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Abstract

Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for
tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and
intracellular survival of M.tb and thus represents an attractive target for the development of new antitubercular drugs. This
study is focused on the structure-function relationship of Fatty Acyl-CoA Synthetase (FadD13, Rv3089) belonging to the mymA
operon. Eight site-directed mutants of FadD13 were designed, constructed and analyzed for the structural-functional integrity
of the enzyme. The study revealed that mutation of Lys487 resulted in ,95% loss of the activity thus demonstrating its crucial
requirement for the enzymatic activity. Comparison of the kinetic parameters showed the residues Lys172 and Ala302 to be
involved in the binding of ATP and Ser404 in the binding of CoenzymeA. The influence of mutations of the residues Val209 and
Trp377 emphasized their importance in maintaining the structural integrity of FadD13. Besides, we show a synergistic influence
of fatty acid and ATP binding on the conformation and rigidity of FadD13. FadD13 represents the first Fatty Acyl-CoA
Synthetase to display biphasic kinetics for fatty acids. FadD13 exhibits a distinct preference for C26/C24 fatty acids, which in the
light of earlier reported observations further substantiates the role of the mymA operon in remodeling the cell envelope of
intracellular M.tb under acidic conditions. A three-dimensional model of FadD13 was generated; the docking of ATP to the
active site verified its interaction with Lys172, Ala302 and Lys487 and corresponded well with the results of the mutational
studies. Our study provides a significant understanding of the FadD13 protein including the identification of residues
important for its activity as well as in the maintenance of structural integrity. We believe that the findings of this study will
provide valuable inputs in the development of inhibitors against the mymA operon, an important target for the development
of antitubercular drugs.
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Introduction

Mycobacterium tuberculosis (M.tb), an intracellular pathogen, is

exquisitely adapted for human parasitization [1]. It has evolved a

number of distinct strategies to survive in the hostile environment of

macrophages [2]. The drugs for the treatment of tuberculosis (TB)

are available but the long and demanding regimens lead to erratic

and incomplete treatment often resulting in the development of drug

resistance. Hence, the importance of identification and character-

ization of new drug targets cannot be overemphasized.

M.tb has a unique and large repertoire of lipid associated genes

[3] and its cell wall, which is known to contain a distinct variety of

lipids, plays a crucial role in its pathogenesis [4]. The pathogen

resides in the host macrophages, where it encounters various

stressful conditions such as changes in pH, exposure to reactive

oxygen, nitrogen intermediates, degradative enzymes and depri-

vation of essential nutrients [5]. During these conditions, the lipid

rich cell surface of M.tb is often subjected to damage by the host

assault. Hence, this pathogen has developed a variety of means to

modify its cell envelope [6] for its survival in the hostile

environment, emphasizing the importance of its cell envelope

constituents as targets for the development of new antitubercular

drugs. It has been earlier demonstrated that exposure to acidic pH

results in the upregulation of the mymA operon of M.tb (Rv3083 -

Rv3089) [7,8]. The functional loss of the mymA operon leads to

alterations in the colony morphology, cell wall structure, mycolic

acid composition and drug sensitivity and results in markedly

reduced intracellular survival of M.tb in macrophages [8,9,10].

Besides, the mymA mutant of M.tb shows a drastic reduction (800

fold) in its ability to survive in the spleen of guinea pigs as

compared to the parental strain [9]. To gain further insight into

the functioning of mymA operon, a potential target for developing

antitubercular drugs, it is necessary to characterize its gene

products.

fadD13, the last gene of the mymA operon, encodes a Fatty Acyl-

CoA Synthetase. Fatty Acyl-CoA Synthetases are ubiquitously

distributed from bacteria to mammalian systems [11] and catalyze

the activation of various fatty acids by converting them into fatty
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acyl-CoA thioesters [12]; the latter are shown to be important for

the synthesis of triacylglycerols and phospholipids [13]. Moreover,

many Acyl-CoA Synthetases have been suggested and identified as

potential drug targets in the cases of several human pathogens

[14,15,16]. Mechanistically, these proteins carry out the catalysis

in two steps involving fatty acids, ATP and CoA [12]. In the first

step, the fatty acid and the ATP react to form the fatty acyl-AMP

intermediate with the release of pyrophosphate. The fatty acyl

group is then transferred to the thiol group of the CoA acceptor to

form fatty acyl-CoA with the concomitant release of AMP [12].

The reaction mechanism followed by this class of enzymes is:

1: Fatty acidzATP Fatty acyl{AMPzPPi

2: Fatty acyl{AMPzCoA Fatty acyl{CoAzAMP

This study is focused on the characterization and structure-

function relationship of Fatty Acyl-CoA Synthetase (Rv3089,

FadD13) of the mymA operon and describes the influence of several

mutations on the activity and structural integrity of the enzyme thus

leading to the identification of residues important for its function.

The relationship of the experimentally determined important

residues with the structural arrangement of the catalytic centre

is validated by homology modeling of FadD13. Based on the

comparative assessment of fatty acids as substrates, FadD13 belongs

to the class of Very Long chain Fatty Acyl-CoA Synthetases.

Results

Purification and Analysis of Aggregation Properties of the
Recombinant FadD13

fadD13 gene was cloned in pET28c and expression and

localization of the gene product was analyzed by SDS-electro-

phoresis using a 10% polyacrylamide gel. A significant expression

of fadD13 gene product as a protein of an apparent molecular

weight of ,57 kDa (comprising of the native protein of 55 kDa

plus 2 kDa contributed by the histidine tag and the linker amino

acids) was observed with the majority of the recombinant protein

in the soluble fraction (data not shown). The N-terminal 6x

histidine tagged recombinant protein was purified by using Ni-

NTA affinity chromatography. The purified FadD13, as seen in

Fig. 1A, was found to be highly pure (lanes 5–8). The native gel

electrophoresis, as shown in Fig. 1B (lane 1), strongly suggested

that FadD13 has a tendency to aggregate. The observed

aggregation was marginally reduced in the presence of 1 mM

ATP or 10 mM DTT, though to a greater extent in the case of

DTT. However, the addition of 1 mM ATP and 10 mM DTT

together completely abolished the aggregation, as shown in Fig. 1B

(lane 2), suggesting that disulfide crosslinking acts as one of the

major determinants in the formation of these aggregates. It was

also noted that this aggregation was largely concentration

dependent as dilution of the protein relieved the aggregation.

However, the activity of FadD13 remained uninfluenced by this

aggregation as both the forms of FadD13 (aggregated v/s

disaggregated form) exhibited comparable activities (data not

shown).

Demonstration of Fatty Acyl-CoA Synthetase Activity of
FadD13

The Fatty Acyl-CoA Synthetase activity was determined by using

radiolabeled palmitic acid(s) as described in ‘‘Materials and

Methods’’. As depicted in Fig. 1C (lane 2), FadD13 converted

palmitic acid to palmitoyl-CoA in the presence of ATP and CoA.

