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Abstract: The purpose of this study was to investigate the effect of high molecular weight hyaluronan
(HMWHA) eye drops on subbasal corneal nerves in patients suffering from severe dry eye disease
(DED) and to evaluate the damage of subbasal corneal nerves associated with severe DED. Designed
as an international, multicenter study, 16 patients with symptoms of at least an Ocular Surface
Disease Index (OSDI) score of 33, and corneal fluorescein staining (CFS) of at least Oxford grade
3, were included and randomized into two study arms. The control group continued to use their
individual optimum artificial tears over the study period of eight weeks; in the verum group,
the artificial tears were substituted by eye drops containing 0.15% HMWHA. At the baseline visit,
and after eight weeks, the subbasal nerve plexus of 16 patients were assessed by confocal laser
scanning microscopy (CSLM). The images were submitted to a masked reading center for evaluation.
Results showed a significant increase of total nerve fiber lengths (CNFL) in the HMWHA group
(p = 0.030) when compared to the control group, where the total subbasal CNFL did not significantly
change from baseline to week 8. We concluded that in severe DED patients, HMWHA from topically
applied eye drops could cross the epithelial barrier and reach the subbasal nerve plexus, where it
exercised a trophic effect.

Keywords: dry eye disease; severe keratitis; diabetes; neuropathic keratopathy; neuropathy; nerve
growth; neurotrophic

1. Introduction

Millions of people worldwide are affected by dry eye disease (DED), a heterogeneous, complex
disorder of the ocular surface [1]. Within the current concept of a staged treatment, lubricating,
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hydrating teardrops are the standard long-term therapy for DED [2]. Hyaluronan (HA) eye drops,
aiming to increase tear viscosity and enhancing lubrication, are one of the options favored, particularly
in Europe and Asia [2]. The combination of concentration and chain length of the HA molecules
contained in these eye drops determines their viscoelastic and mucoadhesive properties, resulting in
more or less entanglement and rheological synergism with the mucins dissolved in the muco-aqueous
layer of the tear film. These physical properties of HA eye drops contribute to minimizing the
friction between the moving eyelid and the surface of the eyeball during blinking, thus reducing
known stimuli of ocular surface inflammation [3]. High molecular weight hyaluronan (HMWHA)
has an anti-inflammatory effect, whereas low molecular weight hyaluronan (LMWHA) promotes
inflammation [4,5]. A recent study confirmed in an environmental dry eye stress model in mice that
HMWHA eye drops protect the ocular surface from mechanical damage and inflammation better than
LMWHA [6]. Future clinical investigations of HMWHA eye drops in humans suffering from chronic
ocular surface inflammation should, therefore, include inflammation markers.

The current treatment for severe DED is mainly based on the model of the self-maintaining
circle of chronic inflammation [7–10]. The underlying pathomechanism of severe dry eye disease
focuses on inflammation in various situations such as in autoimmune diseases, as well as damage
of corneal nerves, for example, in diabetes mellitus or aging [11]. The cornea is by far the most
densely innervated tissue of the human body [12]. Nerves provide important trophic support to the
corneal epithelium and contribute to ocular surface homeostasis [12–16]. Activated corneal nerves
release neuropeptides that contribute to neurogenic inflammation [17–19]. Denervation eliminates the
neurotrophic support causing neuroparalytic keratitis and breakdown of the corneal epithelium [17,20].
On the other hand, trophic interactions are essential for neuronal survival [21–23]. Moreover, there is
cross-talk between glia, the extracellular matrix, and neurons [24]. Attrition within the ocular epithelia
has been recognized as a lubrication deficit induced factor, enhancing inflammation [25]. Due to these
complex interactions, severe DED is regularly associated with compromised corneal nerves [26–30].
This, in turn, results in dysregulation of tear production and blink reflex [31]. Corneal innervation
disorders as a primary pathogenic mechanism are due to the absence of ocular pain only diagnosed
in a late-stage, although they are often accompanied by keratopathy and delayed epithelial wound
healing, sometimes leading to corneal ulcerations and vision loss [32–34]. There is a lack of treatments
targeting nerve regeneration [34,35].

