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Abstract

Background

The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strat-

egy to determine patient diagnosis and prognosis, and therapy response. The PAM50

method, based on the expression levels of 50 genes, uses a single sample predictor model

to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate

the challenge of identifying and understanding the breast cancer groups. In this study, we

aim to: a) identify novel biomarkers for subtype individuation by exploring the competence

of a newly proposed method named CM1 score, and b) apply an ensemble learning, as

opposed to the use of a single classifier, for sample subtype assignment. The overarching

objective is to improve class prediction.

Methods and Findings

The microarray transcriptome data sets used in this study are: the METABRIC breast can-

cer data recorded for over 2000 patients, and the public integrated source from ROCK data-

base with 1570 samples. We first computed the CM1 score to identify the probes with highly

discriminative patterns of expression across samples of each intrinsic subtype. We further

assessed the ability of 42 selected probes on assigning correct subtype labels using 24 dif-

ferent classifiers from theWeka software suite. For comparison, the same method was

applied on the list of 50 genes from the PAM50 method.

Conclusions

The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with

the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using
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the CM1 list and the ensemble of classifiers are more consistent and homogeneous than

the original PAM50 labels. The new subtypes show accurate distributions of current clinical

markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets.

Remarkably, the paradoxical attribution of the original labels reinforces the limitations of

employing a single sample classifiers to predict breast cancer intrinsic subtypes.

Introduction
Breast cancer has been perceived as several distinct diseases characterised by intrinsic aberra-
tions, heterogeneous behaviour and divergent clinical outcome [1]. The classification of breast
cancer in discernible molecular subtypes has motivated translational researchers in the past
decades towards the design of patient prognosis and the development of tailored treatments
[2]. In this scenario, the analysis of breast tumours using microarray data has significantly
improved the disease taxonomy and the discovery of new biomarkers for implementation in
clinical practice [3–6]. In the early 2000s, five intrinsic subtypes were proposed: luminal A,
luminal B, HER2-enriched, normal-like and basal-like breast tumours [7, 8]. Following this ini-
tial molecular taxonomy, further sub-classifications of breast cancer in distinct entities have
been suggested [9–11].

The transcriptomic patterns observed across subtypes has given us insight into the molecu-
lar complexity and inherent alterations in tumour cells modelling the breast cancer heterogene-
ity and unpredicted outcome [12, 13]. Strikingly, intrinsic gene lists have been explored to
reliably assign breast tumour samples into formal molecular subtypes, survival rate and treat-
ment outline [3, 7, 8, 14–18]. Recently, Parker and colleagues [16] proposed a list of 50 genes
that together with the Prediction Analysis for Microarrays (PAM) classification algorithm [19]
aimed at identifying subtypes and enlarging the prognostic information with high potential for
validation in clinical settings [16, 20, 21]. The resulting technique, called the PAM50 method,
has been widely applied to categorize tumours into one of the five classical intrinsic subtypes.

Although independent cohorts attempted to identify molecular subtypes, the chosen micro-
array-based Single Sample Predictor (SSP) model revealed unreliable assignments and modest
agreement between studies [21, 22]. In fact, the perceived inability of some analytical methods
to deal with the challenges of processing high-dimensional data, in addition to the difficulties
on validating independent/unpaired technologies may limit the precise characterisation of the
subtypes [21, 23, 24]. Therefore, novel methods are urgently needed in order to provide better
tumour stratification and accurate biomarkers identification [25, 26]. In this scenario, the high
quality of the microarray gene expression data set processed by the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) [27], with over 2000 samples, offers a
unique opportunity to refine and expand the list of transcripts that best discriminate intrinsic
subtypes. A precise classification of breast tumours, consequently, would lead to improvements
in the valuation of the disease, currently guided by oestrogen and progesterone receptor (ER
and PR) status, and HER2 amplification [24, 28].

In this report, we focus on the use of a ranking feature method based on the newly proposed
CM1 score [29] to identify probe sets that appear naturally from the METABRIC breast cancer
data set. For doing so, we use the entire set of 48803 probes as an alternative to the selection
from pre-existing literature as performed by other authors [15, 16]. Moreover, the quality of
the probes for predicting subtypes is carefully appraised in the METABRIC data set (Illumina
BeadArray) and further validated in different studies (Affymetrix GeneChip) accessed through

Novel Biomarkers for Breast Cancer Subtype Prediction

PLOS ONE | DOI:10.1371/journal.pone.0129711 July 1, 2015 2 / 35

DP120102576 (http://arc.gov.au/) and Cancer
Institute of New South Wales, Australia, Grant 13/
DATA/1-03 (http://www.cancerinstitute.org.au/). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://arc.gov.au/
http://www.cancerinstitute.org.au/


the Research Online Cancer Knowledgebase (ROCK) interface [30]. However, instead of rely-
ing on a single method to assign sample subtype, as suggested by Parker et al. (2009) [16] with
the PAM50 method, we explore an ensemble learning. Our analysis is based on the perfor-
mance of a large set of classification models from the Weka software suite [31]; a technique
previously recommended by Ravetti and Moscato [32]. The classifiers are used in combination
with the list of probes selected using CM1 score and, alternatively, with the 50 genes from the
PAM50 commercial assay [16]. We also compute several statistical measures to determine the
power of both lists on predicting breast cancer subtypes. Ultimately, we correlate the study out-
comes within current clinical information and survival analysis.

Materials and Methods

Data sets description
The METABRIC microarray data set used in this study is hosted by the European Bioinformat-
ics Institute (EBI) and deposited in the European Genome-Phenome Archive (EGA) at http://
www.ebi.ac.uk/ega/, under accession number EGAS00000000083. It consists of transcriptomic
information (cDNA microarrays profiling) processed on the Illumina HT-12 v3 platform (Illu-
mina_Human_WG-v3), as described in [27]. The log2-normalised gene expression values of
primary tumours were divided into two subsets by METABRIC: discovery (997 samples) and
validation (989 samples), which were respectively used as training and test sets in our experi-
ments. The original study collected and analysed data under the approval of the ethics Institu-
tional Review Board (details in [27]). The use of this data for research was also approved by the
Human Ethics Research Committee (HREC) of The University of Newcastle, Australia,
(approval number: H-2013–0277).

The second data set is publicly available in ROCK online portal [30] at http://rock.icr.ac.uk/,
under data source access GSE47561. This source integrates ten data studies (GSE2034,
GSE11121, GSE20194, GSE1456, GSE2603, GSE6532, GSE20437, E-TABM-185, GSE7390,
GSE5847) performed on the Affymetrix Human Genome U133A Array (HG-U133A) plat-
form. The matrix contains log2 RMA re-normalised gene expression data in a unique compre-
hensive report of 1570 samples. Thus, the GSE47561 data set was used as a second validation
set to test our method.

In brief, both METABRIC and ROCK data sets have information on patients’ long-term
clinical and pathological outcomes, including the sample assignment into intrinsic subtypes
(luminal A, luminal B, HER2-enriched, normal-like, and basal-like) according to the PAM50
method [16]. The METABRIC data set has a more comprehensive description of patient clini-
cal features, whereas the ROCK data set presents no standardized information across the ten
different studies.

