cyan

and magenta for the heavy and light chains, respectively. The epitope of the Her2 antigen is rendered as black ribbon

inside a translucent gray molecular surface. Mutated positions of the antibodies are shown as CPK models and labeled.

The position of a four-residue insert in the CDR-L1 of bH1 relative to Herceptin is also indicated. (B) Molecular

details of interactions at the mutated positions of selected antibody mutants. Each sub-panel includes an overlay of

molecular models for several antibodies (mutants vs. parent). Mutated antibody residues are labeled and shown as

sticks with C atoms colored cyan and magenta for the heavy and light chains, respectively. Her2 residues interacting

with mutated Fab positions are shown as stick with white C atoms and labeled in italics.

https://doi.org/10.1371/journal.pone.0226593.g001
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categorized by SPR. The exceptions are 7–1 and 2–3 which were predicted to be moderate but

are WT/strong binders, and 7–3 and 7–4 which were predicted to be weak but are moderate

binders. Furthermore, the variants predicted to be strong binders (12–9, 11–9, 11–1, 12–1)

were not distinguished via SPR from WT-like binders. This may be due to the fact that high

affinities in this range may exceed the ability of SPR to distinguish between very slow off-rates.

Overall, there was generally a good correlation between the predicted affinity differences, and

the affinity differences determined by SPR.

Fig 2B and Table 3 show representative Her2 binding sensorgrams and binding kinetic val-

ues, respectively, for selected FSA variants from each class. Overall the on-rate for every variant

is similar to WT ranging only 5–fold from 6.7 × 106 to 2.7 × 105 M-1s-1. As mentioned above,

the variants predicted to be strong binders (12–9, 11–9) were not distinguished via SPR from

WT, possibly due to the fact that these antibodies exhibit very slow off rates (Table 3) that

approach the koff limit (10−5 s-1) of the SPR instrument used here (Biacore T200, [17]). Nota-

bly, moderate variants 2–5 and 2–13 show faster off-rates and ~30-40-fold higher KDs, com-

pared to WT. Even faster off-rates are apparent for weak variants 7–5, 14–13 and 16–13 and

KDs between ~130-800-fold higher than WT.

Flow cytometry binding assessments of Herceptin variants panel in cells

with high versus low Her2 density

In the following studies, cell lines having very low (MCF7), low (JIMT-1) and high (SKOV3)

Her2 densities were used to further screen the mutant panel and distinguish binding affinities,

Table 2. Antibody variants ranked according to monovalent Her2 binding affinities measured by SPR.

Binding strength Variant Mutations Her2 binding of FSA c

KD [nM] a SD b

WT/Strong 10–1 H-D98F 0.51 0.07

2–1 Parent 1 (Herceptin-Fab) 0.52 0.02

11–1 H-D98F, H-D31K 0.64 0.16

2–9 L-D28K 0.76 0.08

11–9 H-D98F, H-D31M, L-D28K 0.77 0.07

12–1 H-D98F, H-D31M 1.01 0.12

12–9 H-D98F, H-D31K, L-D28K 1.06 0.13

7–1 H-Y57A 1.60 0.01

2–3 L-F53N 2.10 0.11

2–4 L-Y92A 2.32 0.13

Moderate 2–6 L-N30D 6.85 1.36

2–13 Parent 2 (bH1-Fab) 14.74 0.17

7–3 H-Y57A, L-F53N 16.12 0.33

7–4 H-Y57A, L-Y92A 17.97 0.64

2–5 L-F53N, L-Y92A 22.63 1.11

Weak 7–6 H-Y57A, L-N30D 43.24 2.07

7–5 H-Y57A, L-F53N, L-Y92A 68.08 16.93

14–13 H-D98W, H-G99D 252.75 45.04

15–13 H-G99D 297.75 73.19

16–13 H-G99R 416.70 n = 1

a Average values, and
b standard deviations, from duplicate runs except for variant 16–13.
c Monovalent binding of Her2 ectodomain to FSA variants immobilized on the SPR surface.

https://doi.org/10.1371/journal.pone.0226593.t002
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including avidity effects, using flow cytometry of live cells. Table 4 shows the relative Her2

densities as determined by monovalent binding of Herceptin Fab on these cells, which range

from 1,800 to 200,000 receptors per cell. In cell binding assays, we predicted that the lower

receptor density of Her2 on MCF7 or JIMT-1 cells should minimize avidity effects and allow

assessment of monovalent binding, whereas the higher Her2 density of SKOV3 cells may

reveal avidity effects as evidenced by relative apparent binding affinities (KD) and maximal

binding levels (saturation binding levels, Bmax = maximum Median Fluorescence Intensity

(MFI)). Jurkat cells are virtually Her2 negative and provide a good negative control to evaluate

the Her2 specificity.

Table 5 and S2 Fig panels A-D show the apparent binding KDs and maximum binding lev-

els (Bmax) for the antibody variant classes in the low-Her2 density MCF7 and high-Her2 den-

sity SKOV3 cells, as determined by flow cytometry. For ease of comparison, the order of

variants in Table 5- corresponds to the SPR ranking order shown above in Fig 2A. Four of the

5 weak variants (7–5, 14–13, 15–13 and 16–13) exhibited poor binding in MCF7 cells with

Fig 2. SPR ranking of FSAs and sensorgrams. (A) SPR monovalent KD measurements and classification of Herceptin

antibody variants. The asterisks indicate variants selected for further analysis. (B) Representative sensorgrams from

WT/Strong (top), Moderate (middle) and Weak (bottom) variant classifications. The red line indicates the fit modelled

to a 1:1 interaction with Her2.

https://doi.org/10.1371/journal.pone.0226593.g002
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their KDs only being approximated (� 200 nM). In MCF7 cells, the apparent cell-binding KDs

for the moderate Her2 binders were significantly higher (range = 0.47–0.87 nM) compared to

WT/strong binders (KD range = 0.02–0.52 nM). Notably, variants 11–9 and 12–9, computa-

tionally predicted as the strongest Her2 binders, showed the lowest apparent KDs (0.02 and

0.04 nM, respectively) compared to the other binding variants. Overall, scanning the classes of

Her2 binding variants from WT/strong to weak (left to right, S2 Fig panel A), the progressive

trend is an increase in KD.

In the high-Her2 SKOV3 cells, WT Herceptin (variant 2–1) exhibited a slightly weaker

binding affinity relative to that observed in MCF7 cells (1.7 nM versus 0.4 nM) (Table 5).

Importantly, the binding of weak variants 7–5, 14–13 and 15–13 on SKOV3 cells significantly

improved compared to MCF7 cells, with KDs ranging between 2.8–6.4 nM (versus� 200 nM

on MCF7 cells). The weakest variant, 16–13, also bound better to SKOV3 cells compared to

MCF7 cells. This suggests that, on high Her2 density SKOV3 cells, avidity promotes cell sur-

face binding of the weak antibodies.

Based on in silico predictions and the SPR and flow cytometry screens, the following sub-

panel was selected as representative of the different binding classes: strong (12–9, 11–9), mod-

erate (2–5, 2–13) and weak (14–13, 7–5, 16–13). These candidates were further analyzed in

competitive cell-binding, internalization, and ADC assays, and were benchmarked against WT

Herceptin (2–1).

Table 3. Her2 binding kinetics of selected antibody variants measured by SPR.

Fab class Variant Her2 binding of FSA c

kon
a

[105M-1s-1]

koff
a

[10-4s-1]

KD
a

[nM]

KD SD b [nM]in silico SPR

Strong WT/Strong 11–9 1.00 0.77 0.77 0.07

Strong WT/Strong 12–9 0.66 0.70 1.06 0.13

WT WT/Strong 2–1 2.14 1.12 0.52 0.02

Moderate Moderate 2–13 1.00 7.41 14.74 0.17

Moderate Moderate 2–5 2.68 60.80 22.63 1.11

Weak Weak 7–5 1.60 154.00 68.08 16.93

Weak Weak 14–13 0.78 96.80 252.75 45.04

Weak Weak 16–13 1.20 499.00 416.70 n = 1

a Average values, and
b standard deviations, from duplicate runs except for variant 16–13.
c Monovalent binding of Her2 ectodomain to FSA variants immobilized on the SPR surface.

https://doi.org/10.1371/journal.pone.0226593.t003

Table 4. Relative Her2 receptor levels on cells determined via flow cytometry.