Patients suffering from neuropathic ocular pain tend to respond poorly to the treatment with
lubricant eye drops [36,37]. Experimental evidence suggests that HMWHA, but not LMWHA,
can suppress pain in nociceptive afferent nerves [38–40], but it is not yet proven whether or not
topically applied HMWHA can reduce ocular pain. Moreover, the possible role of hyaluronan in the
proliferation of nerve cells has raised attention [24,41,42]. Therefore, we decided to study the potential
influence of HMWHA on the corneal nerves within the HYLAN M study. The main intention of
the HYLAN M study was to investigate if symptoms and/or signs of patients suffering from severe
DED could be improved by substituting the best treatment lubricant eye drops with HMWHA eye
drops. In vivo confocal microscopy (IVCM), in particular, when performed as confocal laser scanning
microscopy (CSLM), is the gold standard in assessing the subbasal corneal nerve plexus [43–46]. Within
the HYLAN M study, CSLM images were taken at baseline and after eight weeks of treatment and
were sent to a masked reading center for evaluation.

2. Experimental Section

2.1. Study Design

The HYLAN M study, a multicenter prospective randomized, open-label study, was performed in
11 centers in eight countries. Details have been published elsewhere [47]. The study adhered to the
Declaration of Helsinki, was approved by ethics committees of all countries involved, and registered
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on the database of the European Database for Medical Devices (EUDAMED) under the registration
number CIV-16-06-015964.

Patients suffering from severe DED were randomized into two parallel arms. The control group
continued with their currently-used therapy by the time of inclusion. In the verum group (Comfort
Shield group), the individual lubricant eye drops used by each patient by the time of inclusion
were replaced by eye drops containing 0.15% HMWHA (Comfort Shield® eye drops, i.com medical
GmbH, Munich, Germany). Concomitant treatment for dry eye, like cyclosporine eye drops, remained
unchanged in both arms.

Demographic data and medical history were recorded during the baseline visits. Symptoms and
signs associated with DED were assessed at the baseline visit, at week 4, and week 8 follow-up visits,
respectively (see Table 1).

Table 1. Diagnostic testing schedule with optional tests in round brackets.

Test Baseline Week 4 Week 8

OSDI X X X
Dropping frequency X X X

BCVA X X X
CFS X X X

TBUT X X X
Schirmer 1 X X

Tear osmolarity X X
IOP X X

LWE, Korb score [48] (X) (X)
Yamaguchi score [49] (X) (X)
Confocal microscopy (X) (X)

Abbreviations: Ocular Surface Disease Index (OSDI), best corrected visual acuity (BCVA), corneal fluorescein
staining (CFS), tear film break-up time (TBUT), intraocular pressure (IOP), and lid wiper epitheliopathy (LWE).

The study centers were suggested to optionally take CSLM images at the baseline and week
eight visits and provide them to a masked reading center for assessment. Four out of 11 study
centers participated in this optional test. These four study centers provided CSLM images of all
their per-protocol patients; thus, the electronic randomization used throughout the HYLAN M study
also applied to the optional confocal microscopy study. The results of the assessment of the CSLM
images of these four study centers are the subject of this report. The results of the other diagnostic
tests performed, such as the Ocular Surface Disease Index (OSDI), dropping frequency, best corrected
visual acuity (BCVA), corneal fluorescein staining (CFS), tear film break-up time (TBUT), Schirmer 1,
tear osmolarity, intraocular pressure (IOP), lid wiper epitheliopathy (LWE), and Yamaguchi score of all
84 per-protocol patients included in the HYLAN M study have been previously reported [47].

2.2. Participants

Patients over 18 years suffering from DED of any underlying etiology were eligible for inclusion.
The patients had to be under stable, unchanged, dry eye therapy for at least two months (in case of
concomitant cyclosporine therapy, three months) by the time of inclusion. Patients were excluded if they
participated in any other clinical trial, suffered from eye diseases other than dry eyes, had ocular surgery
less than three months prior to study inclusion, were using punctual plugs, or had masquerading
conditions as identified by Karpecki [50]. Masquerading conditions are conjunctivochalasis, recurrent
corneal erosions, epithelial basement membrane dystrophy, mucus fishing syndrome, floppy eyelid
syndrome, giant papillary conjunctivitis, Salzmann’s nodular degeneration, and ocular rosacea.

