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Abstract

Background: Colon cancer (CC) is a heterogeneous disease influenced by complex gene networks. As such, the
relationship between networks and CC should be elucidated to obtain further insights into tumour biology.

Results: Weighted gene co-expression network analysis, a powerful technique used to extract co-expressed gene
networks from mRNA expressions, was conducted to identify 11 co-regulated modules in a discovery dataset with
461 patients.
A transcriptional module enriched in cell cycle processes was correlated with the recurrence-free survival of the CC
patients in the discovery (HR = 0.59; 95% CI = 0.42–0.81) and validation (HR = 0.51; 95% CI = 0.25–1.05) datasets. The
prognostic potential of the hub gene Centromere Protein-A (CENPA) was also identified and the upregulation of
this gene was associated with good survival. Another cell cycle phase-related gene module was correlated with the
survival of the patients with a KRAS mutation CC subtype. The downregulation of several genes, including those
found in this co-expression module, such as cyclin-dependent kinase 1 (CDK1), was associated with poor survival.

Conclusion: Network-based approaches may facilitate the discovery of biomarkers for the prognosis of a subset of
patients with stage II or III CC, these approaches may also help direct personalised therapies.
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Background
Colon cancer (CC), the third most common cancer
worldwide, is one of the major causes of tumour-related
death in the United States [1]. CC is a biologically
heterogeneous disease characterised by neoplasms de-
fined by discrete pathological properties and consequent
clinical results. Tumour, node and metastasis (TNM)
staging is a prognostic classification traditionally used in
clinical practice to select patients with CC for adjuvant
chemotherapy. However, TNM staging fails to accurately
predict recurrence in many CC patients who undergo
surgical therapy. For instance, approximately 10 to 20%
of patients with stage II colorectal cancer and 30 to 40% of
patients with stage III colorectal cancer develop recurrence.

Thus, prognostic and predictive factors should be devel-
oped to provide reliable information as a basis of medical
treatment decisions in routine clinical practices.
Our understanding of the extent of CC complexity has

been greatly enhanced through comprehensive studies
on molecular biomarkers. The molecular classification of
CC is based on a few commonly used biomarkers, such
as microsatellite instability (MSI), CpG island methylator
phenotype (CIMP), chromosomal instability and BRAF
and KRAS mutations [2, 3]. In a large population-based
study, five CC subtypes are defined on the basis of the
combinations of MSI, CIMP, and BRAF and KRAS
mutations, and these subtypes are associated with marked
differences in survival [4].
Microarray technology has been applied to investigate

gene expression profiles (GEPs) in CC; the extraction of
transcriptomics-based prognostic signatures has also
been extensively studied [5–8]. To the best of our know-
ledge, five GEP-related tests, namely, Oncotype DX® Colon
Cancer (Genomic Health, Inc.), ColoPrint® (Agendia NV),
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ColonPRS® (Signal Genetics, LLC), OncoDefender-CRC™
(Everist Genomics, Inc.) and GeneFx Colon (Precision
Therapeutics, Inc.), have been developed to examine CC.
However, multigene assays for clinical practices, such as
risk assessment and adjuvant treatment determination, have
yet to be designed [5, 9]. Furthermore, the repeatability of
CC-related GEP studies is poor possibly because CC is
composed of distinct molecular entities that may be devel-
oped through numerous functional biological pathways. As
a result, several prognostic signatures may correspond to
different entities of CC. Therefore, an early unsupervised
consensus hierarchical clustering of genome-wide mRNA
levels has prompted researchers to classify CC into six
distinct molecular subtypes [10].
The accumulation of large numbers of CC mRNA

datasets in several databases, such as GEO, provides an
opportunity to reanalyse the gene mRNA expression data
derived from different platforms and institutes (termed as
meta-analysis) and to define the objective classifications of
sample subtypes [11]. Integrated information from mul-
tiple studies can highly tolerate the heterogeneity associ-
ated with CC and the variability caused by microarray
techniques; such information also helps increase statistical
power as the number of samples is increased. Meta-
analyses have been applied to evaluate single genes in
studies on CC; for instance, a meta-analysis has been con-
ducted to identify the correlation of the overexpression of
the metastasis associated in colon cancer-1 (MACC1)
gene with poor disease-free survival [12]. Agostini et al.
conducted an integrative systematic approach for the
identification of prognostic biomarkers in rectal cancer
[13]. Large CC databases, such as Georgetown Database
of Cancer, have been developed to evaluate the association
of prognostic biomarkers with recurrence and to identify
the subgroup of patients who may benefit from adjuvant
chemotherapy [14].
Weighted gene co-expression network analysis (WGCNA)