The presence of the reaction intermediate namely palmitoyl–AMP is

also clearly shown in lane 1 (Fig. 1C), which appeared as a result of

withholding CoA from the reaction mixture. The residual fatty acid,

fatty acyl-AMP and fatty acyl-CoA migrate on the TLC with the Rf

values of 0.95, 0.56 and 0.43, respectively, which are in accordance

with the Rf values documented for these compounds previously

[17].The Vmax and Kcat values of the enzyme were estimated to be

14.6260.30 pmoles/min/mg and 0.03 sec21, respectively. FadD13

displayed a classical Michaelis-Menten kinetics for its co-factors ATP

and CoA (Fig. 2-C,D,E and F) with Km values of 0.2360.05 mM

and 0.1360.002 mM, respectively. However, fatty acids, the

Figure 1. Purification, aggregation property and activity of FadD13 of M. tuberculosis. A. Analysis of purified FadD13. The purification was
carried out by using Ni-NTA affinity chromatography and analyzed by electrophoresis on a 10% SDS-polyacrylamide gel. M – Molecular weight
markers, lane 1- cell free extract, lane 2- unbound proteins, lane 3 – wash with lysis buffer containing 20 mM imidazole, lane 4 – wash with lysis buffer
containing 50 mM imidazole, lane 5–8 – elutions with lysis buffer containing 250 mM imidazole. B. Analysis of aggregation property. The aggregating
nature of FadD13 was studied by using 7.5% non-reducing non-denaturing polyacrylamide gel. Lane 1–20 mg of the native protein, lane 2–20 mg of
the native protein incubated with 10 mM DTT and 1 mM ATP for 2 hours. C. Determination of the enzymatic activity of FadD13. FadD13 assay was
carried out by using a radioactivity based TLC assay as described in the ‘‘Materials and Methods’’. Figure shows the reaction products in the absence
(lane 1) and presence (lane 2) of CoenzymeA.
doi:10.1371/journal.pone.0008387.g001

FadD13 from M.tuberculosis
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substrate for the enzyme activity showed a biphasic kinetics with a

Km value of 19.7965 mM (Fig. 2A and 2B, data shown for palmitic

acid).

Preference of FadD13 for Very Long Chain Fatty Acids
To ascertain the preference of FadD13, fatty acids of various

chain lengths viz palmitic acid (C16), tetracosanoic acid (C24) and

hexacosanoic acid (C26) were separately employed as a substrate

for FadD13. The higher chain length fatty acids (C24 and C26)

were solubilized in a-cyclodextrin as described in earlier studies

[18,19] and the reactions were carried out in the presence of

15 mM fatty acids and 4 mM a-cyclodextrin. The enzyme

exhibited appreciable activity with all the three substrates.

However, as is evident from Fig. 3, FadD13 exhibited the highest

activity with C26 fatty acid followed by C24 fatty acid. Palmitic acid

(C16) exhibited the least activity amongst the three. Thus, FadD13

exhibited preference for the fatty acid chain length in a rank order

of C26.C24.C16 with an activity ratio of 100:77:50. Hence,

FadD13 belongs to the class of Very long chain Fatty Acyl-CoA

Synthetases (VLFACS).

Molecular Assembly of FadD13
For determining the oligomeric status of FadD13, we employed

Mycobacterial-Protein Fragment Complementation (M-PFC)

method [20], which is based upon the functional reconstitution

of two small murine dihydrofolate reductase domains indepen-

dently fused to two proteins, whose interaction has to be

determined. The gene encoding FadD13 was cloned in the

vectors pUAB300 and pUAB400, leading to the production of

FadD13[F1,2] and FadD13[F3], respectively. The M.sm cells were

co-electroporated with the plasmids and the transformants

obtained were streaked on trimethoprim. All the appropriate

controls were included in the experiment. Growth was observed in

the case of positive control [20] GCN4[F1,2]/GCN4[F3] and

FadD13[F1,2]/FadD13[F3] as shown in Fig. 4A suggesting that

FadD13 has an oligomeric assembly in the cellular milieu.

Importantly, no growth was observed in the case of negative

controls such as hsp60F[1,2]/hsp60F[3], FadD13F[1,2]/F[3], and

F[1,2]/FadD13[F3].

Subunit assembly of purified FadD13 was determined by gel-

permeation chromatography by using a sephadex G-200 column.

Figure 2. Analysis of kinetic behavior of FadD13 for various substrates. FadD13 assays were performed by varying the concentrations of a
particular substrate under the standard conditions of the assay as described in the section on ‘‘Materials and Methods’’ and the kinetic behavior was
analyzed by plotting Michaelis-Menten curve as well as Eadie-Hofstee plot. Michaelis-Menten curve (A) and Eadie-Hofstee plot (B) by using palmitic
acid as the variable substrate, Michaelis-Menten curve (C) and Eadie-Hofstee plot (D) by using ATP as the variable substrate, Michaelis-Menten curve
(E) and Eadie-Hofstee plot (F) by using CoenzymeA as the variable substrate. The data is depicted as mean of values 6 S.E. of two experiments carried
out in duplicates.
doi:10.1371/journal.pone.0008387.g002

FadD13 from M.tuberculosis
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The protein eluted as a single peak (Fig. 4B) with a retention

volume corresponding to a dimeric assembly (,114 kDa).

Engineering FadD13 to Identify Functionally and
Structurally Critical Residues

A detailed comparison of FadD13 with the proteins of Fatty

Acyl-CoA Synthetase family identified three major conserved

regions (Fig. 5). The most highly conserved motifs I and II of

FadD13 form the ATP/AMP binding site [21]. Of these, motif I

(164TSGTTGHPKG173) corresponds to the P-loop proposed to

bind to the phosphate group of ATP [21] whereas another

conserved motif II (298VQGYALTE305) is similar to the A-motif

involved in the binding to the adenine group of ATP/AMP in all

known Fatty Acyl-CoA Synthetases [21]. A stretch of ,25 amino

acids (375NGWFRTGDIGEIDDEGYLYIKDRLKDM401), the

IIIrd highly conserved motif shows similarity to the signature

motif, which is common to all Fatty Acyl-CoA Synthetases and

is known to comprise the fatty acid binding site [22]. Addi-

tionally, a linker motif (L-motif) comprising of 7 amino acids

(395KDRLKDM401) corresponds to the region that connects the C

and N terminal domains of the protein in all homologs [23].
204LPMFHVAAL212 residues show homology to the 9-residue gate

motif (G-motif), which in homologous proteins interact with the

residues of the C- terminal domain after the AMP moiety is bound

to the protein and thus keeps the enzyme in the closed

conformation required for catalysis [23]. This motif is also

involved in interaction with the hydrophobic part of the fatty acyl

chain [23]. Based on the conserved motifs, eight important

residues were identified for the mutational studies of FadD13.

These mutations were: K172A, V209D, A211G, A302G, W377A,

D382A, S404A and K487A. The mutagenic oligonucleotides used

for generating site-directed mutants of FadD13 are listed in

Table 1. Lys172 and Ala302 belong to the ATP/AMP binding

motifs I and II, respectively. The residues homologous to Lys172

are proposed to bind to the phosphate group of ATP via

electrostatic interactions. Ala302 is a unique substitution in

mycobacterial FadDs, which in most other cases is represented

by a glycine residue known to bind the adenine group of ATP/

AMP via hydrophobic interactions. Residues Val209 and Ala211

are a part of the gate motif and are also thought to be involved in

the interaction with the hydrophobic part of the fatty acids.

Residues Asp382 and Trp377 lie in the region III containing the

signature motif of Fatty Acyl-CoA Synthetases involved in binding

of fatty acids and guiding the preference of these proteins for fatty

acids of various chain lengths [22]. Lys487 is a highly conserved

residue; the corresponding residue in other homologs is involved in

determining the orientation of the substrates thus leading to the

Figure 3. Evaluation of the preferance of FadD13 for fatty acids
as substrate. The C24/C26 fatty acids were solubilized in a-cyclodextrin
and the activity of FadD13 was measured as described in ‘‘Materials and
Methods’’. The final concentration of a fatty acid and a-cyclodextrin in
the assay mixture was 15 mM and 4 mM. The data is depicted as mean
of values 6 S.E. of three independent experiments.
doi:10.1371/journal.pone.0008387.g003