Study Design and Computing Resources
In this study, we propose a systematic approach that aims at improving breast cancer subtype
prediction. The systematic approach is built based on feature selection and data mining con-
cepts. We first compute the CM1 score—using the microarray mRNA expression values—to
rank the whole set of probes based on their discriminative power across breast cancer subtypes.
We then select the top 10 probes that best represent each intrinsic subtype. The quality of this
selection is assessed using a set of classifiers from the Weka software suite with the METABRIC
and ROCK data sets, followed by the statistical analysis. The process flow is depicted in Fig 1,
and further explained in the remainder of this section.
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Fig 1. The step-by-step process. The image shows the method steps based onCM1 score and ensemble learning. TheMETABRIC discovery set is used to
compute theCM1 score, based on the original labels previously assigned with the PAM50 method. This step has an output of 42 discriminative probes
selected, the CM1 list. The following step involve the sample subtype classification based on a 10-fold cross-validation. Samples in the METABRIC
discovery set are considered to train 24 classifiers using the CM1 list and, alternatively, the PAM50 list. The samples are partitioned into ten folds; then a
model is built using 90% of samples, which is used to predict the labels of the remaining 10%. After the ten turns are finished, the level of association between
the predicted and original METABRIC labels is computed using several statistics. In the training-test setting, labels of samples in theMETABRIC validation
set and ROCK set are predicted with the models built in the discovery. Statistics measurements are again computed to assess the model performance on
predicting breast cancer subtypes. In both classification steps, the new labels are attributed based on the consensus of the majority of the classifiers. Finally,
the results or new labels are compared against the clinical data, the current markers ER, PR and HER2, and survival curves.

doi:10.1371/journal.pone.0129711.g001
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Selection of biomarkers using the CM1 score
The CM1 score is a supervised univariate method used to measure the difference in expression
levels of samples in two different classes [29]. In this study, it is used as a ranking feature to
select a subset of highly discriminative probes for each breast cancer intrinsic subtype. Let X
and Y be a partition of a set of samples into two classes, with X the class of interest and Y the
remaining classes. A sample either belongs to X or to Y. For each probe i we compute the CM1
score as:

CM1iðX;YÞ ¼
�xi � �yi

1þ ðmaxfyig �minfyigÞ ð1Þ

where �xi is the average expression value of the probe i for samples in class X, �yi is the average
expression value of the probe i for samples in class Y;max{yi} andmin{yi} are the minimum
and maximum expression values of the probe i for samples in the class Y. Eq 1 can be inter-
preted as the normalised difference between the averages of expression values in the class X
and Y. The normalisation is proportional to the range of values in Y.

To define the most discriminative probes for each breast cancer subtype (luminal A, luminal
B, HER2-enriched, normal-like and basal-like), we computed the CM1 score for each of 48803
probes taking the subtype of interest and the remaining ones. This results in 5 lists of 48803
CM1 scores.

Considering the fact that Parker et al. (2009) [16] were able to define the five breast cancer
classes based on 50 genes, for each subtype we chose the 10 most important probes (5 with the
greatest positive CM1 score values—indicating up-regulated probes relative to the other sub-
types –, and 5 with the smallest negative values – representing down-regulation). This set is
referred to as the balanced top ten in this paper. Collecting the balanced top ten lists of all sub-
types leads to a new set of 42 unique Illumina probes, meaning that 8 probes appear in multiple
subtypes. This list is hereafter called the CM1 list.

Assessment of the quality of the CM1 list based on ensemble learning
The quality of the CM1 list for distinguishing subtypes was assessed using a list of well-known
classifiers available in the Weka data mining software suite [31]. It uses different types of classi-
fiers such as bayesian, functions, lazy, meta, rule-based and decision trees. Each classifier was
trained with a subset of the data comprising all samples in the METABRIC discovery set and
the 42 probes in the CM1 list using both 10-fold cross-validation and training-test setting. In
the 10-fold cross-validation, the samples are first partitioned into ten folds; then a model is
built using 90% of samples, which is thereafter used to predict the labels of the remaining 10%.
After the ten turns are finished, the level of association between the predicted and original
METABRIC labels is computed using Cramer’s V [33]. In the training-test setting, labels of
samples in the METABRIC validation set and ROCK data are predicted using models built
with the samples in the discovery set. The new labels were attributed based on the consensus of
the majority of the classifiers (i.e. more than 50% percent), and whenever such condition was
not achieved samples were marked as inconsistent (INC).

A similar approach was performed with the PAM50 list to serve as baseline for comparing
the results obtained with the 42 probes from the CM1 list. The 50 genes identified by Parker
et al. (2009) [16] were mapped to Illumina probes by Curtis et al. (2012) [27], following strict
criteria. Only genes and corresponding probe with perfect annotation [34] on the Illumina
HT-12 v3 BeadChip were considered. Probes containing SNPs, multiple targets or mismatches,
or lying in repeat-masked regions were discarded. Finally, a total of 48 probes corresponding to
genes in the PAM50 list were selected to conduct the classification experiments as described
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for the CM1 list. For Affymetrics HG-U133A, the CM1 and PAM50 lists were mapped accord-
ing to ‘genefu’ R package, using Entrez Gene ID as reference. For instance, the 42 probes from
the CM1 list matched 33 probes, whereas the 48 from PAM50 list paired 43 probes in the Affy-
metrix platform. In case of multiple mappings the probe with the most variation was selected
according to the ‘genefu’ instructions. Before testing the classifiers in ROCK data set, the Affy-
metrix and Illumina expression levels were min-max normalised.

The statistical analysis
Cramer’s V. Given a r × c contingency table describing the association between the origi-

nal labels and those predicted by the majority of classifiers, Cramer’s V measures the level of
association between those two nominal variables. The statistic ranges from 0, representing no
association between the two variables, to 1, representing complete association. Cramer’s V is
computed using Eq 2.

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2

N minfr � 1; c� 1g

s
ð2Þ

where N is the number of samples in the data set, and χ2 is Pearson’s chi-squared value.
Average sensitivity (AS). The average sensitivity (AS) [31] was also computed to assess

the performance of classifiers with both lists. The AS is the average proportion of accurately
classified samples of each subtype. Considering a r × c contingency table associating initial and
predicted labels, the average sensitivity of a classifier is given by Eq 3.

AS ¼ 1

r

X nii

ni�
ð3Þ

where r is the number of classes (subtypes), nii is the number of samples of class i correctly pre-
dicted as i, and ni• is the number of samples of class i (row marginals).

Fleiss’ kappa. The consensus of the different classification methods concerning the sam-
ples’ labels was measured by the popular interrater reliability metric Fleiss’ kappa [35, 36]. The
statistic was used to gauge not only the agreement among classifiers trained with the different
probe sets, but also between the labels assigned by the majority of classifiers and the original
METABRIC labels. It also quantifies the agreement between predicted labels using the CM1
and PAM50 lists.

Assuming a s × c contingency table informing how many times each of the c classes were
assigned to each of the s samples in the k different sample labellings, the Fleiss’ kappa statistic
is computed as defined by Eq 4.

k ¼
PP

n2
ij � sk½1þ ðk� 1ÞP p2j �

skðk� 1Þð1�P
p2j Þ

ð4Þ

where nij contains the number of times sample i was assigned label j, ∑j nij = k, and pj = (∑i nij)/
sk is the probability with which the label j is assigned to a sample.