Cells MFI a % Her2b Molecules/cell c

SKOV3 7280 100.0 200,000

JIMT1 400 5.5 11,000

MCF7 68 0.9 1,800

Jurkat 13 0.2 400

a Mean fluorescence index determined by cell binding of WT-Herceptin-Fab + AlexaFluor488-(Fab)2 secondary.
bHer2 percentage is based on assumed 1:1 binding of Herceptin Fab. On high density Her2 cells (e.g. SKOV3) this

may be underestimated due to crosslinking of Fabs by AlexaFluor488-(Fab)2.
c Value based on calculated number of molecules in SKOV3 cells (derived from Ref. [18]).

https://doi.org/10.1371/journal.pone.0226593.t004
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Cell-binding behavior of selected candidates

Fig 3A and 3C show binding curves for the 8 selected antibodies in low-Her2 MCF7 and high-

Her2 SKOV3 cells, respectively, as determined by flow cytometry. Synagis antibody (aka Pali-

vizumab), which is directed against an antigen encoded by respiratory syncytial virus (RSV),

was included as an IgG1 isotype, negative control to assess non-specific binding. For Her2

binders 11–9 and 12–9, the last 1 or 2 points were above the WT binding plateau in MCF7

cells (>1 nM antibody concentration), likely due to some non-specific binding on this cell line

at the high concentrations, and were excluded from the generated curves. The curves were

used to determine the binding affinity KDs and Bmax values reported in Table 5. The binding

classes and KD values in MCF7 cells are summarized in Fig 3B. Together, Fig 3A and 3B illus-

trate the clear distinction between the different classes of Her2 binders on MCF7 cells. Strong

variants 11–9 and 12–9 exhibit similar binding affinities (KD = 0.02 and 0.04 nM, respectively)

while moderate variants 2–5 and 2–13 have affinities approximately one order of magnitude

lower and are similar to WT (KD range ~ 0.3–0.9 nM). The weak variants bind poorly (KDs are

greater than 200 nM and cannot be determined accurately for the concentration range of anti-

body used in the study).

In contrast to MCF7 cells, and as expected for higher avidity being exhibited by SKOV3

cells, the KDs for most of the variants (from strong to weak) fall into a similar range of apparent

affinity (KD ~ 1–6 nM) (Fig 3C). Noticeably, only the weakest variant 16–13 stands out from

the others, with a KD greater than 200 nM (Table 5). In SKOV3 cells, there is an apparent

decrease in the Bmax levels for the weaker variants compared to WT and strong variants

Table 5. Binding parameters KD and Bmax determined from flow cytometry.

FSA class

(based on SPR & flow cytometry)

Variant MCF7 cells SKOV3 cells

Bmax [MFI] KD [nM] Bmax [MFI] KD [nM]

WT-similar 10–1 697 0.28 26698 1.26

WT 2–1 668 0.36 27418 1.67

WT-similar 11–1 710 0.20 26888 1.02

WT-similar 2–9 746 0.43 26946 1.29

Strong 11–9 700 0.02 28223 0.80

WT-similar 12–1 644 0.19 27497 0.98

Strong 12–9 763 0.04 32350 0.90

WT-similar 7–1 673 0.52 27121 2.27

WT-similar 2–3 636 0.30 27790 1.95

WT-similar 2–4 656 0.39 27379 1.98

Moderate 2–6 588 0.51 26948 2.58

Moderate 2–13 644 0.87 26549 2.41

Moderate 7–3 527 0.67 26546 2.34

Moderate 7–4 539 0.47 27027 2.41

Moderate 2–5 532 0.69 26561 1.98

Weak 7–6 503 0.95 26361 3.16

Weak 7–5 455 594 a 21903 3.50

Weak 14–13 NR 200 a 21950 2.76

Weak 15–13 260 a 293 a 20420 6.42

Weak 16–13 NR 2075 a 18072 a 289 a

a Approximated value.

NR: not reached.

https://doi.org/10.1371/journal.pone.0226593.t005
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(Fig 3C and S3 Fig panel B), suggesting differences in their engagement of Her2 receptors at

the cell surface (see the Discussion section).

In the cell binding assays presented so far, it is possible that, in the case of weak binders

with fast off-rates, the washing procedure may have unintentionally removed some of the

bound antibody. In order to measure relative binding strengths of the mutants in a manner

that is less sensitive to fast off-rates, we performed competitive binding. This assay measures

the ability of variant antibodies to compete with fluorescently-labeled WT antibody for bind-

ing to SKOV3 cells. Increasing concentrations of variant antibody were combined with a

constant subsaturating amount of fluorescently-labelled WT. The sample mixture was then

added to SKOV3 cells, incubated a 4˚C to allow surface binding and cells were subsequently

analyzed by flow cytometry to measure the effect on surface-bound fluorescence signal. S4

Fig shows the competition binding curves and respective IC50s for each variant antibody, as

compared to WT (homologous binding) and Synagis controls. Strong binders 12–9 and 11–9

both competed more strongly for binding than the WT control. Moderate binders 2–5 and

2–13 competed less strongly than the WT control. Weak binders 7–5 and 14–3 competed

even less strongly, with 16–13 appearing as the weakest. The competition IC50s reveal a clear

discrimination amongst the Her2 binding antibody classes in accord with the increased com-

petitive binding strengths of the variant antibodies. Together these results confirm the rank-

ing order of the chosen candidate variants and designated classifications. In addition, the

ability of these antibodies to compete with WT Herceptin (2–1) for binding to Her2 on

SKOV3 cells verifies that their mutated residues did not alter specificity for their shared Her2

epitope.

Fig 3. Saturation binding curves and apparent binding affinities (KDs) of selected antibody variants in low-Her2

(MCF7) and high-Her2 (SKOV3) cells, as determined via flow cytometry. (A, B) MCF7 cells. (C, D) SKOV3 cells.

https://doi.org/10.1371/journal.pone.0226593.g003
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Internalization screens of candidate antibodies using high content imaging

To assess the contribution of Her2 binding affinity on cell internalization, endocytosed anti-

body was detected using anti-human IgG secondary antibody labelled with pH-sensitive dye

pHAb and quantified using high-content imaging methodology. This dye emits a strong fluo-

rescence signal in the low pH environment in endosomes and lysosomes but not at neutral pH

(pH ~7) exterior to the cell. In this indirect assay, increasing concentrations of antibody were

combined with pHAb secondary antibody and then the mixture was added to high-Her2

SKOV3 cells in 96-well plate format. The cells were incubated at 37˚C for 18 h to allow for

internalization, followed by detection of fluorescence using an ImageXpress imager. This

method indirectly measures the total intracellular accumulation of internalized antibody over

time.

The top of Fig 4A shows the pHAb fluorescence signals in SKOV3 cells treated with the dif-

ferent antibody variants. Shown are duplicate well-view images of cells at selected doses (2 and

6 nM) from the concentration series. The bottom of Fig 4A shows representative, processed

images showing antibody fluorescence (yellow) and cell nuclei (blue, Hoechst stain). Imaging

software identifies and quantifies fluorescence signals from small punctate objects, which rep-

resents internalized antibody. This is measured as a total integrated Fluorescence Intensity

which is normalized to the nuclear count (FI/nucleus). Fig 4B shows dose-dependent, internal-

ization response curves for the mutants in SKOV3 cells. Internalization efficiencies derived

from these curves (measured as EC50, concentration at which the amount of internalized anti-

body is 50% relative to the maximum), are summarized in Fig 4C and S1 Table.