Figure 4. Determination of molecular assembly of FadD13. A. Determination of oligomerisation status of FadD13 by using M-PFC method. M.
sm cells were independently electroporated with M-PFC plasmids producing following: (1) – FadD13[F1,2]/FadD13[F3], (2)–hsp60[F1,2]/hsp60[F3], (3)–
GCN4[F1,2]/GCN4[F3], (4) – FadD13[F1,2]/hsp60[F3], (5) – hsp60[F1,2]/FadD13[F3]. Transformants obtained on 7H11 Agar Kan/Hyg plates were again streaked
on (i) - 7H11 Agar Kan/Hyg/Trim and (ii) – 7H11 Agar Kan/Hyg plates, which were incubated at 37uC for ,7 days before scoring. B. Determination of
subunit composition of purified FadD13. Gel-filtration chromatography was performed by using a Sephadex G-200 column. Figure shows the elution
profile of FadD13. The inset shows the calibration curve for the calculation of the molecular weight of unknown protein prepared by using the Biorad
standard markers (Ve – elution volume).
doi:10.1371/journal.pone.0008387.g004

FadD13 from M.tuberculosis
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formation of adenylate intermediate [24,25]. Residue Ser404 present

in the C-terminal domain of FadD13 was targeted, as serine

residues from active site of several CoA utilizing enzymes are known

to interact with 49-phopshopantetheinyl moiety of CoA through

their hydroxyl groups [26,27,28]. There was no significant change

in the total expression levels (including cytoplasmic and inclusion

bodies) of these mutants as compared to the native protein,

however, the cytoplasmic expression was marginally reduced in the

cases of mutants V209D and D382A and a markedly low cytosolic

expression was observed in the case of mutant W377A (Fig. S1). To

obtain the mutant W377A in the cytosolic fraction, the induction

was carried out at 18uC for 16 hours.

Effect of Site Directed Mutations on the Activity of
FadD13 and Binding Affinity of the Cofactors

The mutations of the targeted residues influenced the catalytic

activity of the protein suggesting their involvement in the

mechanism of enzymatic action (Fig. 6A). The most drastic

influence on the enzyme activity was demonstrated by the mutants

D382A, V209D, W377A and K487A resulting in a sharply

declined activity (a reduction by 85.9%, 87.9%, 93.9% and 96.3%

in the activity and 7.1 fold, 8.39 fold, 17.3 fold and 27.7 fold in the

Kcat values, respectively) as compared to the activity of the native

protein. Mutations of the residues Ser404 and Lys172 also resulted

in the reduced activity of FadD13; however, the magnitude of

reduction in these cases was not as drastic, with a reduction of

39.2% and 63.5% in the activity as well as 1.6 fold and 2.7 fold

decrease in the Kcat values, respectively in comparison to the

native protein. The Mutants A211G and A302G did not result in

any loss of the enzyme activity, infact, the enzymatic activity as a

result of these mutations increased by 20% and 66.7%,

respectively, with an approximate 1.5 fold enhanced Kcat values.

Comparative enzymatic activities of the native protein and the

mutants are summarized in Table 2.

Figure 5. Comparison of FadD13 with the proteins of Fatty Acyl-CoA Synthetase family. The multiple sequence alignment was generated
by using the ClustalW software. FadD13 – Fatty Acyl-CoA Synthetase from M. tuberculosis, ttLC-FACS - long chain-Fatty Acyl CoA Synthetase from
Thermus thermophilus, FadDE – Fatty Acyl-CoA Synthetase from Escherichia coli, FadDH - Fatty Acyl-CoA Synthetase from Haemophilus influenzae,
Faa1- Fatty Acyl-CoA Synthetase 1 from Saccharomyces cerevisiae, Faa2 - Fatty Acyl-CoA Synthetase 2 from Saccharomyces cerevisiae. Asterisks and
dots indicate identical and similar residues, respectively. Double dots indicate higher similarity. Boxed residues comprise the phosphate-binding loop
(Motif I), the gate motif (G-Motif), adenine binding motif (Motif II), fatty acid binding region (Motif III) and the linker region (L-Motif). Shaded residues
depict the amino acids selected for mutagenesis.
doi:10.1371/journal.pone.0008387.g005
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Kinetic parameters of the FadD13 mutants with respect to the

native protein were analyzed to investigate the role of the targeted

residues in determining the affinity of Palmitic acid, ATP and

CoA. Fig. 6 and Table 2 show a comparison of Km values for

Palmitic acid (Fig. 6B), ATP (Fig. 6C) and CoA (Fig. 6D). The Km

values for the mutant K487A were not determined due to

limitations in the detection of product formed as the mutant

exhibited a highly reduced activity.

The Km values determined for Palmitic acid (C16) are shown in

Fig. 6B. The most drastic effect was observed in the case of

mutants W377A and S404A with ,10 times and ,6 times

reduction in their Km values signifying that substitution of residues

Trp377 and Ser404 to alanine results in the enhanced affinity

towards palmitic acid binding. All other mutants except A302G

exhibited a similar behaviour, though, to a lesser extent. The

mutant A302G exhibited ,2.5 times enhanced Km value. A

change in the Km values of all the mutants undoubtedly points out

the importance of the selected residues in the enzymatic activity.

Due to a significant inhibition of the activity in the presence

of a-cyclodextrin, which was essential for solubilization of

C24/C26 fatty acids, the Km values for these fatty acids were not

determined.

In agreement with the proposed role of Lys172 in the ATP/AMP

binding, the K172A mutant showed 10 times higher Km value

(1520 mM) for ATP in comparison to the native protein (Fig. 6C)

suggesting that K172A is defective in the ATP binding. In

contrast, the Km value of CoA for K172A mutant was reduced by

,3.5 times (Fig. 6D). The mutation of residue Ala302, present in

the adenine binding motif, resulted in a significant decline in the

Km values for both ATP as well as CoA as compared to the native

protein suggesting the importance of this residue in the reaction.

Although, the mutants V209D and A211G exhibited altered

activities, the change in activity was not accompanied by any

apparent alterations in the Km values for ATP and CoA in

comparison to the native protein. The contribution of Ser404 in

binding to CoA was demonstrated by a 4-fold enhancement in the

Km value for CoA (Fig. 6D). Residues Asp382 and Trp377 represent

the signature motif of Fatty Acyl-CoA Synthetases important for

their enzymatic function. The mutation of Asp382 was found to

reduce the enzyme activity along with a marginal increase in the

Km values for ATP and CoA. The mutation of Trp377 resulted in a

drastic reduction in the enzyme activity (upto 87%) suggesting its

involvement in the function of enzyme, however, no significant

change was observed in the Km values for ATP as well as CoA

(Fig. 6C, 6D).

Evaluation of Structural Changes in FadD13 Induced by
Ligand Binding and Site-Directed Mutations

The protection of FadD13 against degradation by proteinase K

was investigated. The presence of both ATP and palmitic acid

together resulted in a significantly enhanced protection towards

proteolysis (Fig. S2A), whereas only a marginal protection was

observed, when either of the two was included in the reaction

indicating a conformational change induced by these ligands. The

role of ATP in inducing a conformational change in FadD13 was

further confirmed by a drastic reduction in the fluorescence

intensity of the protein observed in the presence of ATP (Fig. S2B).

The addition of CoA did not exhibit any influence on the

proteolytic degradation (data not shown). Moreover, the degrada-

tion pattern of FadD13 in the absence or presence of these ligands

was comparable indicating that these ligands did not alter the sites

of proteolytic cleavage.

To gain an insight into the role of targeted residues in the

conformational changes, the native FadD13 and the mutants were

compared for their susceptibility to proteolysis. The mutants K172A,

V209D and W377A exhibited a slightly increased susceptibility to

proteolysis in comparison to the native protein, while the mutants

Table 1. Mutagenic oligonucleotides used for generating
site-directed mutants of FadD13.