Kappa values range from ½�P
p2j =ð1�

P
p2j Þ� to +1, which, according to Landis and

Koch’s division [37], can be interpreted in the following manner: (1) values below zero are con-
sidered poor agreement; (2) values between zero and 0.2 are considered slight agreement; (3)
0.21� κ� 0.40 is fair agreement; (4) 0.41� κ� 0.60moderate agreement; (5) 0.61� κ� 0.80
substantial agreement; and (6) 0.81� κ� 1 is regarded as an almost perfect agreement.

Adjusted Rand Index. The agreement between pairs of sample labellings was also quanti-
fied using this metric. It ranges between 0 to 1, where 1 indicates an almost perfect

Novel Biomarkers for Breast Cancer Subtype Prediction

PLOS ONE | DOI:10.1371/journal.pone.0129711 July 1, 2015 6 / 35



concordance between the two compared bipartitions, and 0 a complete discordance between
them. The Adjusted Rand Index is a version of Rand index corrected for chance when the parti-
tions are picked at random [38, 39]. Given a r × c contingency table between two labelling R
and C, it can be measured by:

ARIðR;CÞ ¼
P

ij

nij

2

� �
� P

i

ni�
2

� �P
j

n�j
2

� �h i
=

N
2

� �
1

2

X
i

ni�
2

� �
þ
X

j

n�j
2

� �h i
�

X
i

ni�
2

� �X
j

n�j
2

� �h i
=

N
2

� � ð5Þ

where 1� i� r, 1� j� c, and nij is an entry of the contingency table representing the number
of samples that are in class Ri in the partition R and Cj in the partition C, ni• and n•j are the
table’s marginals.

Survival analysis
The survival analysis for each breast cancer subtype is performed using Cox proportional haz-
ards model from the package survival in the R software [40, 41]. Only patients who either died
due to the disease or are still alive are considered for model estimation. The clinical parameters
relevant for the survival study are chosen in correspondence with Curtis et al. (2012) [27]: age
at the time of diagnosis, tumor size, tumor grade, the number of positive lymph nodes and ER
status according to immunohistochemistry. Since the probability model based on the observa-
tions available at certain time points becomes less and less reliable with the increasing time, the
median survival lines based on the last 10 observations are plotted in dash. Due to the compila-
tion of ten different studies and the existence of significant gaps in patients’ clinical informa-
tion, the survival curves in the ROCK data set are not representative across subtypes. In
particular, the number of patients with information about overall survival and disease free sur-
vival is limited to only 405, with no specification on the cause of death (i.e. if due to disease or
not).

Results

Section description and resources
To understand the results described in this section, we introduce the sequence of our approach
which combines the CM1 score and ensemble learning. First, we detail the selection of discrimi-
native probes ranked according to the CM1 score; calculated for each of the five breast cancer
subtypes. Second, we show the quality of our probes by using 24 classification models based on
a 10-fold cross-validation and training-test setting in the METABRIC and ROCK data sets.
The same approach is also performed with the list of 50 genes used in the PAM50 method. In
addition, statistical analysis are reported to determine the power of both lists on predicting
breast cancer subtypes. Finally, we demonstrate the consistency between the new labels
assigned with current clinical markers ER, PR and HER2, and survival curves. The step-by-step
approach is detailed in the Materials and Methods section.

Using the CM1 list to differentiate the five intrinsic breast cancer
subtypes
The CM1 score was applied to rank the set of 48803 probes for each of the five subtypes in the
METABRIC discovery data set (Supporting Information S1 Table). It is important to remark
that this method used the original PAM50 subtypes attributed to samples in the METABRIC
discovery set. The purpose of doing so is to provide a better molecular characterisation of each
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class using the wealth of the METABRIC transcriptomic data, besides improving the breast
cancer subtype prediction. The probes with the top five negative and top five positive CM1
scores were selected for each subtype. Here, we aimed at obtaining 50 probes that appear natu-
rally from a rich and unique data set. We would then be able to compare such a list with the list
of 50 genes embedded in the PAM50 method [16]—the PAM50 list. The final list comprising
the union of the top ranked probes is displayed in Table 1, and their CM1 scores and ranks in
each subtype in Table 2. Some of the 50 probes selected, however, discriminate more than one
subtype and resulted in a list of 42 unique elements, the CM1 list. Our selection includes 30
novel biomarkers, while the remaining 12 genes are common with the PAM50 list.

The effectiveness of the CM1 list for segregating the five subtypes is depicted in Fig 2. The
figure shows the expression values of the top five negative and top five positive ranked probes
for each subtype across 997 samples in the METABRIC discovery set. For instance, the ten
probes selected for the basal-like subtype—the most representative class—expose a consistent
separation between samples from this class and the remaining ones. The second heat map in
Fig 3 illustrates the expression levels of unique probes from the CM1 list in the Illumina plat-
form, in which rows represent probes and columns represent samples. Rows and columns were
ordered according to gene expression similarity using a memetic algorithm [27]. This image
also exposes the overall discriminative power of our list for distinguishing samples of the five
subtypes.

A detailed description of our 42 probes in the context of the literature can be found in Sup-
porting Information S1 Text. Among them we highlight seven, targeting the following tran-
scripts: AURKB, CCL15, C6orf211, GABRP, IGF2BP3, PSAT1, and TFF3. Fig 4 shows the
box plot of their expression levels across intrinsic subtypes in the METABRIC discovery and
validation sets, and the ROCK set. We emphasized these transcripts due to the remarkable dif-
ferential expression behaviour across the five classes. Besides, they are novel potential markers
for breast cancer subtyping, not considered by Parker et al [16]. Box plots of expression levels
for all transcripts in the CM1 list in the METABRIC discovery and validation and ROCK data
sets are provided in Supporting Information S1 Fig. Even though those probes were selected
from the METABRIC discovery set only, their variation across subtypes in the validation set
and ROCK test set are also impressive.

The ensemble of classifiers reveal high levels of agreement between
CM1 and PAM50 lists
After applying the ensemble learning, several statistical measures were computed as referred in
Materials and Methods. The main purpose of the statistics is to determine the performance of
the 24 classification methods from the Weka software suite. In other words, we investigate the
consistency of intrinsic subtype labels attributed by the majority of classifiers having as input
either the CM1 or PAM50 lists. The quality of both lists was estimated according to the Cra-
mer’s V statistic and the Average Sensitivity. Additionally, we computed the popular interrater
reliability metric Fleiss’ kappa to establish the consensus of sample labelling across different
classifiers. This metric was used to gauge the agreement among classifiers trained with CM1
and PAM50 lists against the original labels in the data sets, and between the labels assigned by
the majority of classifiers using both lists. Ultimately, we applied the Adjusted Rand Index to
quantify the agreement between pairs of samples that are either in the same class or in different
classes according to both lists.

Average Cramer’s V statistic and Average Sensitivity to measure the performance of
individual classifiers. We determined the performance of the ensemble learning (Supporting
Information S2 Table, and S3 Table) with two measures: Cramer’s V statistic and Average
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Table 1. CM1 list.

Probe ID Gene name Gene symbol and aliases [Refs.]