The internalization curves for strong (12–9, 11–9) and moderate variants (2–5, 2–13)

appear to be distinct from each other (Fig 4B). Noticeably, internalization levels are higher at

every dose for strong Her2 binders, compared to the moderate and WT antibodies. Neverthe-

less, internalization EC50s of strong and moderate variants are similar to WT (EC50 range =

0.41–1.08 nM, Fig 4C). In contrast, internalization of the weak variants (14–13, 7–5, 16–13) is

less efficient (EC50 range ~2–5 nM) although maximum accumulated levels after 18 h are simi-

lar compared to moderate and WT Her2 binders (~4 × 106 integrated FI/nucleus, Fig 4B). Fig

4D compares the fluorescence levels between the different variants at 2 selected doses (2 and 6

nM) that are typically below the target-independent toxicity IC50s normally observed for irrel-

evant ADCs in an ADC cytotoxicity assay (e.g. Synagis-DM1 IC50 ~ 40 nM). At these effica-

cious doses, the level of internalized antibody correlates directly with binding strength of the

mutants.

To validate our indirect internalization screening results, which used a pHAb-labelled sec-

ondary antibody, we next performed direct internalization in SKOV3 cells using antibody vari-

ants directly conjugated to pHAb. Following conjugation, the dye/antibody ratios (DARs)

were similar between the variants (~1.4–2.3 dye molecules/antibody) and sample aggregation

was checked via SEC (> 93% monomer content, S2 Table). It should be noted that image

acquisition parameters were adjusted according to the lower background signal and a wider

dynamic range was achieved in this direct assay, compared to the indirect assay.

Fig 5A shows DAR-normalized, internalization curves for pHAb-antibody variants in

SKOV3 cells treated at 37˚C for 18 h. Fig 5C, left panel, and S1 Table summarize the EC50s

derived from these curves. The wider dynamic range allowed us to distinguish between the

EC50s of strong/WT versus moderate and weak Her2-binding antibody classes more readily

than observed in the indirect internalization screen (compare direct, Fig 5C, with indirect,

Fig 4C).

We next attempted to assess Her2 avidity effects on internalization of antibody variants by

comparing SKOV3 versus MCF7 cells. However, in both direct and indirect internalization
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Fig 4. Internalization of antibody variants in SKOV3 cells as measured using indirect detection by pHAb-

secondary antibody and high content imaging. (A) Well-view images of SKOV3 cells treated with the indicated

variant antibody plus pHAb-labelled secondary antibody at 37˚C for 18 h (top panel). 2nd = secondary antibody alone,

Synagis = IgG1 control. The bottom panel shows representative processed images (yellow = antibody; blue = nuclei).

(B) Internalization dose response curves, plotting integrated fluorescence intensity/nucleus versus Log10 concentration

of antibody. (C) Internalization EC50s (concentration at which the amount of internalized antibody is 50% relative to

maximum accumulation) of variants derived from dose response curves. (D) Intracellular fluorescence intensities at

selected concentrations of antibody (2 and 6 nM).

https://doi.org/10.1371/journal.pone.0226593.g004
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assays, fluorescence signals for moderate and weak mutants were not sufficiently above back-

ground in MCF7 cells, likely due to their low Her2/binding levels (S5 Fig). We decided to use

JIMT-1 cells, which have Her2 levels that are low, but are ~6-fold higher than in MCF7 cells

(Table 4). In contrast to SKOV3 cells, in JIMT-1 cells the direct internalization curves for mod-

erate variants 2–5 and 2–13 were well separated from strong variants and WT (Fig 5B), i.e.

internalization efficiencies of the moderate Her2 binding variants were markedly lower than

strong variants and WT (by ~ 60-370-fold, Fig 5C, right panel, S1 Table). Internalization for

the weak binding variants in JIMT-1 cells was very low and not measurable.

Fig 5. Internalization in SKOV3 and JIMT-1 cells as measured by direct detection of pHAb-labelled antibody

variants and high content imaging. Internalization dose response curves of variants in (A) SKOV3 cells and (B)

JIMT-1 cells, following treatment with antibody at 37˚C for 18 h. (C) Internalization EC50s of variants.

https://doi.org/10.1371/journal.pone.0226593.g005
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Together, our binding and internalization results indicate that high Her2 density and avid-

ity at the cell surface greatly improves Her2 binding and internalization of moderate variants

to levels approaching that of WT Herceptin. Weak variants also bind better when Her2 den-

sity/avidity is high and this promotes internalization, although the levels of internalized anti-

bodies are less than for WT and moderate variants. Strong mutants always bind well and

internalize efficiently, independently of avidity.

Drug-conjugate screens of antibody variants in cells with different Her2

densities

The antibody variants were next evaluated for ADC potential using an indirect ADC cytotoxic-

ity assay, comparing activities in SKOV3, JIMT-1 and MCF7 cells and using two different

drugs; DM1 and MMAE. MCF7 cells were used as a surrogate for ‘normal’ low-Her2 tissue

cells and an indicator of potential ADC toxicity [19]. We compared MCF7 and JIMT-1 cells in

order to explore possible thresholds of Her2-mediated avidity. We wished to determine

whether the slightly higher Her2 levels on JIMT-1 cells might be sufficient to promote ADC

activity of the weaker variants, as suggested above in our internalization data with JIMT-1

cells.

Control Her2-negative Jurkat cells were first tested to assess for Her2-specific versus non-

specific ADC effects. In the indirect ADC assay, increasing concentrations of antibody variant

complexed with DM1-conjugated secondary antibody was added to cells in a 384-well plate

format, followed by incubation at 37˚C for 5 days. DM1 drug alone was also tested as a positive

control. Cell viability was measured via ATP detection using Cell Titer-Glo as a readout. In

Jurkat cells, no cytotoxicity was detected up to 10 nM for any of the antibody variants, indicat-

ing that the ADC responses reported below in SKOV3, JIMT-1 and MCF7 cells are indeed

Her2 specific (S6 Fig). Only the active DM1 drug control resulted in significant cytotoxicity in

the sub-nM range.

S7A–S7C Fig shows growth inhibition curves from the secondary-DM1 ADC screening

assay for antibody-treated SKOV3, JIMT-1 and MCF7 cells, plotted as % surviving fraction

(relative to non-treated cells) versus antibody concentration. The DM1 ADC IC50s derived

from these curves are summarized in S8 Fig panels A-C and Table 6. In SKOV3 cells, the

moderate and weak variants all show lower potencies (IC50 range = 0.022–0.106 nM) com-

pared to either WT Herceptin (2–1; IC50 = 0.004 nM) or the direct DM1-conjugated Herceptin

control (T-DM1; IC50 = 0.003 nM). In contrast, the strong variants are highly potent (IC50

range = 0.0001–0.0004 nM), exhibiting IC50s approximately one order of magnitude lower

than WT. The ADC potencies for all the variants are well above background, as determined by

the isotype antibody control (Synagis; IC50 = 4.5 nM).

In the DM1 ADC screen with JIMT-1 and MCF7 cells, the strong variants again exhibited

the highest potencies (low nM), that were ~2-5-fold more potent than WT and moderate anti-

bodies. Nevertheless, the DM1 potencies for WT and moderate variants were slightly (2-

3-fold) stronger than the irrelevant antibody control (Synagis) background in these low-Her2

cells (Table 6, S8B and S8C Fig). In contrast, in most cases the DM1 potencies for the weak

antibodies were closer or identical to that seen with the irrelevant antibody control (Synagis)

background in these low-Her2 cells.

A similar relative ranking of the antibody variants is observed between the DM1 and

MMAE screens in the high-Her2 SKOV3 cells (compare DM1 and MMAE, S8 Fig panels A

and D, respectively). Similar to DM1, with MMAE the strong variants showed the highest

potencies in SKOV3 cells (MMAE IC50s ~ 0.01 nM) and moderate and weak variants also

showed significant potencies (MMAE IC50 range ~ 0.1–0.2 nM). In the MMAE screen with
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JIMT-1 and MCF7 cells the moderate and weak (and WT) antibodies all showed low potencies

(majority > 10 nM, S8E and S8F Fig, Table 6). These results indicate that with MMAE the WT

antibody and all the weaker Her2 binding variants showed only low, background toxicities in

JIMT-1 and MCF7 cells, hence they are not likely to exibit target-dependent toxicity with this

drug in low-Her2 tissues.