Name Oligonucleotide sequence*

K172A (F) 59 CACCACCGGACATCCCGCGGGAGTGGTGCATACC 39

K172A (R) 59 GGTATGCACCACTCCCGCGGGATGTCCGGTGGTG 39

V209D (F) 59 CTGCCGATGTTCCACGACGCGGCGTTGACGACG 39

V209D (R) 59 CGTCGTCAACGCCGCGTCGTGGAACATCGGCAG 39

A211G (F) 59 CCGATGTTCCACGTGGCGGGGTTGACGACGGTCATC 39

A211G (R) 59 GATGACCGTCGTCAACCCCGCCACGTGGAACATCGG 39

A302G (F) 59 GGTCGTGCAGGGTTACGGACTCACCGAATCCTGTGGC 39

A302G (R) 59 GCCACAGGATTCGGTGAGTCCGTAACCCTGCACGACC 39

W377A (F) 59 GCTTTCGACAACGGTGCGTTCCGGACCGGCGAC 39

W377A (R) 59 GTCGCCGGTCCGGAACGCACCGTTGTCGAAAGC 39

D382A (F) 59 GTTCCGGACCGGCGCCATCGGCGAAATCGATG 39

D382A (R) 59 CATCGATTTCGCCGATGGCGCCGGTCCGGAAC 39

S404A (F) 59 GAAGGACATGATCATTGCCGGCGGCGAGAACGTG 39

S404A (R) 59 GACGTTCTCGCCGCCGGCAATGATCATGTCCTTC 39

K487A (F) 59 CCCCGCAACCCGACCGGCGCGATCCTCAAAACGGTG 39

K487A (R) 59 CACCGTTTTGAGGATCGCGCCGGTCGGGTTGCGGGG 39

*mutagenic regions in the sequence are underlined.
doi:10.1371/journal.pone.0008387.t001

Figure 6. Comparison of the kinetic properties of FadD13 and
its mutants. Km values for substrates and Vmax values were determined
by performing FadD13 assays as described in the section on ‘‘Materials
and Methods’’. For the calculation of Michaelis constants, a varying
range of substrate concentrations (Palmitic acid – 1.5–60 mM, ATP -
0.03–4 mM, CoenzymeA - 0.02–1.5 mM) were employed and the Km

values were calculated by GraphPad Prism 5 (San Diego, California, USA)
by using a non-linear fitting method. (A) Comparison of Vmax values of
the native FadD13 (NP) and its mutants. Km values of Palmitic acid (B),
ATP (C) and CoenzymeA (D) for native FadD13 (NP) and its mutants. The
data is depicted as mean of values 6 S.E. of two independent
experiments carried out in duplicates.
doi:10.1371/journal.pone.0008387.g006

FadD13 from M.tuberculosis
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A211G and A302G exhibited a reduced rate of proteolytic

degradation (Fig. S2C). The mutants K487A, S404A and D382A

showed no significant differences in their proteolytic susceptibility to

proteinaseK in comparison to the native protein. However, the

native FadD13 as well as the mutants exhibited a similar

fragmentation pattern (data not shown).

Deciphering the Role of Targeted Residues in the
Secondary Structure of FadD13

To assess the secondary structural features of FadD13, Far-UV

circular dichroism spectroscopy was performed (Fig. 7A). The

spectrum of native FadD13 indicated it to be a highly structured

protein with characteristic double minima at 210 nm and 222 nm

and it belonged to a/b class of proteins comprising of 34% a helix,

16% b sheet, 19% turn and 31% random coil (Table 3). This

content is in close agreement with those predicted by PSIPRED

[29,30] and Jpred [31] based on sequence analysis (Fig. 7B) with a

secondary structure content of 36% a helix, 21% b sheet, and 44%

coiled conformation. Most of the mutants showed a similar

secondary structure content as that of the native protein except for

the mutants V209D and W377A (Table 3), which displayed

altered spectra attributable possibly to an increased b sheet

content (33% and 31%, respectively).

Intrinsic Fluorescence and Thermal Stability of the Native
FadD13 and Its Mutants

Fluorescence spectroscopy was employed to ascertain subtle

structural differences between the native FadD13 and its mutants.

FadD13 contains 16 tyrosine and 7 tryptophan residues distributed

all over the protein sequence. The fluorescence spectrum of the

native protein exhibited an emission maximum at a wavelength of

340 nm after excitation at 280 nm, while a red shift of 22 nm

along with a substantially reduced intensity was observed in the

case of 7.2 M guanidine hydrochloride denatured protein (Fig. 8A)

indicating that the tryptophan and tyrosine residues that were

buried in a non-polar environment in the native state get exposed

to polar solvent upon unfolding. For the mutants V209D and

W377A, the fluorescence intensity was drastically reduced in

comparison to the native FadD13 showing a highly perturbed

tertiary structure (Fig. 8B). The other mutants exhibited spectra

comparable to that of the native protein (Fig. 8B).

Thermal denaturation studies were performed to compare the

stability of the native FadD13 and its mutants (Fig. 8C). The native

protein as well as most of the mutants showed an apparent melting

temperature (Tm) of 54uC and exhibited a slow cooperative

behaviour in the opening up of the structure. However, the

absence of a distinct thermal transition along with a non-

cooperative behaviour of unfolding was observed in the cases of

V209D and W377A further confirming the loss of tertiary

structure in these mutants.

Influence of Site Directed Mutations on the Aggregation
Properties of FadD13

As seen in Fig. 9A, the mutant A302G (lane 5) completely

abrogated the aggregation propensity of FadD13, as analyzed by

native polyacrylamide electrophoresis, resulting in a single major band

corresponding to dimeric species as opposed to the presence of aggre-

gates in addition to the predominance of dimeric species in the case of

native FadD13 (lane 1). This observation suggests that the presence of

a glycine residue at this position influences protein’s conformation,

which helps in preventing the formation of non-specific disulfide

linkages, the major cause of aggregation. Mutation of the residues

Ala211 and Lys487 (lane 4 and 9) did not influence the aggregation of

protein to any appreciable extent. However, a marginally higher

aggregation was observed, when the residues Lys172 (lane 2) and Ser404

(lane 8) were mutated. While the mutation of Val209 (lane 3) resulted in

a markedly increased aggregation, the mutation of Asp382 (lane 7) in

addition to a markedly increased aggregation also resulted in the

presence of a monomeric form not seen in the case of native protein

implying the role of this residue in dimerization. Mutation of Trp377

resulted in the highest aggregation observed (lane 6), some of which

could not be dissociated under denaturing conditions (Fig. 9B, lane 6).

The purified protein, if instantly analyzed on SDS-PAG, exhibited

high purity with a single band, however, the aggregation started soon

thereafter and even the stability of the protein seemed compromised as

aggregated versions along with the degradation product became more

pronounced as time proceeded.

Three Dimensional Structure Prediction of FadD13 by
Using Homology Modeling

While the efforts to crystallize FadD13 and determination of its

structure are underway in our laboratory, we performed molecular

Table 2. Comparison of the kinetic parameters of native FadD13 and its mutants*.

Protein Vmax (pmoles/min/mg) kcat (sec21) Km for Palmitic acid (mM) Km for ATP (mM) Km for CoA (mM)

FadD13 14.6260.30 .0277 19.7965.67 0.2460.05 0.1360.01

K172A 05.4160.20 .0102 08.3760.81 2.4460.48 0.0260.01

V209D 01.7660.10 .0033 09.9261.86 0.2060.07 0.1360.04

A211G 21.5164.33 .0408 09.2761.58 0.1260.04 0.1060.02

A302G 23.8965.17 .0453 49.6466.69 0.0660.01 0.0260.01

W377A 0.8860.02 .0016 01.7460.80 0.1560.03 0.0860.01

D382A 02.0560.12 .0039 05.3062.90 0.2260.01 0.3060.03

S404A 09.1260.42 .0173 03.0361.46 0.1860.06 0.6060.12

K487A 0.5360.21 .0010 n.d. n.d. n.d.