ILMN_1684217 Aurora kinase B AURKB; AIK2, AIM1, ARK2, AurB, IPL1, STK5, AIM-1, STK12,
PPP1R48, aurkb-sv1, aurkb-sv2

[42–54]

ILMN_1683450 Cell division cycle associated 5 CDCA5; SORORIN [55–58]

ILMN_1747016 Centrosomal protein 55kDa CEP55; CT111, URCC6, C10orf3 [59–62]

ILMN_2212909 Maternal embryonic leucine zipper kinase MELK; HPK38 [63–69]

ILMN_1714730 Ubiquitin-conjugating enzyme E2C UBE2C; UBCH10, dJ447F3.2 [70–74]

ILMN_1796059 Ankyrin repeat domain 30A ANKRD30A; NY-BR-1, RP11–20F24.1 [75–82]

ILMN_1651329 Long intergenic non-protein coding RNA 993 LINC00993

ILMN_2310814 Microtubule-associated protein tau MAPT; TAU, MSTD, PPND, DDPAC, MAPTL, MTBT1, MTBT2,
FTDP-17

[83–89]

ILMN_1728787 Anterior gradient 3 AGR3; HAG3, hAG-3, BCMP11, PDIA18 [90–92]

ILMN_1688071 N-acetyltransferase 1 NAT1; AAC1, MNAT, NATI, NAT-1 [93–95]

ILMN_1729216 Crystallin, alpha B CRYAB; MFM2, CRYA2, CTPP2, HSPB5, CMD1II, CTRCT16 [96–99]

ILMN_1666845 Keratin 17 KRT17; PC, K17, PC2, PCHC1 [100,
101]

ILMN_1786720 Prominin 1 PROM1; RP41, AC133, CD133, MCDR2, STGD4, CORD12,
PROML1, MSTP061

[102–
106]

ILMN_1753101 V-set domain containing T cell activation
inhibitor 1

VTCN1; B7X, B7H4, B7S1, B7–H4, B7h.5, VCTN1, PRO1291,
RP11–229A19.4

[107–
111]

ILMN_1798108 Chromosome 6 open reading frame 211 C6orf211

ILMN_1747911 Cyclin-dependent kinase 1 CDK1; CDC2, CDC28A, P34CDC2 [112–
116]

ILMN_1666305 Cyclin-dependent kinase inhibitor 3 CDKN3; KAP, CDI1, CIP2, KAP1 [117]

ILMN_1678535 Estrogen receptor 1 ESR1; ER, ESR, Era, ESRA, ESTRR, NR3A1 [118–
121]

ILMN_2149164 Secreted frizzled-related protein 1 SFRP1; FRP, FRP1, FrzA, FRP-1, SARP2 [122–
139]

ILMN_1788874 Serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 3

SERPINA3; ACT, AACT, GIG24, GIG25 [140–
143]

ILMN_1785570 Sushi domain containing 3 SUSD3 [141,
144]

ILMN_1803236 Chloride channel accessory 2 CLCA2; CACC, CACC3, CLCRG2, CaCC-3 [145–
148]

ILMN_2161820 Glycine-N-acyltransferase-like 2 GLYATL2; GATF-B, BXMAS2–10 [149,
150]

ILMN_1810978 Mucin-like 1 MUCL1; SBEM [151–
156]

ILMN_1773459 SRY (sex determining region Y)-box 11 SOX11 [157,
158]

ILMN_1674533 Transient receptor potential cation channel,
subfamily V, member 6

TRPV6; CAT1, CATL, ZFAB, ECAC2, ABP/ZF, LP6728,
HSA277909

[159–
164]

ILMN_1687235
ILMN_2358760

Hepsin HPN; TMPRSS1 [165]

ILMN_1655915 Matrix metallopeptidase 11 (stromelysin 3) MMP11; ST3, SL-3, STMY3 [166–
176]

ILMN_1711470 Ubiquitin-conjugating enzyme E2T (putative) UBE2T; PIG50, HSPC150 [177]

ILMN_1740609 Chemokine (C-C motif) ligand 15 CCL15; LKN1, NCC3, SY15, HCC-2, LKN-1, MIP-5, NCC-3,
SCYL3, MIP-1D, MRP-2B, SCYA15, HMRP-2B, MIP-1 delta

[178,
179]

ILMN_1789507 Collagen, type XI, alpha 1 COL11A1; STL2, COLL6, CO11A1 [180,
181]

ILMN_1651282 Collagen, type XVII, alpha 1 COL17A1; BP180, BPA-2, BPAG2, LAD-1, BA16H23.2 [182]

(Continued)
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Sensitivity (Table 3). Cramer’s V is used to measure the strength of association among variables
in the row and column, given a contingency table (Tables 4, 5 and 6). The rows represent the
original PAM50 labels and the columns the subtypes assigned by the majority of the classifiers
in the ensemble. For instance, Cramer’s V statistic showed an average association between orig-
inal and predicted subtypes of 0.73±0.06 and 0.63±0.04 in the METABRIC discovery and vali-
dation sets respectively with the CM1 list; and 0.75±0.06 and 0.64±0.04 with PAM50 list.
Expanding the validation process using the ROCK test set, Cramer’s V ranged from 0.57±0.06
with the CM1, and 0.58±0.05 using PAM50 list.

The Average Sensitivity statistic was used to characterize the average proportion of accu-
rately labelled samples in each subtype. Considering the analysis with CM1 list, the measure
was 0.76±0.06 in the METABRIC discovery set and 0.64±0.04 in the validation set; and with
PAM50 list was 0.78±0.07 and 0.65±0.05, respectively. Likewise, the average sensitivity calcu-
lated for the ROCK test set was 0.67±0.07 using the CM1 and 0.69±0.08 with PAM50 list. A
complete table containing the performance of all individual classification methods is available
in the (Supporting Information S2 Table and S3 Table).

The levels of agreement explained by interrater reliability metric Fleiss’ kappa. Fleiss’
kappa was computed to assess the reliability of agreement between two raters, as displayed in
Table 7. We initially compared the agreement Among classifiers which indicates the overall per-
formance of classifiers alone. We then compared Predicted vs Original, that is, the agreement
between subtypes assigned by the majority of classifiers using CM1 and PAM50 lists compared
to the original PAM50 labels in the METABRIC discovery and validation sets, and ROCK test
set. We also calculated the kappa between labels attributed by the majority of classifiers using
both lists, CM1 vs PAM50. We refer to the Materials and Methods section for an interpretation
of κ values. For instance, the high levels of agreement between two raters reflect more than
what would be expected by chance.

Considering the agreement of the ensemble of classifiers, there was a substantial agreement
in both METABRIC discovery and validation sets, and ROCK test set (Table 7). Fleiss’ kappa

Table 1. (Continued)

Probe ID Gene name Gene symbol and aliases [Refs.]