In order to validate the ADC activities of the variants seen in our ADC screens and the

advantage of Her2 avidity-mediated selectivity for SKOV3 cells, we performed ADC assays

using antibodies directly conjugated to two different drugs and linkers; SMCC-DM1 and the

highly potent vc-PNU159682 (PNU). It should be noted that SPR-based assessments of the

drug-conjugated antibodies (S3 Table) indicated that Her2 binding of variant 12-9-DM1 was

significantly impaired, likely due to amine/drug-coupling to one or both of the two substituted

lysines within the binding site of this particular mutant (Table 1). Consequently, 12–9 was not

included in our direct ADC assays. The drug-conjugated antibodies were tested for their rela-

tive cytotoxic potencies in SKOV3 cells versus JIMT-1 and MCF7 cells (Fig 6A–6C, Table 7, S9

Fig). In the direct ADC assay with DM1-conjugated variants in SKOV3 cells, the variants dif-

fered as predicted from the above binding, internalization and indirect ADC assays, having

IC50s that ranged from 0.003 to ~ 8 nM (Fig 6A, Table 7, S9 Fig panel A). However, in the

low-Her2 JIMT-1 and MCF7 cells, the potencies of the DM1-conjugated variants could not be

distinguished from the control Synagis-DM1 (S9 Fig panels B and C), perhaps due to over-rid-

ing, non-target mediated ADC uptake by pinocytosis. We proposed that we would see higher

on-target potency in the low-Her2 cells if the variants were coupled to a stronger payload, such

as PNU, and this would enable separation between the specific versus non–specific effects.

Fig 6, panels A and B show the IC50s for the DM1 and PNU conjugated antibodies, respec-

tively, in SKOV3 cells. The rank orders of the DM1 and PNU antibodies, based on potency,

were similar and coincided with that observed in the indirect conjugated-DM1 ADC screen

using SKOV3 cells. As previously seen in the internalization assays, the relative potencies

between the different variant classes were more clearly separated for the directly conjugated

antibodies compared to the ADC screen using a drug-conjugated secondary antibody (com-

pare direct, Fig 6, panels A and B, with indirect, S7 Fig panel A). This is likely due to the addi-

tional avidity effect caused by the secondary antibodies and this appears more pronounced on

Table 6. Potencies of antibody variants indirectly conjugated to the DM1 and MMAE cytotoxic drugs.

FSA class Variant DM1 MMAE

SKOV3 JIMT1 MCF7 SKOV3 JIMT1 MCF7

IC50

[nM]

Fold potency a IC50

[nM]

Fold potency a IC50

[nM]

Fold potency a IC50

[nM]

Fold potency a IC50

[nM]

IC50

[nM]

Strong 12–9 0.0004 12200 1.3 14 3.1 4 0.014 7475 0.1 0.5

Strong 11–9 0.0001 37500 6.7 3 3.0 5 0.008 13149 0.2 0.4

WT 2–1 0.0040 1011 6.2 3 7.8 2 0.056 1855 27.0 48.3

Moderate 2–5 0.0220 201 8.7 2 8.1 2 0.107 965 24.4 20.6

Moderate 2–13 0.0210 215 7.4 3 8.2 2 0.078 1322 10.3 35.6

Weak 14–13 0.0250 182 16.2 1 22.1 1 0.095 1092 11.6 3.4

Weak 7–5 0.0340 132 15.7 1 5.6 2 0.204 509 10956.0 32.4

Weak 16–13 0.1060 42 16.3 1 14.6 1 0.173 598 42.6 84.1

T-DM1 0.0030 1668 4.9 4 17.5 1 ND ND ND ND

Synagis 4.5040 1 18.7 1 13.9 1 103.600 1 0 0

a Fold potency = IC50 Synagis / IC50 Variant.

ND: not determined.

https://doi.org/10.1371/journal.pone.0226593.t006
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weaker variants than for WT, moderate or stronger Her2 binders (compare fold-potency

effects for direct versus secondary DM1-labelled antibodies in SKOV3 cells, Tables 7 and 6,

respectively).

In SKOV3 cells, ADC variant 11–9 was very potent, having IC50s either ~ 10-fold lower or

similar to WT (IC50 = 0.003 and 0.041 nM when conjugated to DM1 and PNU, respectively,

Table 7). However, PNU-conjugated 11–9 and WT both showed significant potencies (low to

sub-nM) in MCF7 and JIMT-1 cells, indicating they are likely to be toxic in low-Her2 normal

tissues (Table 7). Moderate (2–5, 2–13) and weak (14–13, 7–5) variants also had significant

PNU potencies (low to sub-nM) in SKOV3 cells. In contrast to WT and the strong variant,

their potencies were low in MCF7 and JIMT-1 cells and ranged either ~2-16-fold above (2–5,

2–13, moderate class) or similar (14–13, 7–5, weak class) to the Synagis background range

(~8–10 nM) in these cells, indicating a low toxicity for these variants in low-Her2 cells. The

weakest antibody, 16–13, showed the lowest potencies, close to background with both DM1

and PNU in SKOV3 cells.

Fig 6. Direct ADC cytotoxicity of DM1 and PNU conjugated variants in Her2 cells. IC50s of DM1-antibodies (A)

and PNU-antibodies (B) in SKOV3 cells. (C) Survival curves in SKOV3, JIMT-1 and MCF7 cells treated with the

indicated antibody-PNU variant or Synagis-PNU. Double-head black arrows denote the therapeutic window

(concentration range between high-Her2 SKOV3 and low-Her2 MCF7 cells). The data are normalized, based on DAR

(Drug Antibody Ratio), to account for small DAR differences between antibody variants.

https://doi.org/10.1371/journal.pone.0226593.g006

Binding and functional profiling of antibodies for selection of optimal ADCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0226593 December 31, 2019 16 / 29

https://doi.org/10.1371/journal.pone.0226593.g006
https://doi.org/10.1371/journal.pone.0226593


Fig 6C shows survival curves for the three different cell lines for PNU-conjugated WT and

representative variants from each class, compared to Synagis-PNU. The different variant clas-

ses were readily distinguished based on the pattern of their potencies in the high versus low

Her2 cell lines. Specifically, it can be seen that WT exhibited similar potencies in MCF7 (blue),

JIMT-1 cells (red) and SKOV3 cells (black circle). A similar cytotoxicity profile for the three

cell lines can also be seen for the strong affinity 11-9-PNU ADC. In contrast, the potencies

observed for moderate 2-5-PNU and weak 14-13-PNU ADCs in MCF7 and JIMT-1 cells are

close or identical with Synagis-PNU IC50s (shown in grey). The right-shift towards non-spe-

cific toxicity is most pronounced for weaker variants 14–13 and 7–5, however this is at the

expense of lower potency in SKOV3 cells (weak variant IC50 range ~ 1.5–2.1 nM) compared to

moderate variants 2–5 and 2–13 (IC50 range ~ 0.08–0.14 nM) (see SKOV3 PNU values,

Table 7). Together, these results illustrate a wider therapeutic window for the moderate anti-

body variants when conjugated to PNU, as compared to weak variants, but at the expense of

some toxicity in the low-Her2 cells above background levels (Fig 6C). Notably, variant 16-

13-PNU showed no significant toxicity above Synagis-PNU background in all cell lines

examined.

In summary, our results indicate that the antibody variants fall into 3 classes based on affin-

ity and avidity driven effects on binding, internalization and ADC activity: 1) Strong Her2-

binding antibodies (12–9 and 11–9) are highly potent ADCs but have the potential to exhibit

toxicity in normal cells/tissues, based on their high-binding and toxicity in low-Her2 cells. 2)

The moderate and weak classes of antibodies are potent ADCs in high-Her2 cancer cells (e.g.

SKOV3) with less potential to be toxic in normal tissues, based on their low ADC potencies in

low-Her2 cells (� 11,000 Her2/cell). This selective activity on high versus low Her2 cells results

from low affinity variants being dependent on Her2 avidity. 3) A further distinction between

the relative potencies of moderate (2–5, 2–13) and weak (14–13, 7–5) antibodies was seen

when conjugated to payloads DM1 and PNU. With PNU, antibodies 14–13 and 7–5 showed

the lowest toxicity on low-Her2 cells, having IC50s similar to isotype control antibody.

