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Simple Summary: High T-cell infiltration has been associated with improved clinical outcomes
in many human solid tumors. However, these cells are not autonomous in their effector function,
depending on the interaction with other immune and non-immune cells, as well as soluble factors
released into the tumor microenvironment (TME). Identification of the key elements underlying T-cell
recruitment within tumors is of fundamental importance to improve the success of immunotherapy
strategies. This review summarizes the most recent findings on dendritic cells (DC), a key cellular
element that regulates the recruitment of functional tumor-specific CD8+ T cells, and current strategies
that exploit this innate immune cell to improve the efficacy of therapeutic treatments.

Abstract: Tumor-infiltrating CD8+ T cells have been shown to play a crucial role in controlling
tumor progression. However, the recruitment and activation of these immune cells at the tumor
site are strictly dependent on several factors, including the presence of dendritic cells (DCs), the
main orchestrators of the antitumor immune responses. Among the various DC subsets, the role
of cDC1s has been demonstrated in several preclinical experimental mouse models. In addition,
the high density of tumor-infiltrating cDC1s has been associated with improved survival in many
cancer patients. The ability of cDC1s to modulate antitumor activity depends on their interaction
with other immune populations, such as NK cells. This evidence has led to the development of
new strategies aimed at increasing the abundance and activity of cDC1s in tumors, thus providing
attractive new avenues to enhance antitumor immunity for both established and novel anticancer
immunotherapies. In this review, we provide an overview of the various subsets of DCs, focusing
in particular on the role of cDC1s, their ability to interact with other intratumoral immune cells,
and their prognostic significance on solid tumors. Finally, we outline key therapeutic strategies that
promote the immunogenic functions of DCs in cancer immunotherapy.

Keywords: solid tumors; CD8+ T-cells; dendritic cells; DC-NK cell axis

1. Introduction

Tumor-infiltrating lymphocytes (TILs) are key elements of the tumor microenviron-
ment (TME), but their presence does not necessarily imply effective induction of anti-tumor
immunity. This is because most TILs are not tumor-specific CD8+ T cells. Identification of
factors that drive recruitment and activation of tumor-specific CD8+ T cells is crucial to
improve the efficacy of anti-cancer immunity.

Gene expression profiles of metastatic tumors have recently revealed the presence of
chemokine transcripts critical for the recruitment of tumor-specific CD8+ T cells [1–3]. They
include chemokines, such as CCL2, CCL3, CCL4, CCL5, CXCL9 and CXCL10, produced
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by a variety of cell types in the TME, including tumor cells, dendritic cells (DC) and
macrophages.

Tumor-specific CD8+ T cell activation is a tightly controlled phenomenon that requires
initiation signals provided primarily by DCs. The presence of DCs within the tumor is
therefore essential to support CD8+ T-cell responses against cancer cells. Consistently, in
many types of tumors, the presence of activated DCs, as measured by DC gene signatures,
is positively correlated with inflammatory status and response to PD-1/PD-L1 pathway
inhibition. Thus, understanding how DCs reach tumors and how they are activated is
critical for improving immunity against cancer. In this review, we will summarize recent
findings on the role of DCs in the recruitment of tumor-specific CD8+ T cells and current
strategies that exploit these elements to improve the efficacy of cancer immunotherapy.

2. DC Cell Subsets in Cancer Immunology

DCs are the most important antigen-presenting cells (APCs), able of initiating and
regulating the adaptive immune response [4]. Although their primary function is to capture,
process and present antigens to T lymphocytes via major histocompatibility complex class
I (MHC-I) and class II (MHC-II) molecules, DCs are able of secreting a wide variety of
cytokines and growth factors that are responsible for attracting and interacting with other
immune cell populations [5] (Figure 1).
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cells through the expression of IFN-α/β, TRAIL and Granzyme B (GZMB). moDCs and pDCs may 
also have a pro-tumor action by creating an immunosuppressive environment and promoting tu-
mor growth (right panel). moDCs produce molecules with immunosuppressive function such as 
iNOS, TNFα, IL-6 and IL-10. pDCs secrete chemokines able to recruit Tregs into the TME (CCL22 
and IDO) as well as pro-angiogenic cytokines (TNFα, IL-8, and IL-1α). 