ILMN_1723684 Duffy blood group, atypical chemokine receptor DARC; FY, Dfy, GPD, GpFy, ACKR1, CCBP1, CD234, WBCQ1 [183–
186]

ILMN_1809099 Interleukin 33 IL33; DVS27, IL1F11, NF-HEV, NFEHEV, C9orf26, RP11–
575C20.2

[187]

ILMN_1766650 Forkhead box A1 FOXA1; HNF3A, TCF3A [188–
203]

ILMN_1811387 Trefoil factor 3 (intestinal) TFF3; ITF, P1B, TFI [204–
209]

ILMN_1738401 Forkhead box C1 FOXC1; ARA, IGDA, IHG1, FKHL7, IRID1, RIEG3, FREAC3,
FREAC-3

[210–
212]

ILMN_1689146 Gamma-aminobutyric acid (GABA) A receptor, pi GABRP [213,
214]

ILMN_1807423 Insulin-like growth factor 2 mRNA binding
protein 3

IGF2BP3; CT98, IMP3, KOC1, IMP-3, VICKZ3 [215–
221]

ILMN_1692938 Phosphoserine aminotransferase 1 PSAT1; PSA, EPIP, PSAT [222,
223]

ILMN_1668766 Rhophilin associated tail protein 1 ROPN1; CT91, ODF6, ROPN1A, RHPNAP1, ropporin [224]

doi:10.1371/journal.pone.0129711.t001
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Table 2. Scores and ranks for the CM1 list.

Luminal A Luminal B Her2 Normal Basal

Probe ID score rank score rank score rank score rank score rank Symbol PAM50

ILMN_1728787 0.203 5 0.144 5 -0.314 2 54 -0.461 3 AGR3

ILMN_1796059 0.216 3 8730 1434 3666 -0.390 5 ANKRD30A

ILMN_1684217 -0.203 1 74 497 146 97 AURKB

ILMN_1798108 1980 0.155 2 68 405 179 C6orf211

ILMN_1740609 476 43 970 0.252 3 2776 CCL15

ILMN_1747911 80 0.144 4 2080 194 1496 CDC2

ILMN_1683450 -0.196 3 30 306 79 166 CDCA5

ILMN_1666305 16 0.146 3 438 167 917 CDKN3

ILMN_1747016 -0.195 5 88 362 73 127 CEP55 x

ILMN_1803236 1875 354 0.316 3 688 13483 CLCA2

ILMN_1789507 12176 5363 1820 -0.155 3 9245 COL11A1

ILMN_1651282 915 16 4821 0.244 4 12205 COL17A1

ILMN_1729216 6657 -0.153 5 3008 52 45 CRYAB

ILMN_1723684 456 14 2830 0.255 2 4215 DARC

ILMN_1678535 8 0.181 1 -0.360 1 7 -0.440 4 ESR1 x

ILMN_1766650 70 85 12522 216 -0.478 2 FOXA1 x

ILMN_1738401 1047 10 2254 226 0.443 1 FOXC1 x

ILMN_1689146 1177 13 1833 283 0.414 2 GABRP

ILMN_2161820 310 270 0.333 1 791 1479 GLYATL2

ILMN_1687235 79 1942 58 -0.157 2 211 HPN

ILMN_2358760 105 1941 73 -0.152 4 284 HPN

ILMN_1807423 1269 2087 21820 11567 0.405 3 IGF2BP3

ILMN_1809099 3400 141 6282 0.275 1 23413 IL33

ILMN_1666845 8365 -0.186 2 3879 35 29 KRT17 x

ILMN_1651329 0.221 1 2481 1149 1159 20 LOC646360

ILMN_2310814 0.221 2 8776 33 1131 23 MAPT x

ILMN_2212909 -0.196 4 137 501 92 65 MELK x

ILMN_1655915 5274 3486 3832 -0.166 1 4148 MMP11 x

ILMN_1810978 20520 9 0.326 2 6 1495 MUCL1

ILMN_1688071 0.215 4 902 -0.256 5 24 19 NAT1 x

ILMN_1786720 988 -0.174 3 273 465 20 PROM1

ILMN_1692938 68 343 93 1864 0.391 5 PSAT1

ILMN_1668766 721 62 1415 368 0.405 4 ROPN1

ILMN_1788874 148 4633 -0.259 4 1961 1462 SERPINA3

ILMN_2149164 11497 -0.203 1 1697 0.244 5 40 SFRP1 x

ILMN_1773459 185 621 0.293 5 10046 483 SOX11

ILMN_1785570 11 2499 -0.308 3 438 82 SUSD3

ILMN_1811387 26 64 1263 661 -0.521 1 TFF3

ILMN_1674533 643 605 0.300 4 2756 1819 TRPV6

ILMN_1714730 -0.200 2 9 318 43 353 UBE2C x

ILMN_1711470 56 7 1732 -0.145 5 1113 UBE2T x

ILMN_1753101 474 -0.153 4 2424 3373 1522 VTCN1

The CM1 scores for the topmost 5 positive and negative probe IDs in each subtype are given. The ranks correspond to the position of the probe from the

topmost positive or negative (with 1 being the top ranked score at either side). The rightmost two columns indicate the gene symbol the probe maps to,

and which genes appear also in the PAM50 list.

doi:10.1371/journal.pone.0129711.t002
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Fig 2. The gene expression profile of the balanced top ten probes selected for each of the five breast
cancer intrinsic subtypes across 997 samples from the discovery set. The annotated genes are defined
for each subtype as an intrinsic, highly discriminative, signature. Samples were ordered according to the
gene expression similarities in each breast cancer subtype. Colours represent the selected genes and
sample subtypes: luminal A (yellow), luminal B (green), HER2-enriched (purple), normal-like (blue), and
basal-like (red).

doi:10.1371/journal.pone.0129711.g002
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was 0.73, 0.75 and 0.63 with the CM1 list for METABRIC discovery, validation and ROCK
data sets, respectively. Values obtained with the PAM50 list were 0.72, 0.73 and 0.6, respec-
tively. By comparing the subtypes predicted by the majority of classifiers and original PAM50
labels, there was an almost perfect agreement with CM1 (κ = 0.81) and PAM50 (κ = 0.84) lists
in the discovery set. In the validation and ROCK sets, on the other hand, labels showed only a
moderate agreement for both lists (κ’ 0.6). Strikingly, the Fleiss’ kappa between subtypes pre-
dicted using the CM1 and PAM50 lists (κ = 0.86, 0.83, and 0.8 in the METABRIC discovery,
validation, and ROCK sets, respectively) revealed an almost perfect agreement. This statistical
measure confirm our visual analysis of the contingency tables as they find strong relationship
across the subtype labels in each data set. A detail of the agreement among classifiers by intrin-
sic subtype is shown in (Supporting Information S4 Table).

The agreement according to the Adjusted Rand Index. The agreement between the dif-
ferent sample labellings was also scrutinized using the Adjusted Rand Index measure (Table 8).
The values obtained with the CM1 list were 0.757 in the METABRIC discovery and 0.426 in
the validation sets, and 0.453 in the ROCK test set. For PAM50 list, the values were 0.792,
0.457 and 0.507, respectively. Similar to Fleiss’ kappa, the agreement between labels predicted
with CM1 and PAM50 lists is higher than the agreement with the original labels. The Adjusted

Fig 3. Gene expression patterns of the 42 probes selected using the CM1 score. The heat map diagram exhibit 42 probes (rows) and 997 samples
(columns) from the discovery set ordered according to gene expression similarity, based on a memetic algorithm [27]. The labels highlighted on top show the
sample distribution according to the ER positive and negative status. It also illustrates the original PAM50 subtypes luminal A (yellow), luminal B (green),
HER2-enriched (purple), normal-like (blue), and basal-like (red) in the METABRIC discovery set. Two probes in the CM1 list refer to the same gene,HPN,
which was then appended with the corresponding Illumina probe ID.

doi:10.1371/journal.pone.0129711.g003
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Rand Index values were 0.822, 0.788 and 0.642 for the three data sets, respectively. The num-
bers obtained with this measure also revealed remarkable concordance of CM1 and PAM50
lists assigned labels.