Discussion

This study describes a comprehensive regimen for pharmacological characterization and opti-

mal selection of ADC candidates based on their intrinsic binding properties. Selection is based

Table 7. Potencies of antibody variants directly conjugated to the DM1 and PNU cytotoxic drugs.

FSA class Variant DM1 PNU

SKOV3 SKOV3 JIMT1 MCF7

IC50

[nM]

Fold potency a IC50
b

[nM]

Fold potency a IC50
b

[nM]

Fold potency a IC50
b

[nM]

Fold potency a

Strong 11–9 0.003 12610 0.041 123 0.08 102 1.24 8

WT 2–1 0.034 1117 0.022 229 0.13 63 0.56 17

Moderate 2–5 0.161 239 0.138 37 3.38 2 4.72 2

Moderate 2–13 0.075 512 0.077 66 0.50 16 2.02 5

Weak 14–13 2.658 14 1.525 3 9.66 1 12.75 1

Weak 7–5 2.007 19 2.078 2 11.80 1 13.66 1

Weak 16–13 8.033 5 3.993 1 9.29 1 15.05 1

Synagis 38.360 1 5.038 1 8.08 1 9.61 1

a Fold potency = IC50 Synagis / IC50 Variant
bMean IC50 for n = 3 experiments using PNU conjugated variants

https://doi.org/10.1371/journal.pone.0226593.t007
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on quantitative measurements of cell-surface binding, internalization efficiency and ADC

cytotoxicity. Our test panel was comprised of structure-based computationally-designed Her-

ceptin variants that bind to the same Her2 epitope with different affinities. This evaluation

focused particularly on the contributions of varied affinity, in the context of an identical anti-

body scaffold, and varied cell-surface Her2 density/avidity.

Despite their high activity in cell line models, preclinical studies using naked antibodies

have shown that antibodies with very strong affinity for their respective target can exhibit poor

tumor penetration, hence low therapeutic efficacy against solid tumors in vivo. This is attrib-

uted to strong binding to target antigen on the cells at the tumor periphery, thus preventing

further diffusion of the antibody into the tumor mass, a phenomenon termed the “binding-site

barrier” [20, 21]. Furthermore, it was noted in the case of anti-Her2 antibodies, that after bind-

ing target antigen in the peripheral tumor cells, strong-affinity antibodies promoted enhanced

internalization and degradation [13]. When purposing an antibody as an ADC, such routing

towards degradation and drug release is preferred. Hence, we deemed it important to consider

both strong and weak affinity Herceptin antibodies in our evaluation, combined with a careful

determination of their relative ADC efficacies and toxicities.

In our criteria for selection of ADCs, we sought antibody candidates that were ‘just right’ in

terms of selective binding, intracellular accumulation, and cytotoxicity in high-Her2 SKOV3

cells versus low-Her2 cells (MCF7 cells were chosen as a surrogate for low-Her2 normal cells).

Taken together, our results identified two weak Her2-binding antibody candidates (7–5, 14–

13) that best fit these criteria, as exemplified for the PNU class of ADCs. Nevertheless, if a less

potent drug is used, the moderate variants may be preferred in order to achieve efficient killing

of high-Her2 tumors in vivo. For example, the moderate variants (2–5, 2–13) conjugated to

DM1 showed significant potencies against SKOV3 cells (IC50 range ~ 0.08–0.16 nM) (Table 7).

Our cell-binding experiments showed that both moderate (2–5, 2–13) and weak (7–5, 14–

13) antibodies exhibited binding in SKOV3 cells that was similar to WT (KD range ~1–4 nM,

Fig 3D). In contrast, the weak antibodies bound poorly to MCF7 cells (KDs of weak antibodies

were> 100-fold higher than for moderate and WT antibodies, Fig 3B). These results show the

significant contribution of Her2 avidity in SKOV3 cells for improving binding of the weak

antibodies. The selective binding of the weak antibodies to high-Her2 cells versus weak bind-

ing to low-Her2 cells suggests a better safety profile compared to the moderate class and WT.

Paradoxically, the apparent KD values determined for WT Herceptin, WT-similar, strong

and moderate variants, by cell-binding to SKOV3 cells were somewhat higher than for MCF7

cells (Table 5). This is counterintuitive, based on the respective high versus low Her2 densities

on these cells and expected avidity effects. This behavior was previously seen for an anti-EGFR

antibody and was attributed to experimental limitations due to an insufficient incubation

period for the antibody to achieve equilibrium binding (estimated to require several days)

[12]. In addition, we anticipate some contribution of antibody depletion at low antibody doses

(i.e. <1 nM), resulting in less available antibody per Her2 receptors on SKOV3 cells compared

to MCF7 cells. Despite this limitation, the cell-binding assays were informative as a screening

tool for ranking antibodies and identifying Her2 avidity effects.

The maximum binding levels (Bmax) attained by the weak antibodies 7–5 and 14–13 were

lower than Bmax levels seen for strong, moderate and WT antibodies in SKOV3 cells (Fig 3C).

This is likely due to differential receptor engagement by the weak versus stronger binders, as

alluded to by Harms et al. [11] based on their cell-binding assays using EGFR-binding anti-

bodies with different affinities [11]. As illustrated in Fig 7A, at high concentrations, bivalent

crosslinking of Her2 receptors by an antibody with strong affinity (e.g. 12–9) is presumably

competed away by monovalent binding, giving rise to a higher number of antibodies bound at

the cell surface. WT (2–1) antibody, being weaker than 12–9, exhibits less monovalent binding
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and hence a lower number of antibodies bind to the surface (i.e. lower Bmax, compared to 12–

9). In contrast to strong and WT antibodies, weak antibody (e.g. 7–5) can only bind bivalently,

due to fast intrinsic dissociation rate of monomer, resulting in the lowest Bmax. Support for

high intrinsic binding and receptor occupancy of the strong variants (11–9 & 12–9) and WT

was seen in binding experiments with SKOV3 cells using monovalent Fab versions (S10 Fig)

in which the strong and WT Fabs reached a similar maximum binding level (presumably full

receptor occupancy), with the strong variants exhibiting higher affinity (binding curves shifted

left compared to WT). In the absence of avidity, monovalent moderate and weak Fab variants

did not attain maximum binding even at the highest concentration used (1 μM). Despite

weaker binding compared to stronger antibodies (and WT), it is apparent that the decreased

number of Her2 receptors engaged by bivalent 7–5 and 14–13 antibodies on the surface of

SKOV3 cells was sufficient for their internalization and growth inhibition in these cells when

coupled to potent drugs.

The internalization assays demonstrated that weak antibodies 7–5 and 14–13 internalize

moderately well in SKOV3 cells whereas internalization was very low and not measurable in

low-Her2 JIMT-1 cells when detected using pHAb fluorescence (Fig 5C). In contrast, the mod-

erate affinity antibodies did internalize in JIMT-1 cells, although with reduced efficacies com-

pared to SKOV3 cells. These results suggest that minimal thresholds of antibody binding and

Her2 receptor engagement are required for efficient internalization and ADC activity and that

full receptor occupancy on the surface of the cells is not necessary for maximal effect, as eluci-

dated in the “spare receptor” concept in pharmacology [22]. In the case of the strong antibod-

ies (and WT), presumably these thresholds are attained even in the lower Her2 JIMT-1 cells,

based on the significant internalization observed for these variants (strong and WT antibody

internalization EC50s < 1 nM in JIMT-1 cells, S1 Table).

As expected, and based on both the indirect ADC screens and assays using drug-conjugated

antibodies, strong antibodies 12–9 and 11–9 exhibited the highest potencies compared to the

lower affinity antibody classes in all Her2 cell lines tested (S7 Fig and Fig 6). These strong vari-

ants were extremely potent in SKOV3 cells and also showed significant toxicities in the low-

Her2 MCF7 cells with all 3 drugs tested; DM1, MMAE and PNU (Tables 6 and 7). These

results flag these strong variants as likely to show toxicity as ADCs in normal cells and tissues.

Based on the indirect ADC screens alone, the weak and moderate class of variants showed

similarly potent cytotoxicities in SKOV3 cells (DM1 and MMAE IC50s ~ sub-nM range) and

much lower potencies on low-Her2 cells, indicating their high potential as ADCs (Table 6).