As inclusion criteria for severe dry eye, the primary criteria, according to Baudouin et al.,
were chosen [51]. The dry eye symptoms were assessed using the Ocular Surface Disease Index (OSDI)
questionnaire, with an OSDI score of 33 or more being required for inclusion [52]. Corneal fluorescein
staining (CFS) was selected as a dry eye sign [53]. For inclusion, patients had to have at least one eye
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with CFS Oxford grade 3 or more, but no confluent CFS. The eyes with the higher staining score were
defined as study eyes.

2.3. Confocal Scanning Laser Microscopy

The Heidelberg Retina Tomograph (HRT 3), in combination with the Rostock Cornea Module
(Heidelberg Engineering GmbH, Heidelberg, Germany), was used for the in vivo assessment of the
corneal subbasal nerve plexus (SNP), as described previously [54,55]. Both eyes were anesthetized
with topical anesthetic and covered with artificial tears. To prevent eye movements, the patients were
asked to fixate on a spotlight with the unexamined eye.

Five non-overlapping images were taken in the central region of the cornea, close to the apex
and more than 0.5 mm apart from the inferior whorl (see Figure 1A for an example of an image and
Figure 1B after image processing by the reading center).

Figure 1. Single image from the subbasal nerve plexus (SNP) in an individual (A) and automatically
detected nerve fibers used for quantification (B).

Image processing and quantitative image analysis were performed by the reading center using
Mathematica (Version 11.3, Wolfram Research Inc., Champaign, IL, USA), as previously described [56].
The following SNP parameters were calculated: corneal nerve fiber length (CNFL), defined as the
total length of all nerve fibers per unit area (mm/mm2); corneal nerve fiber density (CNFD), defined
as the number of nerve fibers per unit area (n/mm2); corneal nerve branch density (CNBD), defined
as the number of branching points per unit area (n/mm2); average weighted corneal nerve fiber
tortuosity (CNFTo), reflected variability of nerve fiber directions and defined as absolute nerve fiber
curvature/nerve fiber length (µm−1); corneal nerve connection points (CNCP), defined as the number of
nerve fibers crossing the area boundary (connections/mm2); average corneal nerve single-fiber length
(CNSFL), defined as the average length of nerve fibers (µm); and average weighted corneal nerve fiber
thickness (CNFTh), measured as mean thickness perpendicular to the nerve fiber course (µm).

2.4. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics (Version 22, IBM Corp., Armonk,
New York, NY, USA). Descriptive statistics were calculated, and box plots were generated. Data were
examined for normal distribution using the Shapiro–Wilk test. Group comparisons were performed
using the Wilcoxon Signed Rank Test and the Mann–Whitney U test, respectively. The significance
level was determined to be p < 0.05.

3. Results

3.1. Participant Demography

Table 2 contains the socio-demographic characteristics of the patients with the CSLM assessment
of the SNP.
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Table 2. Socio-demographic characteristics according to the treatment arm (n = 16).

Comfort Shield
n = 8

Control
n = 8

Age (years) n 8 8
mean (SD) 59.5 (9.2) 61.6 (18.4)
min, max 36, 77 47, 73

Sex n (%) n 8 8
female 6 (75) 6 (75)
male 2 (25) 2 (25)

Medical History n 8 8
Sjögren syndrome 2 3

rheumatoid disease 3 2
rheumatoid + thyroid disease 1

thyroid disease 1
Graves disease + betablocker 1

diabetes mellitus + betablocker 1
no dry eye related disease 1 1

3.2. Confocal Microscopy Results

Five CSLM images of eight patients of the control group and eight patients of the Comfort
Shield group taken at the end of the baseline visit and at the end of the week 8 visit were analyzed
(see examples in Figure 2).

Figure 2. Typical SNP images of subjects from the control and study group, as well as a schematic
representation of detected nerve fibers used for characterization of the SNP at baseline and after 8 weeks
of treatment.