The use of an ensemble learning with the CM1 list improves the subtype
distribution in the METABRIC and ROCK data sets
The number of samples in each original PAM50 subtype is markedly different across the
METABRIC sets (Fig 5). In the discovery set, there is a clear abundance of luminal A and B

Fig 4. ThemRNA log2 normalised expression values of 7 novel highly discriminative biomarkers across the five intrinsic subtypes in the
METABRIC discovery and validation sets, and ROCK set. The box plot uncover the values of 997 samples in the METABRIC discovery set, 989 in the
validation set, and 1570 in the ROCK test set.

doi:10.1371/journal.pone.0129711.g004

Table 3. The ensemble learning overall performance on assigning labels to samples in the METABRIC
discovery and validation sets, and ROCK test set.

CM1 list PAM50 list

Dataset CV AS CV AS

METABRIC discovery 0.731 ± 0.057 0.763 ± 0.060 0.752 ± 0.064 0.781 ± 0.070

METABRIC validation 0.632 ± 0.036 0.641 ± 0.039 0.643 ± 0.041 0.650 ± 0.047

ROCK test set 0.571 ± 0.060 0.673 ± 0.077 0.578 ± 0.054 0.687 ± 0.081

Values are given as average ± std. deviation. CV- Cramer’s V; AS- Average Sensitivity

doi:10.1371/journal.pone.0129711.t003
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Table 4. Contingency tables for predicted labels using the 24 classifiers trained with the CM1 list.

METABRIC discovery METABRIC validation ROCK test set

LA LB H N B I LA LB H N B I LA LB H N B I

LA 435 19 2 2 0 8 252 2 0 0 0 1 452 122 2 0 0 17

LB 24 234 0 0 0 10 62 156 0 0 0 6 18 371 42 0 2 14

H 4 4 67 0 2 10 23 45 71 2 2 10 0 1 13 0 0 0

N 13 0 8 31 0 6 80 0 0 59 0 5 115 8 36 74 56 50

B 0 0 10 2 103 3 6 7 22 19 142 17 0 0 0 7 166 4

Rows contain labels assigned by the majority of classifiers trained with the CM1 list, while columns contain the the original METABRIC labels assigned

using the PAM50 method. In this table, LA corresponds to luminal A, LB corresponds to luminal B, H to HER2-enriched, N to normal-like, and B to basal-

like. Labels marked as I refer to inconsistent assignments; situations where the classifiers did not achieve the majority on attributing a subtype label.

doi:10.1371/journal.pone.0129711.t004

Table 5. Contingency tables for predicted labels using the 24 classifiers trained with the PAM50 list.

METABRIC discovery METABRIC validation ROCK test set

LA LB H N B I LA LB H N B I LA LB H N B I

LA 440 17 1 1 0 7 254 0 0 0 0 1 530 46 2 0 0 15

LB 25 239 0 0 0 4 56 162 0 0 0 6 53 327 34 0 3 30

H 0 5 72 0 1 9 21 39 80 0 0 13 0 0 12 0 0 2

N 9 0 2 34 1 12 82 0 0 55 0 7 105 4 18 92 67 53

B 0 0 7 1 103 7 4 7 20 14 145 23 0 0 3 0 172 2

Rows contain labels assigned by the majority of classifiers trained with the PAM50 list, while columns contain the the original METABRIC labels assigned

using the PAM50 method. In this table, LA corresponds to luminal A, LB corresponds to luminal B, H to HER2-enriched, N to normal-like, and B to basal-

like. Labels marked as I refer to inconsistent assignments; situations where the classifiers did not achieve the majority on attributing a subtype label.

doi:10.1371/journal.pone.0129711.t005

Table 6. Contingency tables for predicted labels using the 24 classifiers trained with CM1 and PAM50 lists.

METABRIC discovery METABRIC validation ROCK Set

LA LB H N B I LA LB H N B I LA LB H N B I

LA 450 15 0 4 0 7 390 14 1 4 0 14 550 8 0 10 0 17

LB 20 235 0 0 0 2 12 185 8 0 0 5 112 361 0 0 0 29

H 0 0 75 2 1 9 0 1 83 0 1 8 0 4 67 0 8 21

N 0 0 0 28 0 7 6 0 0 61 1 12 0 0 0 67 0 7

B 0 0 2 0 101 2 0 0 1 0 140 3 0 0 0 2 219 3

I 4 11 5 2 3 12 9 8 7 4 3 8 26 4 2 13 15 25

Rows contain the labels assigned by the majority of classifiers trained with the CM1 list, while columns contain labels assigned by the majority of

classifiers trained with PAM50 list. In this table, LA corresponds to luminal A, LB corresponds to luminal B, H to HER2-enriched, N to normal-like, and B to

basal-like. Labels marked as I refer to inconsistent assignments; situations where the classifiers did not achieve the majority on attributing a subtype label.

doi:10.1371/journal.pone.0129711.t006
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subtypes, precisely 73.62% of all samples. In contrast, the proportion of luminals in the valida-
tion set is only 48.14%. The ratio of luminal A to luminal B samples changed from 1.74 in the
discovery to 1.14 in the validation set. However, when the CM1 or PAM50 lists are used in con-
junction with the ensemble of classifiers, samples in the discovery and validation sets are more
homogeneously distributed. The percentage of samples in the discovery set labelled as luminal
A and B using CM1 and PAM50 lists are 73.53% and 73.72%, respectively. These proportions
match the original number (73.62%). On the other hand, in the validation set the CM1 and
PAM50 lists assigned a total of 64% and 63.19% luminal samples, against the 48.14% previously
mentioned. The distribution of subtypes also become more similar to the discovery set. Like-
wise, ROCK test set also changed the pattern of class distribution after the performance of the
ensemble of classifiers. The differences in class distributions might not be attributed to the ran-
domisation procedure used by the studies as the performance of the ensemble of classifiers
with both lists reconcile the distribution of subtypes.

We summarize the similarities and differences in subtypes distribution (graphically dis-
played in Fig 5) by computing the square root of the Jensen-Shannon divergence [225]. This is
a true metric of distance between probability distributions. Its plot in Fig 6 shows the similarity
between all possible pairs of data sets based on their distribution of subtype labels (Supporting
Information S4 Table). It can be observed that the original labels are the most divergent ones,

Table 7. Agreement of the 24 classifiers on assigning labels to samples in the data sets measured by
Fleiss’ kappa statistic.

METABRIC ROCK

discovery validation test set

Among classifiers CM1 0.73 0.753 0.626

PAM50 0.724 0.729 0.59

Predicted vs. Original CM1 0.814 0.596 0.591

PAM50 0.84 0.618 0.641

CM1 vs PAM50 0.859 0.832 0.804

Rows entitled Among classifiers indicate agreement of classifiers alone, not considering the labels.

Predicted vs Original show the agreement between the mostly predicted and initial labels of samples

(PAM50 method). Finally, rows entitled CM1 vs PAM50 contain the agreement between the mostly

predicted labels using the CM1 and PAM50 lists with the ensemble learning.

doi:10.1371/journal.pone.0129711.t007

Table 8. Agreement measured by the Adjusted Rand Index between different samples’ labellings.