Using directly DM1-conjugated antibodies in SKOV3 cells, the potencies of the moderate

and weak classes of antibodies were further distinguished, differing by ~ one log (IC50s of

moderate (2–5, 2–13) and weak (14–13, 7–5) variants ranged ~ 0.1–0.2 nM and 2–3 nM,

respectively, Fig 6A, Table 7). These results illustrate that ADC screens using secondary anti-

bodies conjugated to drugs such as DM1 and MMAE are useful as a first-round tool to identify

ADC hits. Subsequently, direct drug conjugation is required to resolve ADC potency differ-

ences between lower affinity candidates (in this case KDs ranging ~ 20–250 nM).

It should be noted that, for antibodies conjugated to DM1 or MMAE, it is important to

evaluate potencies attributed to the different linker-drug combinations. For example, DM1

conjugated 2–1 (WT) and 2–13 (moderate) antibodies showed high potencies that were distin-

guishable in SKOV3 cells (IC50s = 0.03 and 0.08 nM, respectively) and were well above Syna-

gis-DM1 background (IC50 = 38 nM) (Table 7). In contrast, the potencies of MMAE

conjugated 2–1 and 2–13 antibodies were similarly low in SKOV3 cells (IC50s ~ 100 nM,

S11 Fig) and close to Synagis-MMAE background.

Overall, our results indicate that Herceptin antibody variants with moderate and weak

affinity for Her2 are good ADC candidates with potential advantage over strong antibodies. In

Binding and functional profiling of antibodies for selection of optimal ADCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0226593 December 31, 2019 19 / 29

https://doi.org/10.1371/journal.pone.0226593


particular, weak variants 7–5 and 14–13 are identified as the most promising PNU ADC candi-

dates for treating high Her2 cancers based on the following criteria: 1) they show selective

binding to SKOV3 cells and significant (sub nM) ADC potencies and 2) they exhibit the lowest

toxicities in low-Her2 cells compared to strong, moderate and WT Herceptin. Fig 7B summa-

rizes the concept of exploiting Her2 avidity to achieve selective binding and cytotoxicity using

weak-affinity ADCs. The low binding and minimal toxicity of weak-affinity ADCs in low-

Her2 cells should enhance their safety profile and mitigate against Her2-mediated adverse

effects, such as hepatotoxicity noted for T-DM1 [23]. At the same time, it is recognized that

T-DM1 can elicit off-target effects attributed to its payload, e.g. thrombocytopenia and ele-

vated liver transaminases [24–28]. Nevertheless, our results support a strategy that can be

Fig 7. (A) Saturation binding of affinity-modulated antibodies on high-density Her2 cells. Shown are binding

curves for strong (12–9) and weak (7–5) affinity variants and WT antibody that show the different Bmax levels attained

by these antibodies on SKOV3 cells, as determined via flow cytometry. The schematics (boxes) illustrate how affinity

affects the number of antibodies and Her2 receptors (brown oval circles) engaged at the cell surface. (B) Schematic

that illustrates Her2 avidity resulting in selective binding of weak-affinity ADC to Her2 receptors on SKOV3

tumor cells and cytotoxicity. Left panel: strong-affinity ADC (e.g. variant 11–9 or 12–9) readily binds Her2 receptors

on both SKOV3 and MCF7 cells, resulting in cytotoxicity and cell death. Right panel: weak affinity ADC (e.g. variant

7–5 or 14–13) binds well to SKOV3 cells, due to high-density Her2 avidity, but binds poorly to low-density Her2

MCF7 cells, resulting in low cytotoxicity in MCF7 cells.

https://doi.org/10.1371/journal.pone.0226593.g007

Binding and functional profiling of antibodies for selection of optimal ADCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0226593 December 31, 2019 20 / 29

https://doi.org/10.1371/journal.pone.0226593.g007
https://doi.org/10.1371/journal.pone.0226593


applied to a large number of “dirty” targets in which target expression is present at high density

on tumor tissue, yet still quite significant on normal host tissue, such as CD44.

Interestingly, the Her2 affinity range of the 7–5 and 14–13 antibody candidates (KD range

of ~70–255 nM, Table 2), chosen for SKOV3 versus MCF7 selectivity, is modestly weaker than

that proposed by Slaga et al. [14], for anti-Her2/CD3 T-cell dependent bispecific (TDB) anti-

bodies (KD = 23–49 nM), which also rely on avidity binding to promote tumor selectivity.

However, these differences in affinity may be related to the different high-Her2 density cell

line models chosen (SKBr3 for the TBDs versus SKOV3), different modes of action (T-cell-

mediated killing versus ADC) or the antibody formats (fusion of anti-Her2 Fab to the N-termi-

nus of the IgG heavy chain versus conventional ADC). The affinity for an optimal ADC target-

ing Her2 tumors will also depend on the drug utilized. For example, a higher affinity may be

required for an antibody coupled to a less potent drug such as DM1 compared to PNU, e.g. KD

in the range of the moderate variants (KD ~15–25 nM).

Based on their weakened affinities relative to Herceptin, it is anticipated that 7–5 and/or

14–13 ADCs will provide the added benefit of improved drug delivery into solid tumors. A

recent report compared the in vivo efficacies of 3 ADCs based on different antibodies that tar-

get tissue factor (TF) and differed in binding affinities by ~ 10–70 fold (KD range ~ 0.5–35

nM) [29]. Treatments with the lowest-affinity (35 nM) ADC resulted in a modest improve-

ment in pancreatic tumor (BxPC-3) reduction compared to the highest-affinity (0.5 nM)

ADC. This improvement was only seen at early stages and was attributed to better ADC diffu-

sion when tumors were small. In the case of Herceptin antibody variant 14–13 reported here,

its affinity for Her2 is ~500-fold weaker than WT (KD = 253 versus 0.5 nM, respectively)

(Table 3). Hence, we expect 14–13 will be even more efficacious in terms of overcoming the

binding site barrier (i.e. dissociating from Her2 at the tumor periphery) and penetrating

deeply into large tumors.

In summary, we have shown that, given appropriate drug selection, exploiting avidity

effects can be a powerful benefit in terms of improving tumor selectivity and widening the

therapeutic index of ADCs under development.

Materials and methods

Cell lines

All cell lines were obtained from ATCC. SKOV3 and JIMT-1 cells were cultured in McCoy’s

and DMEM media, respectively. MCF7 and Jurkat cells were cultured in RPMI 1640 media. In

each case, media was supplemented with 10% fetal bovine serum (FBS).

Antibody productions and purification

cDNAs for the designed, full-size heavy and light human IgG chains were ordered from a com-

mercial vendor (ThermoFisher Scientific/Life Technologies Inc., Burlington, ON; GENEART,

Regensburg, Germany). The antibodies were produced by co-transfection of CHO-3E7 cells.

CHO-3E7 cells in were grown to a density of 2 × 106 cell/mL in 150 mL of F17 medium in 1.0

L shaker flasks. The cells were transfected with 2 μg total DNA (containing 500 ng each of the

heavy and light chain constructs) using PEI MAX™ (Polysciences, Inc., Warrington, PA). The

cells were maintained at 37˚C for 24 h and then fed with Tryptone N1 at 1% w/v, after which

they were transferred to 32˚C for 6 days. The cell culture supernatant was harvested and ana-

lyzed by SDS-PAGE for expression. Antibody was captured on MabSelect Sure column (GE

Healthcare Life Sciences, Mississauga, ON), followed by elution using 100 mM Citrate, 50 mM

NaCl, pH 3.0 and neutralization with 1M HEPES. Desalting and PBS exchange was achieved

using ZebaSpin columns (ThermoFisher Scientific, Waltham, MA).
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Antibody quality control (QC)

Unconjugated and drug/dye-conjugated antibodies were assessed for purity and monomer sta-

tus via HPLC-size exclusion chromatography (SEC) in a Superdex S200 column (GE Health-

care Life Sciences). The mobile phase was D-PBS, 0.2 M Arginine pH 7.2 run at a flow rate of

0.25 mL/min.