We found a statistically significant difference in CNFL between baseline and the eight weeks
follow-up visit; the Comfort Shield group showed a significant difference in CNFL (p = 0.030) contrary
to the control group (p = 0.294). CNFL was comparable for Comfort Shield and control at baseline
(p = 0.793) and showed a significant difference after eight weeks (p = 0.031). Possibly due to the small
number of patients, we did not find significant differences for the other SNP parameters (CNFD, CNBD,
CNFTo, CNCP, CNSFL, CNFTh). Moreover, patients suffering from severe dry eye generally do
not have a well-developed SNP, and there was a lot of foreign tissue in the vicinity of the SNP that
complicated the image analysis. Figure 3 summarized the CNFL findings of the Comfort Shield group
and the control group at baseline and eight weeks visit.
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Figure 3. CNFL of the Comfort Shield group and the control group at baseline and eight weeks.

4. Discussion

Due to the heterogeneous, multicausal nature of DED, particularly in patients suffering from
severe, chronic DED, a personalized clinical management resulting in an individualized optimum
therapy is required [57]. Only patients under stable therapy had been included in the HYLAN M
study, and their optimum individual therapy served as a control in comparison to patients in which
0.15% HMWHA eye drops were tested. The assessment of the subbasal corneal nerve plexus was
an optional test in addition to the standard diagnostic test battery of the study. Four out of 11 study
centers provided CSLM images from 16 per-protocol patients, eight each in the Comfort Shield group
and in the control group. The SNP is usually not well structured in severe dry eye disease [58]. Due to
the small number of patients, only the results of CNFL showed a significant difference between the
two study arms. This is in accordance with other studies reporting that CNFL is the most reproducible
parameter in the evaluation of IVCM images of the subbasal nerve plexus [28,59–65].

Until recently, HA eye drops had been applied as a lubricating, hydrating, and mechanically
buffering tear substitute [66]. It was known that the apical surface of the superficial epithelial cells
of the cornea and conjunctiva have HA receptors (CD44 and HARE), which can bind HA and thus
support the antiadhesive properties of the glycocalyx [67–71]. HMWHA, but not LMWHA, can also
adhere to the membrane-bound mucins of the glycocalyx, thus strengthening the cellular barrier of the
ocular surface [72]. HA is an essential part of the extracellular matrix (ECM) and plays an important
molecular weight dependent role in wound healing and immunoregulation [4,73–78]. Disturbed
immunoregulation involving chronic inflammation, which triggers a vicious circle, is currently
considered the characteristics of severe DED [10]. HMWHA enables cross-bridging between the HA
receptors of adjacent cells and can thus contribute to the mechanical stabilization of the wing cell
layers of the corneal epithelium [79–81]. Reactive oxygen species (ROS) formed during inflammatory
processes effectively cleave HMWHA, which in turn enhances the inflammatory process and weakens
the cross-bridging function of HA between epithelial cells [82]. So far, it had been unknown whether
HMWHA from topically applied eye drops can, in a situation of chronic ocular inflammation, pass the
ocular surface barrier to recover the homeostatic HA weight distribution in the extracellular matrix.
The first evidence came from an animal experiment where 0.15% HMWHA eye drops were compared
with 0.1% and 0.3% LMWHA eye drops with respect to their ability to prevent and treat DED caused
by environmental stress [6]. The 0.15% HMWHA eye drops proved superiority with respect to the
prevention and treatment of inflammation and stabilization of aqueous tear secretion and mucin
production [6].

The HYLAN M study indicated that topically applied HMWHA could pass the intercellular
barrier of the corneal epithelium. By changing the extracellular matrix in the proximity of the subbasal
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nerve plexus, this could result in trophic effects reflected in the significant regeneration of compromised
nerves. This also provided evidence that HMWHA becomes available in the ECM in all cell layers
of the corneal epithelium and thus can contribute to regaining ocular surface homeostasis in eyes
with chronic inflammation. Further methods detecting specific anti-inflammatory and neurotrophic
factors such as nerve growth factor (NGF) in the tear film or in the ocular surface will provide valuable
additional information in future clinical studies. On the other hand, the study showed that within
eight weeks of treatment, simultaneously with nerve growth, the symptoms of patients with severe
DED improved significantly. According to the results of the HYLAN M study, in combination with the
animal study [6], we may conclude that 0.15% HMWHA eye drops grant a holistic approach in the
treatment of DED, simultaneously addressing the various and complex interacting pathomechanisms
of the disease: lubrication, hydration, stabilization of glycocalyx and barrier function, downregulation
of inflammation, trophic support to corneal nerves, increasing goblet cell counts and expression of
MUC5AC [83], support of aqueous tear production, and reduction of pain.