has emerged as an effective method of multigene analysis to
discover the relationship between networks/genes and phe-
notypes. In WGCNA, gene modules are established from
mRNA expression data by using unsupervised hierarchical
clustering; thus, this technique does not depend on a
priori defined gene sets or pathways. The basic concept
of WGCNA involves a gene co-expression module,
which is a cluster of genes that maintains a consistent
expression pattern and possibly shares a common bio-
logical regulatory role [15]. WGCNA has been success-
fully applied to identify networks and biomarkers that can
be used to screen, diagnose and treat cancer. This tech-
nique has also been used to reveal the microRNA and
mRNA expression network implicated in prostate cancer
[16] and to identify the co-expression networks related to
proastrocytic differentiation in glioma [17]. Wirapati et al.
[18] and Clarke et al. [19] conducted WGCNA to identify

co-expressed gene modules among breast cancer pa-
tients on the basis of multiple microarray-based gene
expression datasets; Wirapati et al. [18] and Clarke et
al. [19] also explored the relationship of these tran-
scriptional modules with clinical variables, such as
tumour size and grade, survival outcomes related to
breast cancer as a whole and the corresponding mo-
lecular subtypes.
In this study, WGCNA was applied to analyse a dataset

obtained from a transcriptome comprising 461 patients
with stage II or III CC to identify gene modules and
biomarkers (hub genes) for the prognosis of CC patients.
Furthermore, our findings were confirmed via a validation
dataset with 111 CC patients.

Methods
Microarray-based mRNA expression datasets
We analysed two microarray datasets in CC. The raw
gene expression data were retrieved from the GEO data
repository (http://www.ncbi.nlm.nih.gov/geo/) with the
accession numbers GSE39582 [10] and GSE17536 [20].
In addition, we have labelled these datasets on the basis
of their GEO accession numbers. The discovery dataset
GSE39582 was used to generate network; by contrast,
GSE17536 was used as an independent validation data-
set. Our survival analysis was restricted to the subgroup
of the patients with stage II or III CC because the dis-
covery of reliable prognostic biomarkers is used for this
subgroup of patients. A large proportion of patients
with stage I CC unlikely provide benefits from adjuvant
chemotherapy because of their excellent prognosis after
surgical treatment is completed. Most of the stage IV
patients who are metastatic may die from the disease;
therefore, these patients should be analysed independently
for progression-free survival. Moreover, patients without
the recorded survival time were excluded from our ana-
lysis. After filtering was performed, the discovery and
validation datasets respectively containing 461 and 111
samples were originally generated using Affymetrix U133
Plus 2.0 chips. Clinicopathological variables (e.g. age,
tumour grade), biomarker gene mutation (BRAF and
KRAS) and recurrence-free survival (RFS, defined as the
time from surgery to the first recurrence and was cut off
in 5 years) were gathered for each dataset (Additional
file 1: Table S1). The microarray datasets were proc-
essed with Robust Multiarray Average algorithms by
utilising the ‘affy’ Bioconductor package. We used the
ComBat algorithm to adjust the expression data for po-
tential batch effects [21]. Before conducting WGCNA,
we filtered the probes without known gene symbols,
and the probe-level expression profiles for the datasets
were converted to gene-level expressions by using the
collapseRows function to merge probes [22].
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Colon cancer molecular subtypes
The CC patients in our study were divided into five
molecular subtypes in accordance with the report of
Phipps et al. [4] In brief, patients are classified on the
basis of the following combinations of tumour biomarkers:
type 1 (MSI-high, CIMP-positive, BRAF mutation-positive,
KRAS mutation-negative); type 2 (MSI-low, CIMP-positive,
BRAF mutation-positive, KRAS mutation-negative); type 3
(MSI-low, CIMP-negative, BRAF mutation-negative, KRAS
mutation-positive); type 4 (MSI-low, CIMP-negative, BRAF
and KRAS mutation-negative); and type 5 (MSI-high,
CIMP-negative, negative for BRAF and KRAS muta-
tions). The information related to the MSI and CIMP
status was obtained as described in the original publica-
tion of the discovery dataset [10]. In this dataset, 26
samples were classified as type 1, 6 samples were classi-
fied as type 2, 108 samples were classified as type 3,
151 samples were classified as type 4 and 8 samples
were classified as type 5. Subsequent subtype survival
analyses were not performed on subtypes 1, 2 and 5
because of their small sample sizes. The rest of the 162
samples in the discovery dataset and all of the samples
in the validation dataset were not included in any sub-
type because of the lack of information.