Dye and drug conjugations

pHAb conjugation: Antibody variants were adjusted to 2 mg/mL in PBS. pHAb amine reac-

tive dye (Promega, Madison, WI) was dissolved in DMSO at a concentration of 5 mg/mL and

then added to antibody at 10:1 ratio (pHAb:antibody), followed by incubation at 25˚C for 1 h.

Excess dye was removed be ZebaSpin desalting column (ThermoFisher Scientific) equilibrated

in PBS. The sample was centrifuged at 20,000×g for 10 min and supernatant containing the

conjugate was retained. Dye-to-antibody ratio (DAR) was determined by OD readings at A280

and A532 nm using a NanoDrop 2000 spectrophotometer (ThermoFisher Scientific).

AlexaFluor-488 (AF488) conjugation: WT Herceptin was adjusted to 2 mg/mL in PBS.

AF488 (Invitrogen Molecular Probes, Eugene, OR) was dissolved in N,N-Dimethyl-formam-

ide. The conjugation reaction, purification and DAR analysis were carried out according to

the manufacturer’s specifications.

DM1 conjugation: Primary or secondary antibody variants were combined with

SMCC-DM1 (Levena Biopharma, San Diego, CA) in 1XNRC4 buffer (100 mM sodium phos-

phate, 20 mM NaCl, 3 mM EDTA, pH 7.4) and incubated at 25˚C, 18 h. Polysorbate-20 was

added to final concentration of 0.02% w/v. The reaction was passed through 3 successive

ZebaSpin columns (ThermoFisher Scientific), equilibrated with 20 mM sodium-succinate,

0.02% polysorbate-20, pH 6.0. Trehalose was added to the final sample at 6% w/v. The drug-

to-antibody ratio (DAR) was determined by measuring OD readings at A280 nm and A252

nm using NanoDrop 2000 and HPLC-SEC analysis.

MMAE and PNU conjugations: Prior to conjugation, the anti-human IgG antibody was

reduced using TCEP (Tris(2-carboxyethyl)phosphine, Sigma-Aldrich, Oakville, ON) to make

reactive thiols accessible. The degree of conjugation with MMAE was controlled by adjusting

the molar ratio of TCEP:antibody. The reduction mixture was incubated at 37˚C for 3 h with

no agitation. To this was then added an 8-fold molar excess (relative to antibody) of MC-vc-

PAB-MMAE (Levena Biopharma) bearing a maleimide thiol reactive group. This mixture was

further incubated at 25˚C for 1 h. The reaction was stopped by buffer exchange into 20 mM

succinate, 0.02% w/v Polysorbate-20, 6% w/v Trehalose pH 6.0. The DAR was determined by

measuring A280 nm and 248 nm. Direct conjugation of antibody variants to PNU was per-

formed with MA-PEG4-VC-PAB-DMAE-PNU159682 (PNU) (Levena Biopharma). Each

antibody (2 mg/mL) was incubated with TCEP in buffer containing 500 mM potassium phos-

phate, 200 mM sodium chloride, 20 mM EDTA, pH 7.2 at 37˚C for 2 h. PNU was then added

at 10× molar excess and incubated at 25˚C for 2 h. The reaction samples were then purified via

ZebaSpin columns as described above for DM1 conjugations.

Structure-based computational design of Fab variants

The Her2-bound crystal structures of Herceptin Fab [30], and its 40-fold affinity-weakened

variant bH1 [15,31], (also termed Parent 1 and Parent 2, respectively) were retrieved from the

Protein Data Bank (entries 1N8Z and 3BE1, respectively). These crystal structures were used

as starting points for the design of additional Fab variants with Her2 binding affinities evenly

distributed within a wider range of KD that spans several orders of magnitude. Structural prep-

aration of crystal structures for molecular design was done as described previously [16].
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Specific point-mutations were built and evaluated energetically at targeted positions within the

Fab CDR loops using three programs, SIE-SCWRL [32–34], FoldX [35––36], and Rosetta [37,

38], as implemented in the ADAPT protocol [16]. A consensus score was derived for ranking

the Fab mutants in terms of Her2 binding affinity relative to their respective parent Fab. This

consensus scoring is based on the average Z-score over the individual raw scores calculated

with the three component energy functions, SIE [33, 34], FoldX-FOLDEF [35], and Rosetta-

Interface [37]. Further technical and implementation details of this consensus approach and

its component methods can be found in Sulea et al. [39] and Vivcharuk et al. [16]. The FoldX-

FOLDEF energy function [35], was also used to estimate the effect of substitutions on the

internal stability of the Fab structure.

The final selection of the 18 Fab variants (Table 1) was based on in silico screening from

previous ADAPT affinity maturation campaigns for Herceptin and bH1 against their Her2

antigen.[16] In these campaigns, virtual saturation mutagenesis screens in the CDRs of Her-

ceptin and bH1 Fabs required computational evaluation of ~1200 single-point mutations in

each system. Following the previously described stepwise approach underlying the ADAPT

platform,[16] single mutations were selected based on in silico binding affinity scores and

intermolecular interactions, and then sent for experimental evaluation. Single mutants vali-

dated to have the desired binding affinity trends were combined into higher-order mutants

(i.e., double- and triple mutants). From the resulting pool of mutants, the set retained in

Table 1 was chosen to provide even sampling within a wide range of binding affinity based on

a minimal number of mutation sites.

SPR analysis

Antibody-Her2 interactions were analysed using a Biacore T200 (GE Healthcare) surface plas-

mon resonance instrument. Samples were assayed at 25˚C using PBS (GE Healthcare) with

added 3.4 mM EDTA and 0.05% Tween 20 as running buffer. CM-5 sensorchips were pre-

pared using the GE Healthcare anti-hFc capture kit following the recommended protocol that

resulted in a 10,000 resonance unit (RU) Fc-capture surface over the sample and reference sen-

sor surfaces. Variant antibodies were diluted to 1.25 ug/mL in running buffer and captured by

flowing for 6 to 10 s at 30 μL/min to give a final Her2 binding response less than 100 RUs. The

Her2 interaction was determined using Single Cycle Kinetics analysis in duplicate for each var-

iant. High and moderate affinity variants used a 60 nM high concentration and the low affinity

variants used a 180 nM high concentration, both with a 2-fold dilution series. With the high

and moderate affinity variants, the flow rate of Her2 was 50 μL/min using a 180 s contact time

and a 1800 s dissociation phase. The weak affinity variants had reduced contact time and flow

rates to 90 s and 30 μL/min, respectively, to conserve Her2 sample. Sensorgrams were double

referenced to a blank Fc-capture surface and analysed using a 1:1 binding model in BiaEvalua-

tion software v3.1 (GE Healthcare).

Flow cytometry saturation binding of antibodies on cells

Cells were grown in T75 flasks, and then washed twice in PBS, followed by release from plastic

using Cell Dissociation buffer (Sigma) at 37˚C. The suspended cells were transferred to a 50

mL conical tube and FACS buffer (D-PBS, 2% FBS) was added at a 2:1 v/v ratio (FACS buffer:

cells). The cells were collected by centrifugation (233×g) and resuspended at 2.0 × 106 cells/mL

in FACS buffer at 4˚C. The cells were dispensed at 1.0 × 105 cells/well into 96-well v-bottom

polypropylene (PP) plates (Costar, Cole-Parmer Canada Company, Montreal, CA). Pre-

diluted antibody samples were then added to cells to give final volume of 100 μl/well and con-

centrations ranging from 0 to 200 nM or 1 μM (8-point dilution series), followed by
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incubation at 4˚C, 2 h. The cells in the plate were then washed twice by centrifugation at

233×g, removal of supernatant by aspiration and cells resuspended in 200 μL FACS buffer at

4˚C. The detection reagent, anti-human Fc AlexaFluor488-(Fab’)2 (Jackson ImmunoResearch,

Westgrove, PA), was then added at a final concentration of 10 μg/mL and samples were incu-

bated at 4˚C, 1 h. The cells were washed twice in 200 μl FACS buffer, followed by addition of

120 μl 1.0% propidium iodide and samples were then transferred to Multiscreen 96-well plates

(60 μm Nylon Mesh, Millipore, Etobicoke, ON) and filtered by centrifugation. The filtrate

samples were collected from the Multiscreen receiver plate and transferred to a new v-bottom

PP plate at 4˚C. Flow cytometric analysis was performed on a BD LSR-Fortessa (BD Biosci-

ences, San Jose, CA). The AlexaFluor488 fluorescence was measured using the 488 nm laser as

an excitation source and the 530/30nm band pass filter. The median fluorescence intensity

(MFI) was determined for 3000 alive cells per sample (Gating strategy: All cells/Singlets/Alive

cells (PI negative)) using BD FACSDiva software (BD Biosciences).