*The kinetic parameters were determined by using non-linear fitting method (using GraphPad Prism 5, GraphPad Software, San Diego, California, USA, www.graphpad.
com), n.d. – not detectable.
The enzyme activity was measured by radioactivity based assay as described in the ‘‘Materials and Methods’’. The concentrations of Palmitic acid, ATP and CoenzymeA
used in the reaction were 50 mM, 2 mM and 1 mM, respectively. For the measurement of Km, a range of substrate concentrations was used: Palimitic acid (1.5–60 mM),
ATP (0.03–4 mM) and CoenzymeA (0.02–1.5 mM).
doi:10.1371/journal.pone.0008387.t002
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Figure 7. Role of targeted residues in the secondary structure of FadD13. A. Far-UV Circular Dichroism spectra of native FadD13 (NP) and its
mutants. An average of three scans was recorded for each sample and the spectrum for each protein was measured in duplicate samples (mean
spectrum is depicted here). Spectra were recorded at a protein concentration of 0.2 mg/ml in 10 mM sodium phosphate buffer, pH 8.0. The data
were converted to molar ellipticity units. B. Secondary structure prediction of FadD13. The prediction of secondary structure was carried out by using
PSIPRED and JPred softwares. Cylinders, arrows and dash represent a-helix, b-sheet and coils, respectively.
doi:10.1371/journal.pone.0008387.g007
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modeling of FadD13 to validate our mutational studies as well as

the substrate preference of FadD13. The best model was generated

based on the template 4-Chlorobenzoyl-CoA Ligase/Synthetase of

Alcaligenes sp. al3007 [32], having a sequence identity of 30% and a

homology of 50% with FadD13. The general fold of the modeled

structure of FadD13 (Fig. 10A) resembles those of the known

crystal structures of homologous proteins belonging to the Fatty

Acyl-CoA Synthetase family [23,28,33]. The overall structure is

composed of a large N terminal domain (residues 1–397) and a

small C terminal domain (residues 402–498) that are connected

with a linker region.

Prediction of the Substrate Binding Site and Docking of
Ligands

The substrate binding site was predicted by using the CastP

server [34]. Although, the server predicted a number of active

sites, only the first hit having the largest area seemed to be correct

based on the crystal structures of other homologous proteins

(Fig. 10B). The predicted active site covered parts of both the N

and C terminal domains along with the cleft region placed

between both the domains. Moreover, the active site was similar to

that seen in other homologous proteins [23,33]. It can also be

observed that most of the residues targeted for the mutational

studies resided within the predicted active site (Fig. 10C) thus

justifying the influence of the mutation of these residues on the

enzyme’s function as indicated by the biochemical studies. The

docking of ATP and Palmitic acid (C16) at the active site verified

the modeled structure and corresponded well with the results of

the mutational studies. Fig. 10D demonstrated the molecular

interaction of ATP with residue Ala302 positioned at ,3.7 Å from

the adenine moiety of ATP. The cognate glycine residue has been

shown to interact in other homologs similarly [23]. Fig. 10D also

depicted weak electrostatic attraction between the phosphate

backbone of ATP molecule and the nearby Lys172 and Lys487

residues. An orchestration of the residues, shown to play a critical

role in protein function, in the vicinity of Palmitic acid molecule

(Fig. 10E) strongly emphasizes the importance of these residues in

the enzyme activity. Fig. 10F shows the docking of Tetracosanoic

acid (C24) at the active site. A higher binding energy of docking

(data not shown) in the case of C24 fatty acid as compared to C16

fatty acid supports the preference of the protein towards higher

chain length fatty acids observed in activity analysis.

Discussion

mymA is an important operon of M.tb due to its involvement in

the remodeling of the cellular envelope under stressful conditions

and in the intracellular survival of the pathogen [8,9,10]. It is

comprised of seven genes and the last gene encodes a Fatty Acyl-

CoA Synthetase (Rv3089, fadD13). Due to essential role of mymA

operon in the pathogenesis of M.tb, FadD13 represents an

important drug target. A few other mycobacterial Acyl-CoA

Synthetases namely MenE (involved in menaquinone biosynthesis)

and FAAL28 and FAAL19 (involved in Fatty acid metabolism)

have also been targeted for the development of antitubercular

drugs and small molecule inhibitors against these enzymes have

been developed [15,16]. Besides, Fatty Acyl-CoA Synthetase

inhibitor Triacsin C has been widely studied as a therapeutic agent

for the treatment of artherosclerosis and certain kind of tumors

[35,36].

In the present study, we have characterized the important

domains of FadD13 by mutating residues belonging to these

regions and identified various residues important for the enzymatic

activity, structural integrity and substrate binding. An extremely

compromised activity of K487A mutant along with a tremen-

dously low Kcat value (Table 2) suggests a crucial requirement of

Lys487 for the enzymatic activity, which agrees well with the role of

the cognate residues in other homologous proteins [24,25]. The

structure of FadD13 shows a close proximity of the side chain of

Lys487 with the phosphate group of ATP (Fig. 10D) and therefore,

is an essential residue for adenylate formation. Hence, the loop

region harboring this residue, owing to its implication in the

mechanism of enzyme action could provide an important target

for the design of inhibitors against FadD13. Moreover, all other

parameters measured in this study such as the aggregation

property, secondary structure content, susceptibility to proteolysis

and fluorescence spectra depicted comparable results in the case of

this mutant and the native protein, suggesting thereby that the

marked reduction in the activity may primarily signify the

contribution of the target residue in the enzyme catalysis and

not an influence on the structure and stability of the protein.

Intrinsic fluorescence of proteins is considered to be an

important measure of their three-dimensional structure and is

sensitive to subtle changes in the local environment of the

tryptophan/tyrosine residues [37]. The mutants V209D and

W377A exhibited a remarkable reduction in their intrinsic

fluorescence (Fig. 8B) implying thereby perturbations in their

tertiary structures along with conformational changes, which are

indicative of significant differences in the environment of

tryptophan/tyrosine residues in these two mutants as compared

to the native protein. It is noteworthy that FadD13 has 7

tryptophan and 16 tyrosine residues; however, mutation of a single

tryptophan (Trp377) resulted in almost 80% loss of fluorescence,

indicating a highly perturbed structure of this mutant as compared

to the native protein (Fig. 8B), which is also substantiated by the

absence of a distinct transition in its thermal denaturation pattern

(Fig. 8C). It was observed that heat denaturation resulted in a

significant reduction in the fluorescence intensity of the native

FadD13 implying the exposure of tryptophan/tyrosine residues to

the polar environment due to unfolding leading to the quenching

of fluorescence. However, heat denaturation had only a marginal

effect on the fluorescence intensity of the mutant W377A (data not

shown), thus pointing out that either the tryptophan/tyrosine

residues were already exposed to the polar environment or the

Table 3. Secondary structure content of native FadD13 and its mutants.

Secondary structure Native FadD13 K172A V209D A211G A302G W377A D382A S404A K487A

a-helix 34.3% 33.0% 27.9% 37.0% 39.9% 35.7% 28.4% 33.7% 35.9%

b-sheet 15.9% 19.8% 32.9% 13.3% 07.2% 31.3% 26.4% 16.7% 14.1%

Turn 18.9% 16.4% 10.1% 18.7% 22.2% 06.9% 13.6% 16.8% 18.8%

Random 30.8% 30.8% 29.0% 30.9% 31.3% 26.1% 31.6% 32.8% 31.3%

doi:10.1371/journal.pone.0008387.t003
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local environment of these residues differs in the case of this

mutant as compared to the native protein. A higher susceptibility

exhibited by these mutants towards proteinase K (Fig. S2C)

suggests loosening of their tertiary structure and a greater

amenability to protease action. Moreover, an exceptionally high

aggregation observed in these cases (Fig. 9A) is consistent with

increased b-sheet content (Table 3) as conversion of a helices into

b sheets often underlines the process of protein aggregation [38].