Co-expression module detection
We selected the top 5000 varying genes from the 461
patients in the discovery dataset after their standard de-
viations were sorted in an ascending order. The
WGCNA in this study was restricted to the 3600 most
co-expressed genes from these 5000 genes in the dataset
(based on k.total, as described below) by using the R
‘wgcna’ package [23].
The co-expression networks of the selected genes were

generated using the following steps. An unsupervised
co-expression relationship was initially built on the basis
of the adjacency matrix of connection strengths by using
Pearson’s correlation coefficients for gene pairs. This
matrix was increased to β = 4 based on the scale-free
topology criterion (Additional file 1: Figure S1). Based
on the scale-free topology criterion, the power β was
selected to amplify the strong connections between genes
and penalise the weaker connections. The Network con-
nectivity (k.total) of the ith gene was defined as the sum of
its adjacency with all of the other genes to generate
networks. The intramodular connectivity (k.in) was
calculated as the summation of adjacency performed
over all of the genes in a particular network; hub genes
were those with a high network connectivity in a particu-
lar group. Modules were identified as gene sets with a high
topologic overlap [24]. Average linkage hierarchical clus-
tering was conducted on the basis of a topological overlap
matrix (TOM)-based dissimilarity measure; in this tech-
nique, the hybrid dynamic treecutting method was used to

cut branches by using a minimum gene module size of 30
and a cut height of 0.95.
The module eigengenes (MEs) were generated as the

first principal component after principal component
analysis was performed with the expression data for each
co-expressed modules in the 461 samples. Module mem-
bership assignment (kME) was determined as Pearson’s
correlation coefficient between gene expression values
and MEs.
The WGCNA algorithm was described in detail by

Zhang Bin et al. [24].

Survival analysis
The ‘survival’ R package (http://cran.r-project.org/web/
packages/survival/index.html) was subjected to survival
analysis. The hazard ratio (HR) and the corresponding
95% confidence interval (CI) were calculated using a
Cox regression model. Kaplan-Meier survival curves
were plotted. RFS was used for the survival endpoints.
For module associations, each ME was robustly scaled to
obtain −1, 0 and +1 for 2.5, 50 and 97.5% quintiles, re-
spectively; using these values, we can compare different
modules. The scaled MEs were then treated as continuous
variables. For gene associations, each gene expression was
treated as a continuous variable. False discovery rate (FDR)
method was used to perform multiple testing corrections.
The survival-based gene significance (GS) was defined as
minus log 10 of Cox regression p-values. Furthermore,
hub genes were defined as those with a high network
connectivity (k.in), which corresponds to the connect
strength (co-expressed) of a specific gene with all the
other members in a module. The hub genes highly
associated with clinical traits and highly connected to
the modules were identified through GS and k.in. In
particular, hub genes were obtained on the basis of the
following criteria: (i) the value of the k.in is in the top
10 of all of the genes in the module and (ii) GS is
greater than 2.

Functional annotation modules
The overrepresentation in gene ontology (GO) categories
was searched to extract further biological insights into the
genes belonging to the modules associated with the sur-
vival of CC patients. DAVID (http://david.abcc.ncifcrf.gov/)
[25] was employed to evaluate the modules for the enrich-
ment of the genes with particular GO biological processes
compared with the background list of the human genes
and to calculate the enrichment scores of the GO bio-
logical process terms.