METABRIC ROCK

discovery validation test set

CM1 0.757 0.426 0.453

PAM50 0.792 0.457 0.507

CM1-PAM50 0.822 0.788 0.642

This contains the agreement between the original and predicted labels of samples in the discovery and

validation sets. CM1-METABRIC refers to agreement between the labels predicted by the majority of

classifiers trained with the CM1 list and the original METABRIC labels; PAM50-METABRIC is the

agreement between labels predicted by the majority of classifiers trained with the PAM50 list and original

METABRIC labels; and CM1-PAM50 is the agreement between predicted labels using both lists.

doi:10.1371/journal.pone.0129711.t008
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especially in the METABRIC validation and ROCK test sets. The high similarity of samples dis-
tribution among subtypes based on the assignments with CM1 or PAM50 lists is evident. Such
similarity was not expected for the ROCK set as the ensemble of classifiers was trained with
METABRIC discovery (Illumina platform data) and tested in the ROCK set (Affymetrix plat-
form data). The limited number of probes matching Illumina and Affymetrix in both lists (as
described in Materials and Methods) seems not to affect the performance of the ensemble
learning. Yet the divergences in the original class distributions might not be attributed to the
randomisation procedure used by the consortium. These results point out to the relative
strength and robustness of a set of classifiers compared to single methods to predict breast can-
cer subtype labels. They also indicate that there is an issue to be considered by researchers
when using the original PAM50 labels from the METABRIC study for analysing data and
building predictive models.

Breast cancer intrinsic subtypes show different clinical markers
distribution and survival curves
Given the heterogeneity among breast cancer patients and the intricate assignment of PAM50
labels in the original METABRIC data set, we further investigated whether significant differ-
ences exist in the analysis of current clinical markers (ER, PR and HER2). Figs 7, 8 and 9 show,

Fig 5. Class distribution in the METABRIC discovery and validation sets, and in the ROCK set. The bars represent the number of samples in each
breast cancer subtype. In the first row, the labels refer to the original assignment using the PAM50 method. The following rows show the new labels attributed
using an ensemble of 24 classifiers with PAM50 and CM1 lists, respectively. Samples were classified as inconsistent if there was no consensus between the
majority of classifiers as to what should be the correct subtype.

doi:10.1371/journal.pone.0129711.g005
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respectively, the distribution of the ER, PR and HER2 across intrinsic subtypes in the METAB-
RIC discovery and validation sets, considering the original PAM50 labels and the labels
assigned by ensemble of classifiers using CM1 and PAM50 lists. The new subtype labelling
markedly improves the status of the clinical markers in the METABRIC data set. For instance,
the ER marker distribution across subtypes shows an important decrease in the number of
HER2-enriched and basal-like samples that are ER-positive according to the original PAM50
labels. The PR marker, likewise, varies the distribution when predicted labels based on the
ensemble of classifiers using either CM1 and PAM50 list are compared with the original labels.
HER2 amplification has a particular behaviour across all subtypes. Under the new subtype
labels, the distribution of the three clinical markers becomes more consistent with what is
expected according to the literature for each class: luminal A (ER+ and/or PR+, HER2−); lumi-
nal B (ER+ and/or PR+, HER2±); HER2-enriched (ER−, PR− andHER2+); and basal-like (ER
−, PR−, HER2−) [226].

Subsequently, we illustrate the survival curves for all breast cancer subtypes using Cox pro-
portional hazards model, as described in Materials and Methods. The curves were plotted

Fig 6. Similarity between subtypes distribution in the METABRIC discovery and validation sets, and in
the ROCK set. The image shows the similarity between the subtypes distribution for METABRIC discovery
(MD) and validation (MD) sets, and ROCK test set (RS). The labels were assigned in the original data sets
using the PAM50 method, and relabelled in this study with an ensemble learning using PAM50 and CM1 lists.
The similarity is measured using the square root of the Jensen-Shannon divergence. Darker shades
represent more similar distributions, while lighter shades refer to divergent patterns. The diagonal shows the
darkest color as each data set is the closest to itself. According to this image, labels assigned using an
ensemble learning with CM1 and PAM50 lists are highly similar, and both exhibit lower levels of agreement
with the original labels assigned using a single classifier (PAM), or PAM50 method.

doi:10.1371/journal.pone.0129711.g006
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Fig 7. ERmarker distribution across subtypes in the METABRIC data sets. (A) Discovery and (B) Validation. The bars represent the number of samples
with ER positive and negative in the five intrinsic subtypes, based on the patients’ clinical information. The top row is based on the original subtype labels
obtained with the PAM50 list and a single classifier (PAM). Middle and bottom rows are based on the labels obtained by Ensemble Learning using the PAM50
and CM1 lists, respectively.

doi:10.1371/journal.pone.0129711.g007

Fig 8. PRmarker distribution across subtypes in the METABRIC data set. (A) Discovery and (B) Validation. The bars represent the number of samples
with PR positive and negative distributed in the five intrinsic subtypes, based on the patients’ clinical information. The top row is based on the original subtype
labels obtained with the PAM50 list and a single classifier (PAM). Middle and bottom rows are based on the labels obtained by Ensemble Learning using the
PAM50 and CM1 lists, respectively.

doi:10.1371/journal.pone.0129711.g008
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based on the original PAM50 labels and those assigned by the majority of classifiers. For gener-
ating the survival curves, we included the most relevant clinical variables as covariates: grade,
size, age at diagnosis, number of lymph nodes positive, and ER status (immunohistochemistry)
[27]. This analysis revealed different curves in the METABRIC discovery and validation sets
(Fig 10). For instance, luminal B and basal-like subtypes show a similar pattern across data
sets. Luminal A, HER2-enriched and normal-like, on the other hand, have a more consistent
survival pattern when the CM1 and PAM50 lists are used in conjunction with the ensemble
learning. Taken as a whole, the results of this section support the increased robustness of labels
assigned by the ensemble of classifiers with the CM1 or PAM50 lists, and point out to inconsis-
tencies in the original subtype assignment in the METABRIC study.

Discussion
In this study, we exposed the power of the CM1 list for improving the breast cancer subtype pre-
diction in the METABRIC and ROCK data sets. The CM1 score portrayed 30 novel genes as
potential biomarkers, along with 12 well-established markers shared between CM1 and PAM50
lists. The 42 biomarkers have a great potential to differentiate breast cancer intrinsic subtypes.
Among them, AGR3, HPN, ANKRD30A, AURKB, PROM1, VTCN1, CRYAB, CDK1, CDKN3,
SERPINA3, SOX11, TRPV6, CLCA2, MUCL1, COL11A1, DARC, TFF3, IGF2BP3, IL33, SUSD3,
PSAT1, and GABRP are reported in different studies associated with breast cancer; however not
in the context of subtype differentiation. Noteworthy, the CM1 list revealed a set of probes for
which little literature exists in relation to breast cancer subtypes: CDCA5, CCL15, COL17A1,
GLYATL2, ROPN1, LINC00993 and C6orf211. Their expression levels vary across different sub-
types, and are yet a new avenue to be explored. We also emphasize the 12 common genes
(CEP55, ESR1, FOXA1, FOXC1, KRT17, MAPT, MELK, MMP11, NAT1, SFRP1, UBE2C, and
UBE2T) due to their important role for breast cancer disease and intrinsic subtyping.