As demonstrated by localization studies, the mutation of Trp377 to

alanine resulted in the formation of inclusion bodies (Fig. S1); in

contrast to the native FadD13, wherein about 80% of the

synthesized protein localized in the soluble portion, the majority of

the mutant protein was localized in the insoluble portion

suggesting the involvement of residue Trp377 in the proper folding

of the native FadD13. Besides, two other mutants namely V209D

and D382A also caused increased formation of inclusion bodies

and aggregation of protein. However, the extent of influence on

the folding of protein was much lesser in these cases in comparison

to the W377A mutant; in case of the V209D and D382A mutants,

the synthesized protein was localized equally in the soluble and

insoluble portions (Fig. S1). An interesting corollary to these results

pertains to the presence of a small amount of monomeric form of

FadD13 in the case of mutant D382A as revealed by gel filtration

studies and native PAGE (Fig. 9A), which was not observed in the

case of any other mutant or native FadD13. These observations

suggest the possibility that Asp382 may help in optimizing the

interactions required for the dimerization of this protein. Taken

together, fluorescence studies, proteinase K proteolysis, native

PAGE analysis and localization studies strongly suggest the

involvement of residues Trp377, Val209 and Asp382 in maintaining

the structural integrity of FadD13.

Studies on the catalytic activity and substrate affinity of FadD13

provided interesting insight into the role of selected residues in the

enzyme catalysis. A significantly diminished activity exhibited by

the mutants W377A, V209D and D382A (Fig. 6A) is in agreement

with the marked influence of the mutations on the structural

integrity of the protein as described in the above section. The

mutation of Ser404 to alanine resulted in a 40% reduced activity

along with a concomitant 4-fold increment in the Km value for

CoA (Fig. 6) implicating this residue in the binding of CoA. This

observation is in agreement with the crystal structure of Acteyl-

CoA Synthetase from Salmonella enterica, which showed the

interaction of a Serine residue at a similar position with the

pantothenate group of CoA [28]. According to the FadD13

structure, residue Ser404 lies at the far end of the active site

(Fig. 10C), however, the conformational change brought about in

the structure as a result of ATP binding (as discussed below) thus

resulting in bringing this residue closer to the active site cannot be

ruled out. Similarly, the substitution of Lys172 to alanine marked

the importance of this residue in the ATP binding as was evident

from ,60% loss of the enzymatic activity along with a

concomitant increase in the Km value for ATP (Fig. 6). The

corresponding lysine residues in several Fatty Acyl-CoA Synthe-

tases have been implicated in the binding to the phosphate group

of ATP via electrostatic interactions [21]. Interestingly, a

simultaneous 6-fold decrease in the Km value for CoA was also

observed, pointing out that the mutation of Lys172 to alanine

results in a higher affinity for CoA binding. However, the

increased CoA affinity appears to be insufficient to compensate for

the defect in the ATP binding. The mutation of Ala302 to glycine

resulted in a significantly higher activity and ,3.7 fold reduction

in the Km value for ATP (Fig. 6) indicating that the presence of a

glycine residue facilitates the binding of ATP. It has been earlier

reported that the cognate glycine residue has been involved in

adenylate binding [23]. While these observations show the

importance of this locus in the enzyme activity, we noted that

alanine at this position features only in a few mycobacterial Fatty

Figure 8. Measurement of intrinsic fluorescence of FadD13 and
its mutants. A. Effect of chemical denaturation on fluorescence emission
spectrum of native FadD13. The protein was incubated with 7.2 M
guanidine hydrochloride for 24 hours. The figure shows the fluorescence
spectra for native and denatured protein (excitation wavelength -
280 nm). B. Fluorescence emission spectra of native FadD13 (NP) and its
mutants (excitation wavelength - 280 nm). C. Fluorescence emission
spectra of native FadD13 (NP) and its mutants as a function of
temperature. A protein concentration of 0.1 mg/ml in 50 mM sodium
phosphate buffer pH 8.0 was used for the measurements. The Excitation
and emission wavelengths used were 280 nm and 340 nm, respectively.
doi:10.1371/journal.pone.0008387.g008
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Acyl-CoA Synthetases, whereas most other FadD enzymes from

mycobacteria as well as from other origins have the prevalence of a

glycine residue at this locus. As observed in the structure (Fig. 10D),

the ATP binding site mainly comprises of two loops encompassing

motif I and motif II. A drastic effect on the Km values of ATP for

K172A and A302G mutants was confirmed by the interaction of

these residues with the ATP molecule.

FadD13 showed a markedly reduced proteolysis when the

protein was pre-incubated with ATP (Fig. S2A), which suggests

that adenylate formation results in the conformational changes in

the structure of FadD13 leading to more stability and resistance to

the action of proteinase K. A concomitantly reduced fluorescence

intensity and aggregation property of FadD13 in the presence of

ATP (Fig. S2B) further confirms the positive influence of this

ligand binding on the structural integrity of the protein. The

structural studies with ttLC-FACS have revealed that the presence

of ATP renders the protein in a more stable and compact form

[23]. This kind of compactness in the structure of FadD13 will lead

to reduced inter-atomic distances between phosphate group of

ATP and the P-loop of the protein thus making the interactions for

binding more stronger. In the present study, although, both fatty

acid as well as ATP binding protected FadD13 from proteolysis,

this protective effect was markedly enhanced when the protein was

incubated with both the ligands together (Fig. S2A) and the effect

was more than additive suggesting that a simultaneous binding of

these ligands may have a positively synergistic effect on the

conformation and rigidity of the protein.

The preference of FadD13 for fatty acids of various chain

lengths was explored. Although, the protein utilized a number of

fatty acids as substrate such as propionic acid, hexanoic acid,

decanoic acid, lauric acid, palmitic acid, stearic acid and oleic acid

(data not shown) as is the case with many other known Fatty Acyl-

CoA Synthetases [22,39], it exhibited a significantly higher activity

for C26 and C24 fatty acids as compared to C16 fatty acids (Fig. 3).

Moreover, the docking studies corroborate with the activity data

showing a higher binding energy for C24 fatty acid as compared to

C16 fatty acid (Fig. 10E and 10F). In view of our earlier

observations, the preference of FadD13 for C26/C24 fatty acids

further confirms the role of mymA operon in remodeling the

envelope of intracellular M.tb under acidic conditions [9]. Fisher

et. al. have demonstrated that under acidic conditions, a 4–5 fold

upregulation of the mymA operon is accompanied by a two fold

reduction in the expression of FAS-II operon associated genes [7]

responsible for the synthesis of meromycolates [40], which on

conjugation with very long chain fatty acids like C24 and C26 lead

to the formation of mycolic acids [40]. Thus, downregulation of

FAS-II would lead to an accumulation of these long chain fatty

acids, which are known to be toxic for the cell [41]. Therefore, it is

believed that a concomitant upregulation of the mymA operon

under these conditions will result in the utilization of these very

long chain fatty acids, effectively modifying and further transfer-

ring them to appropriate biological acceptor on the cell wall for its

remodeling [9]. Thus, upregulation of the mymA operon might

serve a two fold purpose, i.e., it can serve as a sink for the

accumulated C24 and C26 fatty acids to prevent toxicity as well as

generate appropriate lipids required by the pathogen under the

acidic conditions. However, the exact product of mymA operon

needs to be elucidated.

FadD13 depicted biphasic kinetics for fatty acids (Fig. 2A, 2B) in

contrast to the classical Michaelis-Menten kinetics reported in the

case of other analogous proteins [42,43]. The precise reason for

this observed biphasic kinetics for fatty acid cannot be discerned at

present, although, several plausible reasons for such kinetic

behavior could involve the presence of multiple substrate binding

sites with different binding affinities or binding of substrate in

more than one orientation with different affinities [44,45]. The

understanding of this rather unusual kinetic behavior would

require further investigation.