Results
Detection of gene co-expression modules
WGCNA was performed to analyse 3600 gene expres-
sion profiles derived from 461 CC tumour tissues from
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the discovery dataset, to investigate the functional or-
ganisation of the CC transcriptome and to construct
gene co-expression modules. A total of 11 gene modules
were identified (Fig. 1a and b) from 35 to 866 genes
(Table 1). Correlation or survival analysis was conducted
to determine whether these modules are associated with
tumour grade or RFS. The MEs, generated through princi-
pal component analysis, provide a general measure of the
overall expression information in each module. Associa-
tions can then be determined on the basis of MEs. The
module membership between each of the 3600 genes and
the modules where these genes belong to (kMEs) was also
calculated. The complete list of the network metrics (MEs
and kMEs) and the module membership of each gene is
shown in Additional file 2: Dataset 1.
To determine the relationship among the 11 gene mod-

ules, we clustered their module eigengenes and associated
these eigengenes with the GO annotation. Interestingly,
the green and yellow modules contained the genes in-
volved in cell cycle biological processes; among the
modules, these two modules exhibited the closest con-
nection in the cluster tree (Additional file 1: Figure S2).

Gene modules are significantly correlated with RFS
The HRs and p-values of the dichotomised MEs were
calculated through Cox regression to evaluate the relation-
ship between RFS and co-expression modules (Table 1).
The yellow, pink and green modules were significantly as-
sociated with RFS as a whole in the discovery dataset. How-
ever, only the association between the green module and

RFS was confirmed in the validation dataset. The increased
expression of genes in the green module indicated good
prognosis (HR = 0.59, p = 1.37 × 10−3, FDR = 7.52 × 10−3 in
the discovery dataset, HR = 0.51, p = 6.67 × 10−2 in the
validation dataset, Fig. 2a, b). These findings suggested that
a higher expression of the green module was associated
with a low tumour grade (PCC = −0.14). After GO
analysis was conducted, cell cycle-related biological
processes were the most significantly overrepresented fac-
tor in the green co-expression module (Fig. 1c, Additional
file 3: Dataset 2).

Hub genes are associated with RFS
A total of 3600 genes were subjected to survival analysis
to evaluate the effectiveness of WGCNA in the identifi-
cation of novel hub genes that can be used as prognosis
indicators. The HRs and the corresponding p-values of
the genes included in the analysis of RFS are listed in
Additional file 2: Dataset 1.
The increased expression of the green co-expression

module containing 170 genes indicated an excellent RFS
outcome (Table 1). In the single-gene survival analysis
against RFS, 110 genes (Additional file 1: Table S2) that
were significantly (p < 0.05) associated with good out-
comes were identified in the green module. To the best of
our knowledge, the relationship of the hub gene CENPA
with RFS-related genes in CC has yet to be described. A
high expression of the CENPA gene was associated with
good RFS (HR = 0.62, p = 4.40 × 10−4 in the discovery
dataset; HR = 0.53, p = 1.46 × 10−2 in the validation

Fig. 1 Identification of colon cancer specific modules using WGCNA, and GO enrichment analysis for these modules. a Clustering dendrogram of
gene profilers from the testing dataset with 461 stage II or III colon cancer patients. Hierarchical cluster analysis dendrogram used to detect co-
expression clusters. Each short vertical line corresponds to a gene, and the branches are expression modules of highly interconnected groups of
genes with a colour to indicate its module assignment. A total of 11 modules ranging from 35 to 866 genes in size were identified. b Topological
overlap matrix plot. Genes in the rows and columns are sorted by the clustering tree in (a). Clusters correspond to squares along the diagonal. c
Bar plot presenting the top biological process enriched in each of the 11 modules. The original significance output from DAVID was transformed
into “–log (p-value)” for plotting
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Table 1 Association of expression modules with tumour stage and RFS in the discovery and validation datasets

Modules Total gene
count

Correlation with
tumour stage

Association with RFS in the discovery dataset
(n = 461)

Association with RFS in the validation dataset
(n = 111)

R p-value HR CI p-value FDR HR CI p-value

Magenta 41 −0.07 1.46 × 10−1 0.84 0.63–1.13 2.52 × 10−1 3.90 × 10−1 0.55 0.30–1.00 5.13 × 10−2

Tan 35 0.05 3.21 × 10−1 0.82 0.60–1.12 2.11 × 10−1 3.86 × 10−1 1.38 0.73–2.59 3.20 × 10−1

Green 170 −0.14 2.64 × 10−3 0.59 0.42–0.81 1.37 × 10−3 7.52 × 10−3 0.51 0.25–1.05 6.67 × 10−2

Yellow 179 −0.05 2.62 × 10−1 0.59 0.43–0.81 9.60 × 10−4 7.52 × 10−3 0.70 0.37–1.34 2.82 × 10−1