Flow cytometry competition binding

Binding competition of Herceptin antibody variants with AF488-labelled WT Herceptin was

performed using SKOV3 cells. The procedure was similar to that described above, except a sec-

ondary detection antibody was not used and diluted antibody samples were added 1:1 to 40

nM AF488-Herceptin prior to cell binding at 4˚C, 2 h.

Internalization assays and high content imaging

Indirect internalization assay: SKOV3 cells were seeded in 96-well plates (Corning, Fisher

Scientific, Toronto, ON) at 5 × 103 cells/well and incubated at 37˚C, 18 h. Antibody variants

were added to cell media and combined with a proprietary secondary anti-huIgG1-pHAb

(molar ratio Ab:secondary = 1:1) and incubated at RT, 30 min. The antibody samples were

added to cells in an 8-point dilution series, followed by incubation at 37˚C, 18 h. The cells

were washed thrice with D-PBS (with calcium and magnesium) (Wisent, St-Bruno, QC) at RT

and then treated with Hoechst 33342 stain (10 μg/mL, Invitrogen Molecular Probes) at 37˚C,

15 min. Imaging was performed using ImageXpress Micro XLS (Molecular Devices, San Jose,

CA) with the following channels and exposure times; TRITC (250 ms) and DAPI (70 ms) and

20× objective. The images were analyzed using the Transfluor module. Internalization was

measured as integrated Fluorescence Index (FI)/nucleus.

Direct internalization assay: SKOV3 or JIMT-1 cells were seeded onto 384-well plates

(Corning #3721) at 2.5 × 103 and 3.0 × 103 cells/well, respectively, and incubated at 37˚C, 18 h.

pHAb-labelled antibody variants were added to cells in an 8-point dilutions series, followed by

incubation at 37˚C, 18 h. The cells were treated with Hoechst stain at 37˚C, 15 min and then

washed twice with D-PBS (with calcium and magnesium). Images were captured in ImageX-

press with the following settings: SKOV3 cells; TRITC (100 ms) and DAPI (25 ms), JIMT-1

cells; TRITC (300 ms) and DAPI (25 ms).

ADC cytotoxicity assays

Antibody variants were tested for their effects on viability on Her2 cell lines, including

SKOV3, JIMT-1, MCF7 and Her2-negative Jurkat cells. Cells were seeded at 200, 500, 150 and

1500 cells/well for the four cell lines respectively in 384-well plates (Corning1 384 Well White

Flat Bottom Polystyrene TC-Treated Microplates, Cat. # 3570). For the indirect ADC screens,

cells were allowed to grow for five days in the presence of serial dilutions of the test antibodies

or benchmark controls ranging from 100 nM to 0.0017 nM, combined with an excess of pro-

prietary anti-human IgG-SMCC-DM1 or IgG-vcMMAE. For direct ADC assays, SKOV3 cells
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were grown for five days in the presence of serial dilutions of DM1- or PNU-conjugated test

antibodies ranging from 100 nM to 0.0017 nM. After five days (37˚C, 5% CO2, humidified

incubator), the number of viable cells was determined using CellTiterGlo (Promega, Madison,

WI), based on quantitation of the ATP present in each well, which signals the presence of met-

abolically active cells. Signal output was measured on a luminescence plate reader (Envision,

Perkin Elmer, Shelton, CT) set at an integration time of 0.1 s. Integration time is adjusted to

minimize signal saturation at high ATP concentration.

Data analysis: The signal value in each well (S) is normalized to the negative control wells

(cells without drug) (NC) and expressed as % Surviving Fraction.

% Surviving Fraction ¼ ðS� 100Þ=NC

Dose-response curves of % Survival Fraction vs. Log10 of concentration were fit using Graph-

Pad Prism 6.0 with a four-parameter logistic model to estimate IC50 and maximum efficacy.

Y ¼ Bottomþ ðTop � BottomÞ=ð1þ 10^ððLogIC
50
� XÞ �HillSlopeÞÞ

IC50 is the concentration of agonist that gives a response half way between Bottom and Top.

HillSlope describes the steepness of the curves. Top and Bottom are plateaus in the units of the

Y axis.

Supporting information

S1 Fig. HPLC-SEC QC profiles (left panels) for selected antibody variants and confirmed

monomer purity and recovery from the SEC matrix (right table).

(TIF)

S2 Fig. Saturation binding apparent KDs and Bmax values for antibody variants on MCF7

and SKOV3 cells, as determined by flow cytometry. (A, B) MCF7 cells. (C, D) SKOV3 cells.

MFI = median fluorescence intensity.

(TIF)

S3 Fig. Saturation binding Bmax values of selected antibody variants on cells as determined

by flow cytometry. (A) MCF7 and (B) SKOV3 cells.

(TIF)

S4 Fig. Competition binding curves and IC50s of antibody variants against AF488-labelled

WT antibody in SKOV3 cells.

(TIF)

S5 Fig. Indirect and direct internalization of antibody variants in low-Her2 MCF7 cells.

Shown are fluorescence intensity (FI) values measured by ImageXpress high-content imaging

for cells treated with (A) variants plus pHAb-labelled detection antibody or (B) pHAb-conju-

gated variants at 37˚C for 18 h. The fluorescence values are for 4 incremental antibody concen-

trations in the lower dose range of the plate assays, as indicated. In contrast to WT (2–1), the

values for moderate (2–5) and weak variants (14–13, 7–5, 16–13) were not sufficiently above

Synagis background (dotted lines) and/or too variable with these cells. Therefore it was not

possible to generate full-dose curves or EC50s.

(TIF)

S6 Fig. Indirect DM1 ADC cytotoxicity of antibody variants in Her2-negative Jurkat cells.

DM1 = unconjugated DM1.

(TIF)
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S7 Fig. Indirect DM1 ADC cytotoxicity screens of antibody variants in high-Her2

(SKOV3) and low-Her2 (JIMT-1 and MCF7) cell lines. Shown are representative growth-

inhibition curves for (A) SKOV3, (B) JIMT-1 and (C) MCF7 cells, following treatment for 5

days at 37˚C with the indicated antibody variants combined with DM1-secondary antibody.

T-DM1 = WT Herceptin-DM1 control.

(TIF)

S8 Fig. Indirect ADC cytotoxicity IC50s derived from DM1 (panels A-C) and MMAE ADC

(panels D-F) screens. The indicated cells were treated for 5 days at 37˚C with antibody vari-

ants combined with DM1 or MMAE conjugated secondary antibody. For the Synagis antibody

control with MMAE in JIMT-1 and MCF7 cells, no toxicity was observed and hence IC50s

were not determined (ND).

(TIF)

S9 Fig. Growth inhibition curves for SKOV3, JIMT-1 and MCF7 cells treated with

DM1-conjugated antibodies. The cells were treated with DM1 ADCs for 5 days at 37˚C. The

data are normalized, based on DAR (Drug Antibody Ratio), to account for DAR differences

between antibody variants. T-DM1 = WT Herceptin-DM1 control.

(TIF)

S10 Fig. Binding of selected Herceptin variant Fabs to SKOV3 cells as determined by flow

cytometry.

(TIF)

S11 Fig. Direct ADC cytotoxicity of MMAE conjugated variants in SKOV3 cells. Shown are

survival curves for SKOV3 cells treated with the indicated antibody-MMAE variants or Syna-

gis-MMAE. Percent survival values for cells treated with 6 and 100 nM of unconjugated

MMAE drug are shown for comparison.

(TIF)
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