In conclusion, our study provides a significant understanding of

the FadD13 protein including the identification of residues

important for its activity as well as in the maintenance of

structural integrity. Our results demonstrate Lys487 as an essential

residue in the activity of FadD13 whereas Trp377 and Val209 were

established to be important residues in the structural stability.

Comparison of the kinetic parameters related to FadD13 and its

mutants showed residues Lys172 and Ala302 to be involved in the

binding of ATP to the active site and Ser404 in the binding of CoA.

We also show a synergistic influence of fatty acid and ATP binding

on the conformation and rigidity of FadD13. Additionally, the

docking studies using the homology model of FadD13 substantiate

the observations of mutational studies. FadD13 exhibits preference

for C26/C24 fatty acids, which in the light of earlier reported

observations further confirms the role of mymA operon in

remodeling the cell envelope of intracellular M.tb under acidic

Figure 9. Aggregation properties of native FadD13 and its mutants. Analysis of native FadD13 and its mutants on 7.5% non-reducing non-
denaturing polyacrylamide gel (A) and 10% SDS polyacrylamide gel (B). M-molecular weight markers. For both A and B - lane 1- native FadD13, lane
2- K172A, lane 3- V209D, lane 4- A211G, lane 5-A302G, lane 6- W377A, lane 7- D382A, lane 8- S404A and lane 9- K487A.
doi:10.1371/journal.pone.0008387.g009
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Figure 10. Homology modeling based three-dimensional structure of FadD13. A. Overall structure of FadD13 model. The FadD13 model
was generated by using the SWISS-MODEL server based on the template with pdb id: 2QVY. A cartoon representation of FadD13 structure shows the
major domains and the connecting linker region. The figure was prepared by using the PyMol Molecular Viewer. B. Active site of FadD13. The figure
depicts the predicted active site (shown as pink balls). The active site prediction as well as the preparation of the figure was carried out by using the
CastP server. C. Location of the residues selected for mutagenesis. The 8 residues targeted for mutation in this study are shown in stick model (pink).
The figure was prepared by using VMD 1.8.06. D. Docking of ATP to the active site. The figure shows the interaction of ATP (red) with the residues
(magenta, in stick model) that were found to be critical for ATP binding by mutational studies. The phosphate binding loop (motif I) and the adenine
binding motif (motif II) are shown in blue and orange, respectively. The interaction between the residues and ATP are shown in yellow with the inter-
atomic distances marked (also in yellow). E. Docking of Palmitic acid (C16) to the active site. F. Docking of Tetracosanoic acid (C24) to the active site.
Figure E and F shows Palmitic acid (red) and Tetracosanoic acid (cyan), respectively, at the active site of FadD13 in close proximity to the critical
residues (magenta) identified on the basis of mutational analysis. Figures D, E and F were prepared by using PyMol Molecular Viewer.
doi:10.1371/journal.pone.0008387.g010
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conditions. We believe that the findings of this study would

provide valuable inputs in the development of inhibitors against

mymA operon, an important target for the development of

antitubercular drugs.

Materials and Methods

Materials, Bacterial Strains and Growth Conditions
Molecular biology methods employed in this study were

performed according to the standard protocols by Sambrook

and Russell [46]. All radiolabeled chemicals were procured from

American Radiolabeled Chemicals, Inc. (St. Louis, MO, USA)

and other reagents were obtained from Sigma-Aldrich Inc. (St.

Louis, MO, USA). Quik change II XL site directed mutagenesis

kit was obtained from Stratagene (La Jolla, CA, USA). Ni-NTA

superflow resin was procured from Qiagen (Spoorstraat, KJ Venlo,

The Netherlands). PAGE purified mutagenic primers were

obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). Gel

Filtration standard markers were obtained from Biorad Labora-

tories (Hercules, CA, USA). E.coli BL21 (lDE3) cells were grown

in Luria Bertani (LB) broth at 37uC with constant shaking at 200

rpm. Mycobacterium smegmatis(M.sm) mc2155 cells were grown by

using either Difco Middlebrook (MB) 7H9 supplemented with

0.5% glycerol, 0.2% tween-80 at 37uC with constant shaking at

200 rpm or on Difco Middlebrook 7H11 agar. The Difco

Middlebrook media were obtained from Becton Dickinson and

Company (Sparks, MD, USA). Whenever appropriate, antibiotics

were added at a concentration of 50 mg/ml ampicillin (Amp),

25 mg/ml Kanamycin (Kan) and 150 mg/ml hygromycin (Hyg) for

E.coli. For M.sm, hygromycin and Trimethoprim (Trim) were used

at a concentration of 50 mg/ml.

Cloning of fadD13 Gene
Based on the sequence available from the EMBL/Genbank, the

primers 59catatgaagaacattggctggatgctcag 39 (forward primer

containing NdeI restriction site) and 59ctcgagtcacttcggcaccgtcgccg

39 (reverse primer containing XhoI restriction site) were used to

amplify the gene encoding Fatty Acyl-CoA Synthetase (Rv3089,

FadD13) by using M.tb genomic DNA as template. The PCR

amplicon was cloned into plitmus38 at EcoRV site resulting in

plit38.fad. For expression studies, the gene was excised out by

using NdeI and XhoI restriction enzymes and was cloned into

pET28c at the same sites resulting in pET28c.fad.

Expression and Purification of Recombinant FadD13
E.coli BL21 (lDE3) cells were transformed with pET28c.fad, the

transformants were grown to mid-logarithmic phase in LB media

containing 25 mg/ml of kanamycin and synthesis of FadD13

protein was induced by the addition of 1 mM isoproryl-1-thio-b-

D-galactopyranoside (IPTG) and the cells were harvested after

incubation at 30uC for 3 hours with a constant shaking at 200

rpm. Induction in the case of mutant W377A was carried out at

18uC for 16 hours. The harvested cells were suspended in lysis

buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole,

20% glycerol, 1 mM PMSF, 2 mM b-mercaptoethanol, pH 8.0)

and lysed by using French press (SLM Instruments, Inc., Urbana,

IL, USA). Purification was carried out by Ni-NTA agarose affinity

chromatography. Briefly, the cell-extract-Ni-NTA agarose slurry

was kept for binding on a rotary shaker for 2 hours at 4uC. After

removal of unbound proteins (at 2000 g for 2 minutes), the resin

was washed twice with lysis buffer. For higher stringency, washings

were repeated twice with lysis buffer containing 20 mM imidazole

and once with lysis buffer containing 50 mM imidazole. The

protein was eluted by using lysis buffer containing 250 mM

imidazole and purification was monitored on 10% SDS-poly-

acrylamide gel. The purified his-tagged protein was dialyzed

against 1X PBS before use. Protein concentration was determined

by Bradford’s method [47] with bovine serum albumin as the

standard.

Determination of Oligomeric Nature of FadD13
The oligomeric status of FadD13 was determined by using

Mycobacterial-Protein Fragment Complementation [20]. For

this, the gene encoding FadD13 was excised out from

pET28c.fad, end repaired by Klenow polymerase and cloned

into pUAB300 and pUAB400 (digested with BamHI and HindIII,

respectively) resulting in pUAB300.fad and pUAB400.fad lead-

ing to production of FadD13[F1,2] and FadD13[F3], respectively.

The digested vectors were end repaired and dephosphorylated

before cloning. M.sm mc2155 cells were independently electropo-

rated with M-PFC plasmids producing either (1)–FadD13[F1,2]/

FadD13[F3], (2)–hsp60[F1,2]/hsp60[F3], (3)–GCN4[F1,2]/GCN4[F3],

(4) –FadD13[F1,2]/hsp60[F3], (5)–hsp60[F1,2]/FadD13[F3] and the

transformants were selected on MB 7H11 agar containing

25 mg/ml kanamycin and 50 mg/ml hygromycin. The transfor-

mants were analyzed for oligomerization of FadD13 by their ability

to grow in the presence of 50 mg/ml Trimethoprim [20].