Black 82 0.07 1.34 × 10−1 0.85 0.62–1.17 3.22 × 10−1 3.94 × 10−1 0.59 0.29–1.19 1.42 × 10−1

Purple 48 0.00 9.64 × 10−1 1.03 0.77–1.39 8.44 × 10−1 8.44 × 10−1 0.64 0.34–1.21 1.70 × 10−1

Brown 866 0.10 3.15 × 10−2 1.36 0.97–1.92 7.68 × 10−2 2.11 × 10−1 2.11 1.22–3.64 7.57 × 10−3

Red 108 0.11 2.12 × 10−2 1.33 0.94–1.87 1.03 × 10−1 2.27 × 10−1 1.12 0.58–2.14 7.36 × 10−1

Green-yellow 44 −0.03 5.29 × 10−1 0.84 0.61–1.16 2.84 × 10−1 3.90 × 10−1 1.27 0.70–2.29 4.35 × 10−1

Blue 369 0.04 4.32 × 10−1 0.93 0.66–1.32 6.99 × 10−1 7.69 × 10−1 1.56 0.80–3.01 1.89 × 10−1

Pink 52 0.03 5.91 × 10−1 0.65 0.47–0.91 1.08 × 10−2 3.97 × 10−2 1.35 0.72–2.53 3.50 × 10−1

CI 95% confidence interval, RFS recurrence-free survival. Hazard ratios (HRs), 95% CI, and p-values were calculated using Cox proportional hazard regression analysis

Fig. 2 Associations between recurrence-free survival and the green module. The hub gene CENPA was observed in the testing and validating
datasets. Kaplan–Meier survival plots for recurrence-free survival were shown (colon cancer patients were grouped by the tertile of ME). Increased
expression (green) of the green module is associated with high recurrence-free survival in the testing (a) and validating (b) datasets. KM survival
plot for CENPA suggests that its increased expression (green) indicates good prognosis (colon cancer patients were grouped by the tertile of gene
expression level)(c, d)
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dataset, Table 2, Fig. c, d). To evaluate the robustness of
the hub gene identification, we investigated the RFS-
related modules and the corresponding hub genes
with different initial gene selections (the most con-
nected 3600 or 1800 genes) and cut height parame-
ters (0.90 or 0.95) when identify gene modules
through an average linkage hierarchical clustering
method. CENPA could be identified under these con-
ditions (Additional file 1: Table S2).

Gene modules are significantly associated with CC
subtype-specific survival
In addition to the survival analysis of CC as a whole,
the investigation of the association between gene mod-
ules and molecular subtypes was conducted. Survival
analysis revealed that the yellow, red and tan modules
were associated with type 3 (Table 3). The increased
expression of the yellow (HR = 0.38, p = 4.46 × 10−3)
and tan (HR = 0.50, p = 3.39 × 10−2) co-expression
modules containing 179 and 35 genes were correlated
with good RFS outcomes. While the increased expres-
sion of the red co-expression module containing 108
genes was correlated with poor RFS outcomes for the
type 3 (HR = 1.74, p = 3.02 × 10−2).
The HRs and the corresponding p-values of the sin-

gle gene survival for the type 3 and type 4 subtypes
(Addtional file 2: Dataset 1) were also calculated. The
yellow module genes in the type 3 group were ana-
lysed, and the results revealed three hub gene progno-
sis indicators, including cyclin-dependent kinase 1 (CDK1;
HR = 0.52, p = 3.42 × 10−3), kinesin family member 11
(KIF11; HR = 0.57, p = 5.76 × 10−3) and RAD51 associ-
ated protein 1 (RAD51AP1; HR = 0.52, p = 1.42 × 10−3).
Meanwhile, we analysis the tan module genes in the type
3 group, and found hub gene OTU domain containing 6B
(OTUD6B; HR = 0.56, p = 6.24 × 10−3). The increased ex-
pression of these genes suggested good prognosis in the
type 3 subtype. There was no gene met the hub gene defi-
nation criterion in module tan for type 3 subtype.