It needs to be emphasized that the effect of HMWHA on nerve regeneration has only been
investigated in a very small number of eyes. Hence, conclusions on significance in numbers cannot
be given. Nevertheless, the high incidence of nerve regeneration during treatment with HMWHA
was clearly different from the unchanged situation in the control group. Future studies with a higher
number of eyes and a primary focus on nerve regeneration will provide further details.

As the HYLAN M study included dry eye patients with any disease etiology, it seems likely
that patients with corneal nerve injury or degeneration as an underlying cause for ocular surface
disease or neurotrophic keratopathy would benefit from treatment with HMWHA eye drops [11,84].
The causes may include acute nerve injury like in ocular surgery, refractive surgery, corneal cross-linking,
chemical burns, or ocular trauma [85,86]. Similarly, HMWHA eye drops may also be effective in
promoting neuroregeneration in progressing peripheral neuropathies associated with ocular infections,
keratoconus, small-fiber neuropathy, diabetes mellitus, or simply aging [87–90].

The progressive loss of corneal sensory innervation of any etiology may result in neurotrophic
keratopathy (NK) [15,16,35,91–94]. NK is characterized by corneal anesthesia and is a condition that is
very difficult to treat, especially as for the required regeneration of trigeminal terminal nerve fibers,
no such treatment is currently available [35,93,95]. Medical management with lubricating eye drops,
anti-inflammatory agents, and anti-proteases provide unspecific temporary relief in NK but do not
prevent disease progression [93,96]. Whereas some degree of inflammation promotes nerve regeneration,
excessive inflammation may lead to a loss of corneal innervation and subsequent development of
NK [15]. As corneal nerve regeneration and inflammation are intertwined, the therapeutic strategy
must consider the interaction of both pathways [15]. HMWHA eye drops seem to offer a promising
treatment option in this situation.

According to the International Diabetes Federation (IDF), more than 400 million people worldwide
suffer from diabetes mellitus (DM). DM is associated with a progressive loss of peripheral nerves.
Corneal nerve damage may serve as an early indicator in DM [63,97–99]. The prevalence of corneal
neuropathy in diabetic patients is approximately 50% [32,100–103]. However, corneal neuropathy, as a
manifestation of DM, is underrated due to the absence of ocular discomfort and pain [33,98,103,104].
Persistent corneal epithelial erosions, superficial punctate keratopathy, delayed epithelial regeneration,
and decreased sensitivity are associated with diabetic keratopathy [32,34,105,106]. Diabetic keratopathy
is a significant clinical problem and a progressing disease, and currently, no effective treatment is
available [34]. IVCM has proven to be a valuable and reliable diagnostic tool to assess nerve fiber
damage and assess improvement of risk factors for diabetic neuropathy, thus allowing visualizing
treatment success [59,107,108]. Having shown that 0.15% HMWHA eye drops support corneal nerve
regeneration allows the assumption that these eye drops will also prove as an effective preventive
therapy against the progression of diabetic keratopathy. This may contribute to lower the enormous
global economic burden of DM [109]. The results reported here were obtained from a small number of
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patients. This report is, therefore, intended to encourage further clinical research rather than to provide
comprehensive answers or interpretation.

5. Conclusions

This is the first evidence that topically applied HMWHA eye drops induced a significant
neurotrophic effect on the subbasal nerve plexus in humans. When applied after any kind of ocular
surgery, HMWHA eye drops may serve to support the recovery of damaged nerves. Moreover,
HMWHA eye drops offered a new therapeutic option in preventing and treating ocular surface
disease, in particular diseases associated with nerve damage like diabetic keratopathy and all forms
of neuropathic keratopathy. Future research will focus on the question if patients with diabetic
keratopathy and other forms of neuropathic keratopathy could benefit from HMWHA eye drops.
HMWHA eye drops provide a holistic approach while simultaneously addressing different interacting
pathomechanisms of DED.
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