Determination of Subunit Assembly by Gel Filtration
Chromatography

A sephadex G-200 column (2.5 cm692 cm) equilibrated with

20 mM Tris-HCl pH 8.0, 0.1 M NaCl, 10% glycerol and 0.02%

sodium azide was used to determine the subunit assembly of

FadD13. 5 mg of purified FadD13 was resolved on the column

and its molecular weight was determined by comparison with the

known molecular weight standards.

Measurement of Activity of Fatty Acyl-CoA Synthetase
The Fatty Acyl-CoA Synthetase activity was measured by using

the enzymatic assay as described earlier [17]. The purified protein

was incubated with 10 mM DTT for 2 hours prior to its use to

ensure the removal of any intermolecular disulfides leading to

formation of aggregates. Briefly, the reaction mixture contained

2 mM ATP, 10 mM MgCl2, 1 mM CoA, 50 mM 14C radiolabeled

palmitic acid and 1 mg protein. The reaction volume was made up

to 15 ml by 20 mM Tris-HCl pH 8.0. The reaction was carried

out at 37uC for 5 minutes and was terminated by the addition of

5 ml of 10% acetic acid. The samples were resolved on silica

coated TLC plates at 4uC by using the solvent system

Butanol:water:acetic acid (80:40:25). The resolved radioactive

bands were visualized by using phosphorimager (model-FLA-

9000, FUJIFILM Corporation, Minato-ku, Tokyo, Japan) and the

band intensity was quantified by using the Multi Gauge software

(FUJIFILM Corporation, Minato-ku, Tokyo, Japan). The amount

of radiolabeled product formed was calculated on the basis of

comparison with the known amounts of radiolabeled fatty acids.

Preference of FadD13 for Fatty Acid Chain Length
14C radiolabeled palmitic acid (C16), tetracosanoic acid (C24)

and hexacosanoic acid (C26) were used as substrates for FadD13.

Due to the insoluble nature of C24 and C26 fatty acids, they were

dried to completely remove alcohol and resuspended for

solubilization in 10 mg/ml of a-cyclodextrin prepared in 20 mM

Tris-HCl pH 8.0 [18,19] to a final concentration of 34.1 mM and

48.5 mM, respectively. The activity of FadD13 was determined by

using 15 mM of each of the fatty acids separately in the presence of

equal percentage of a-cyclodextrin.
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Site Directed Mutagenesis of FadD13
Site directed mutagenesis was carried out by using Quik change II

XL site directed mutagenesis kit and mutagenic primers. Sequences of

the primers used are given in Table 1. The plasmid plit38.fad (4.3 Kb)

containing the gene encoding FadD13 was used as the template for

mutagenesis. Mutagenesis was carried out as per the manufacturer’s

recommendations and the resulting mutations were confirmed by

nucleotide sequencing. For expression studies, the mutated insert was

excised out of plit38.fad and cloned into pET28c by using the same

cloning strategy as described above. The expression and purification

procedure was performed similarly as for the native protein.

Limited Proteolysis
Limited proteolysis was performed by incubating 15 mg of

protein and proteinase K in a ratio of 1:1000 or 1:2000

(protease:protein by mass) in 1X PBS pH 7.2 containing 10 mM

MgCl2 at 25uC. Ligands, when present, were added prior to the

addition of protease at a concentration of 2 mM (ATP), 1 mM

(CoA) and 50 mM (palmitic acid). Samples were withdrawn at

various time intervals and immediately boiled at 100uC in the

presence of SDS gel loading dye. The pattern of proteolysis was

monitored by electrophoresis using 10% SDS-polyacrylamide gel.

Circular Dichroism Studies
Far-UV CD spectra were recorded on J-815 spectropolarimeter

(JASCO Corporation, Hachioji-shi, Tokyo, Japan). An average of

3 scans was taken and the data was converted to molar ellipticity

units by using the formula [h] = millidegrees/(pathlength in

millimeters 6 molar concentration of protein 6 number of

residues). The spectra were obtained at an interval of 0.1 nm with

a scanning speed of 50 nm/min at 20uC by using a 0.1 cm path

length quartz cuvette. A protein concentration of 0.2 mg/ml in

10 mM sodium phosphate, pH 8.0 was employed.

Fluorescence Studies
All the fluorescence measurements were carried out on a Cary

Varian Eclipse Fluorescence spectrophotometer (Varian, Inc.

Hansen Way, Palo Alto, CA, USA) having an attached Peltier

temperature controller. A protein concentration of 0.1 mg/ml in

50 mM sodium phosphate, pH 8.0 was used for the measure-

ments. An excitation wavelength of 280 nm with an excitation slit

of 2.5 nm and an emission slit of 5 nm was used and the

fluorescence was recorded from 300 nm to 450 nm. Thermal

denaturation experiments were performed by using a temperature

range of 20uC to 90uC at an excitation wavelength of 280 nm and

an emission wavelength of 340 nm at a scan rate of 1uC/min.

Multiple Sequence Alignment, Homology Modeling and
Ligand Docking of FadD13

The multiple sequence alignment of FadD13 with homologous

proteins of Fatty Acyl-CoA Synthetase family was generated by

using the ClustalW software [48]. The three dimensional homology

model of FadD13 was generated with the SWISS-MODEL server

[49,50] by using the X-ray crystal structure of 4-Chlorobenzoyl-

CoA Ligase/Synthetase of Alcaligenes sp. al3007 (Protein Data Base

Code-2QVY) [32]. The model generated was used for subsequent

studies after verification with RAMPAGE [51] and ERRAT [52]

and energy evaluation by using the Swis-Pdb Viewer [53]. The

active site prediction for the model was performed by using the

CastP [34] server and the prediction having the largest area was

selected as the best active site. The structures for ATP and Palmitic

acid were obtained from the crystal structure of Human

Cobalamine adenosyltransferase bound to ATP (pdb id: 2IDX)

[54] and the Molecule Database [55], respectively. Structure of

Tetracosanoic acid was generated by using the PRODRG software

[56]. The docking studies were performed by using the software

AutoDock Tools 4.1 [57] and the grid site for docking of ligands was

based on the active site prediction. Ten conformations for each

substrate were obtained. The best conformations were selected on

the basis of combination of binding energies as well as location of the

docking. Images for the FadD13 model and the docking studies

were prepared by using Pymol [58] whereas the images showing the

active site and location of residues selected for mutagenesis were

generated by using CastP [34] and VMD [59], respectively.

Supporting Information

Figure S1 Sub-cellular localization of FadD13 mutants. The

induced culture was harvested followed by sonication of the

resuspended cells. After centrifugation of the sonicated extract at

16,000 g for 30 minutes, to separate the cytosolic proteins and

inclusion bodies, the localization of the native FadD13 (NP) and its

mutants was studied by analyzing the fractions on a 10% SDS-

polyacryalmide gel. M-Molecular weight markers, P- proteins in

the inclusion bodies, S- proteins in the cytosolic fraction.

Found at: doi:10.1371/journal.pone.0008387.s001 (6.15 MB TIF)

Figure S2 Study of the role of the targeted residues in the structural

stablity of FadD13. A. Limited proteolysis of FadD13 in the absence

and presence of substrates. A ratio of 1:1000 and 1:2000 (proteinase K:

protein) was employed and the reactions were carried out for 10

minutes and 30 minutes by using 15ÎJg of protein. B. Fluorescence

emission spectrum of native FadD13 in the absence and presence of

2 mM ATP (excitation wavelength - 280 nm). C. Limited proteolysis

of native FadD13 (NP) and its mutants. The proteolysis was carried out

at a proteinase K: protein ratio of 1:2000 by using 15ÎJg of protein.

Found at: doi:10.1371/journal.pone.0008387.s002 (7.83 MB TIF)
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