Discussion
We applied a systems biology approach, namely, WGCNA,
to analyse one mRNA expression dataset comprising 461
CC patients to identify the networks and genes associated
with clinical variables and prognosis indicators. We then
confirmed our findings by using an independent validation
dataset. WGCNA can be applied to determine complex
biological mechanisms responsible for the target phe-
notypes; this method is effective because the algorithm
aims to clarify the relationships between genes above
noise and maintain consistency among all of the samples.
The unsupervised hierarchical clustering method selected
by WGCNA avoids potential biases and subjective deci-
sions attributed to the selection of the candidate genes
previously reported as associated with CC or to the early
distinction of control samples for supervised methods.
In our study, 11 distinct gene modules from 3600 genes

that satisfied our pre-filtering standard for the co-expression
analysis were identified. The increased expression of
the green module containing 170 genes mostly related
to the cell cycle was associated with low tumour grade
and correlated with positive RFS outcome. The associ-
ation relationship reached statistical significance in the
discovery dataset (p = 1.37 × 10−3, FDR = 7.52 × 10−3),
and marginal significance (p = 6.67 × 10−2) in the valid-
ation dataset. This marginal significance may account
for the small sample size (n = 111) and lack of statistical
power. Since we can make conclusions depend on the
effect size and its precision rather than just the p-value
[26]. The result of HR and 95% CI of module green in
the validation dataset suggested that the association
relationship between module green and RFS of CC
patients was clinically significance. After conducting
the single gene survival analysis of each member of the
green module, we found that approximately 65% of the
genes were significantly related to RFS (p < 0.05), and
all of the genes yielded HR < 1. Furthermore, the hub
gene CENPA was identified as a potential novel marker.
CENPA, a protein-coding gene, is the histone-H3-like
variant essential for centromere functioning and

Table 2 Relationships between hub genes with RFS in the discovery and validation datasets

Hub
gene

k.in
rank

Association with RFS in the discovery dataset (n = 461) Association with RFS in the validation dataset (n = 111)

HR 95% CI p-value FDR p-value HR p-value CI

CDCA5 1 0.70 0.55–0.89 4.32 × 10−3 5.51 × 10−3 0.69 1.66 × 10−1 0.40–1.17

NCAPH 2 0.67 0.52–0.86 1.58 × 10−3 3.68 × 10−3 0.64 1.01 × 10−1 0.37–.09

FEN1 4 0.68 0.52–0.88 3.43 × 10−3 5.51 × 10−3 0.70 1.97 × 10−1 0.41–1.21

MCM2 5 0.70 0.55–0.90 4.72 × 10−3 5.51 × 10−3 0.79 3.98 × 10−1 0.46–1.36

MCM10 6 0.69 0.54–0.90 5.95 × 10−3 5.95 × 10−3 0.73 2.72 × 10−1 0.41–1.28

CENPA 7 0.62 0.48–0.81 4.40 × 10−4 2.80 × 10−3 0.53 1.46 × 10−2 0.31–0.88

ZWINT 9 0.64 0.50–0.83 8.00 × 10−4 2.80 × 10−3 0.63 8.60 × 10−2 0.37–1.07

k.in rank: gene rank based on k.in; False discovery rate (FDR); Recurrence-free survival (RFS); Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were
calculated using Cox proportional hazard regression analysis treating the gene expression level as a continuous variable
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structure. This gene is implicated in cell cycle and mi-
totic pathways; the GO annotations of this gene include
protein heterodimerisation activity and chromatin bind-
ing. CENPA is also a potential prognostic biomarker of
breast cancer, and the increased expression of this gene
is associated with the poor survival of breast cancer
patients [27, 28]. Among various core markers in neo-
plasic intratubullar germ cells, such as CD9, CENPA
and PODXL, CENPA is overexpressed, and this finding
suggests that this gene may be a potential biological
marker of human diseases [29]. Tomonaga et al. dem-
onstrated that CENPA is overexpressed at a transcrip-
tional level in all 11 primary human CC tissues [30].
Furthermore, the immunostaining with anti-CENPA
antibodies revealed that the CENPA signals in tumour
cells increase; therefore, the overexpression of CENPA
may be critical in aneuploidy in colorectal cancers [30].
However, the role of CENPA in CC should be further
validated.
The yellow module containing 179 genes involved in

the cell cycle was correlated with RFS in the type 3 sub-
types, including MSI-low, CIMP-negative, negative for
BRAF mutation and positive for KRAS mutation. We
also identified CDK1 as a marker. The specific activity of
CDK1 is a promising biomarker of the metastasis risk in
stage II CC [31]. The type 3 subgroup is the only sub-
group with KRAS mutation. KRAS, a proto-oncogene,
encodes a small 21 kD guanosine triphosphate/guano-
sine diphosphate binding protein that modulates cellular
proliferation and differentiation [32]. Approximately 97%
of KRAS mutations are caused by seven different DNA
base-pair substitutions in codons 12 and 13 of exon 2; as
a result, an amino acid substitution in the protein occurs
[33]. Therefore, KRAS may affect cell cycle processes. In