Fig 9. HER2 distribution across subtypes in the METABRIC data sets. (A) Discovery and (B) Validation. The bars represent the number of samples with
HER2 amplification (positive or negative) for each intrinsic subtype based on the patients’ clinical information. The top row is based on the original subtype
labels obtained with the PAM50 list and a single classifier (PAM). Middle and bottom rows are based on the labels obtained by Ensemble Learning using the
PAM50 and CM1 lists, respectively.

doi:10.1371/journal.pone.0129711.g009
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Within the application of an ensemble of classifiers, CM1 and PAM50 lists showed concor-
dant predictive power for disease subtyping. In fact, there was an almost perfect agreement
between the labellings obtained with the majority of classifiers using both lists; however differ-
ent from the original labels. In this study, we want to highlight the weakness of relying in a sin-
gle method to assign subtypes labels, as opposed to the power and robustness of an ensemble
learning. We therefore discourage label assignments based on a single classifier and also sug-
gests a thorough review of those intrinsic subtypes given the importance of such data sets to
breast cancer research. The results indicate that there is an issue to be considered by researchers
when using the original PAM50 labels for analysing data. The use of incorrect labels would
lead to a plethora of misguided and misleading results by other investigators that use METAB-
RIC or ROCK data sets.

Fig 10. The survival curves for METABRIC discovery and validation sets. The survival curves for each breast cancer subtype are generated using Cox
proportional hazards model based on the grade and size of the tumour, patient’s age, number of lymph nodes positive and ER status. Each curve represents
the survival probability at a certain time after the diagnosis. Ticks on the curve correspond to the observations of patients who are still alive, while drops
indicate the death. The probability curves based on the last 10 observations are plotted in dash. The top row is based on the original subtype labels obtained
with the PAM50 list and a single classifier (PAM). Middle and bottom rows are based on the labels obtained by Ensemble Learning using the PAM50 and
CM1 lists, respectively.

doi:10.1371/journal.pone.0129711.g010
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In spite of luminals sharing the same origin and large molecular commonalities [227, 228],
the ensemble of classifiers accurately predicted luminal samples in the METABRIC data set,
and showed some ambiguity on assigning the subtype A or B for a small number of samples,
specially in the ROCK data set. This may be a consequence of the reduced number of probes
matching across Illumina and Affymetrix platforms. HER2-enriched notably improved label
consistency in the ROCK data. Furthermore, the normal-like tumours received more often
contradictory and inaccurate subtype labelling among both data sets. The poor overall outcome
for this subtype is supported by the discussion that normal-like is an artefact of sample process-
ing with high contamination of normal breast tissue [13, 16, 229]; however, still crucial to be
elucidated. Ultimately, the basal-like subtype maintained the classification with a unique pro-
file, markedly divergent from other subtypes [21, 22, 230]; even though this group has recently
been partitioned into new fundamental classes [9, 10].

Overall, the new intrinsic subtype labels based on the CM1 list and ensemble learning
revealed more accurate distributions of clinical markers (ER, PR and HER2) and survival
curves, when compared to the original PAM50 labels in the METABRIC cohort and ROCK
test set. Interestingly, the CM1 list shows ESR1 (ER) among the 42 probes, but brings other
independent genes that are also relevant for overall predictions. Robust data sets like METAB-
RIC have contributed to the understanding of breast cancer disease in terms of its molecular
complexity and intrinsic alterations. The main limitations of the research in the field, neverthe-
less, is the uncertainty in the exact classification of intrinsic subtypes; over and above the dis-
covery of molecular signatures and standard clinical biomarkers. Under consideration, a
consistent taxonomy needs yet to be established prior to implementation in clinical practice.
Additional research involving the genome, transcriptome, proteome, and epigenome, will lastly
portray a true landscape of subtypes and contribute to breast cancer management.

Supporting Information
S1 Text. CM1 list and literature review. The document shows the CM1 probe list along with
an extensive literature review. The 42 CM1 biomarkers revealed a great potential to differenti-
ate breast cancer intrinsic subtypes in the METABRIC and ROCK data sets. The 30 novel
markers and 12 well-established genes vary the expression levels across different subtypes. The
vast majority has been associated with breast cancer disease, either included or not in the sub-
typing context.
(PDF)

S1 Fig. The mRNA log2 normalised expression values of 42 probes in the CM1 list across
the five intrinsic subtypes in the METABRIC discovery and validation sets, and ROCK set.
Box plots illustrating the expression levels for all selected transcripts in the CM1 list in the
METABRIC discovery and validation sets, and ROCK test set. The figure shows the probes dif-
ferential behaviour across breast cancer intrinsic subtypes.
(TIFF)

S1 Table. The CM1 score calculated for each breast cancer subtype. Table listing the CM1
score used to rank the set of 48803 probes for each of the five breast cancer subtypes in the
METABRIC discovery data set. In each case, we selected the top 10 highly discriminative
probes (5 with the greatest positive CM1 score values—indicating up-regulated probes relative
to the other subtypes, and 5 with the smallest negative values—representing down-regulation).
(XLSX)

S2 Table. The performance of the classifiers using the CM1 list. Table describing the perfor-
mance of each classifier on the METABRIC discovery and validation sets, and ROCK test set
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using the CM1 list. It shows the percentage of correctly, incorrectly and not classified samples,
Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for classification. The 24
classifiers from the Weka software suite are also listed. The labels predicted by each classifier
for all samples using CM1 list are defined as: 1—luminal A, 2—luminal B, 3—HER2-enriched,
4—normal-like, 5—basal-like. Count of predicted labels was obtained with the consensus of
the majority of classifiers.
(XLSX)

S3 Table. The performance of the classifiers using the PAM50 list. Table describing the per-
formance of each classifier on the METABRIC discovery and validation sets, and ROCK test
set using the PAM50 list. It shows the percentage of correctly, incorrectly and not classified
samples, Fleiss Kappa index, Cramer’s V, Average Sensitivity, and other values for classifica-
tion. The 24 classifiers from the Weka software suite are also listed. The labels predicted by
each classifier for all samples using CM1 list are defined as: 1—luminal A, 2—luminal B, 3—
HER2-enriched, 4—normal-like, 5—basal-like. Count of predicted labels was obtained with
the consensus of the majority of classifiers.
(XLSX)

S4 Table. The agreement between sample labelling with Fleiss’ Kappa measure and the Jen-
sen-Shannon divergence of two probability distributions. Table containing the Fleiss’ Kappa
agreement of labels for the METABRIC discovery and validation sets, and ROCK test set. It
shows the overall agreement Among classifiers using CM1 and PAM50 lists, as well as the
agreement for each subtype. The predicted—original are described in the table and contain the
agreement between the mostly predicted and initial labels of samples; whereas the CM1—
PAM50 show agreement between labels assigned by the majority of classifiers using CM1 and
PAM50 lists. The file also has the Jensen-Shannon divergence between two probability distri-
butions. Numbers represent the similarity between subtypes distribution for METABRIC dis-
covery and validation sets, and ROCK test set. The similarity is measured using the square root
of the Jensen-Shannon divergence.
(XLSX)
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