a recent study, CDK1 is reported as a synthetic lethality
target for KRAS mutation in colon cancer [34]. Our
study highlisht RAD51AP1 as a prognostic marker and
therapeutic target. It has been reported that Overexpres-
sion of RAD51 is a negative prognostic marker for colo-
rectal adenocarcinoma [35]. However, the roles of the
hub gene KIF11 in module yellow and OTUD6B in
module tan in CC have yet to be determined.
As a retrospective study, the current study is charac-

terised by several limitations. Firstly, relevant information,
such as the accurate definition of RFS, the MSI/CIMP
status and the molecular subtypes of the validation
dataset, was unavailable. As such, the associations
between modules and RFS in each subtype could not
be validated. Secondly, although the direction of the
association between the green module and RFS in the
validation dataset was similar to that in the discovery
dataset, the p-value was marginally significant. Thus,
the significance and robustness of the network and
hub genes should be confirmed in prospective clinical
trials, ideally with large prospective patient cohorts.

Conclusions
In summary, 11 gene co-expression modules were iden-
tified from an mRNA microarray-based study through
WGCNA. We associated these gene modules to tumour
grade and RFS. We also evaluated the prognostic ability
of single genes through Cox-regression analysis. More-
over, a co-expression module indicative of patients’ RFS
for a particular molecular marker-based subtype, such as
KRAS mutation group, was identified. Indeed, WGCNA
is an effective technique that can be applied to investi-
gate the underlying biological mechanisms and identify
the genes indicative of patient outcome. The practical

Table 3 Relationship between expression modules with RFS within colon cancer molecular subtypes in the discovery dataset

Modules Total gene
count

Type 3 (n = 108) Type 4 (n = 151)

HR 95% CI p-value HR 95% CI p-value

Magenta 41 0.99 0.52–1.88 9.78 × 10−1 0.81 0.44–1.46 4.77 × 10−1

Tan 35 0.50 0.26–0.95 3.39 × 10−2 0.90 0.53–1.56 7.17 × 10−1

Green 170 0.74 0.37–1.46 3.83 × 10−1 0.87 0.47–1.60 6.53 × 10−1

Yellow 179 0.38 0.20–0.74 4.46 × 10−3 0.89 0.50–1.58 6.87 × 10−1

Black 82 0.81 0.43–1.54 5.27 × 10−1 0.80 0.45–1.41 4.44 × 10−1

Purple 48 1.46 0.76–2.77 2.54 × 10−1 1.05 0.63–1.76 8.44 × 10−1

Brown 866 1.61 0.92–2.83 9.50 × 10−2 1.38 0.72–2.67 3.34 × 10−1

Red 108 1.74 1.05–2.88 3.02 × 10−2 1.15 0.61–2.18 6.63 × 10−1

Green-yellow 44 1.26 0.59–2.67 5.52 × 10−1 0.95 0.49–1.83 8.73 × 10−1

Blue 369 1.02 0.45–2.34 9.58 × 10−1 1.05 0.53–2.09 8.92 × 10−1

Pink 52 0.51 0.23–1.10 8.57 × 10−2 0.63 0.34–1.20 1.59 × 10−1

Type 3 definition: MSI-low, CIMP-negative, negative for BRAF mutation, positive for KRAS mutation; Type 4 definition: MSI-low, CIMP-negative, negative for mutations in
BRAF and KRAS. False Discovery Rate (FDR); Recurrence-free survival (RFS); Hazard ratios (HRs), 95% confidence intervals (CI), and p-values were calculated using Cox
proportional hazard regression analysis, treating the MEs as continuous variables
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utility of this approach is exemplified through the identi-
fication of novel prognostic makers, such as CENPA.
Our investigation could contribute to personalised ther-
apies. Nevertheless, multicenter randomised controlled
clinical trials and in vivo/in vitro experiments should be
performed to evaluate the possible applications of mo-
lecular signatures to predict survival and to functionally
characterise the hub genes for clinical applications.
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