DCs can exist in two different functional states, “mature” and “immature”, which 
influence the quality of immune responses. Under homeostatic conditions, mature DCs 
reside in peripheral tissues and acquire the ability to activate naive antigen-specific T cells 
in secondary lymphoid organs [6,7]. In contrast, immature DCs maintain peripheral tol-

Figure 1. Activity of dendritic cell (DC) subsets in cancer immunity. In the TME, DCs can have both an anti-tumor and
pro-tumor effect. Anti-tumor activity is mainly driven by cDC1s and cDC2s (left panel). cDC1s induce recruitment and
activation of CD8+ T lymphocytes in the TME through cytokine production and cross-presentation of tumor antigens,
respectively. cDC2s are the major activators of CD4+ T cells. moDCs act mainly by stimulating cDC1s and cDC2s, whereas
pDCs kill tumor cells through the expression of IFN-α/β, TRAIL and Granzyme B (GZMB). moDCs and pDCs may also have
a pro-tumor action by creating an immunosuppressive environment and promoting tumor growth (right panel). moDCs
produce molecules with immunosuppressive function such as iNOS, TNFα, IL-6 and IL-10. pDCs secrete chemokines able
to recruit Tregs into the TME (CCL22 and IDO) as well as pro-angiogenic cytokines (TNFα, IL-8, and IL-1α).

DCs can exist in two different functional states, “mature” and “immature”, which
influence the quality of immune responses. Under homeostatic conditions, mature DCs
reside in peripheral tissues and acquire the ability to activate naive antigen-specific T cells in
secondary lymphoid organs [6,7]. In contrast, immature DCs maintain peripheral tolerance
to autoantigens by creating an immunosuppressive environment that inhibits autoreactive
T-cell activity and promotes proliferation of regulatory T cells (Tregs) [8–10]. Unlike mature
DCs, immature DCs express low levels of MHC-I and MHC-II molecules and do not
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secrete proinflammatory cytokines [10]. Maturation of DCs is triggered by alterations
in tissue homeostasis detected by recognition of pathogen-associated molecular patterns
(PAMP) or damage-associated molecular patterns (DAMP) [11,12]. Mature DCs migrate
to secondary lymphoid organs, where antigen presentation to T cells can occur [13,14].
After maturation, DCs upregulate their antigen presentation machinery and co-stimulatory
molecules, such as CD40, CD80 or CD86, becoming potent T-cell activators [15]. Given
their importance in mediating T-cell activation, DCs play a key role in the antitumor
response [16]. DCs infiltrate most tumors, and the importance of their protective role has
emerged over the years. Specifically, DCs engulf, process and present tumor-associated
T-cell antigens triggering an antitumor response [17]. Generally, extracellular antigens
are internalized by APCs, degraded in the endo/lysosome compartment, and presented
to CD4+ T cells by MHC-II molecules. In contrast, cytosolic antigens generated during
viral infection are processed and presented by MHC-I molecule. Some DC subsets have
unique mechanisms for cross-presentation of extracellular antigens by MHC-I molecules to
induce potent CD8+ T-cell responses [18,19]. This phenomenon is particularly important
for tumor immunity. The TME is infiltrated by different DC subsets with various stages of
maturation.

DCs are classified into conventional or classical DCs (cDC), plasmacytoid DCs (pDC)
and monocyte-derived DCs (moDC). cDCs and pDCs are present and active under steady-
state conditions, whereas moDCs arise only during inflammation [20].

2.1. cDCs

cDCs are functionally distinct in two subsets: cDC1s able of presenting and cross-
presenting both endogenous and exogenous antigens, and cDC2s presenting only exoge-
nous antigens [21]. cDC1s are phenotypically defined by the expression of integrin-αX
(CD11c) and MHC-II molecules. Human and murine cDC1s differ in the expression
of various markers (Table 1). Murine cDC1s express CD11c, MHC-II, CD103, CD8α,
XCR1, CLEC9A and DNGR1 [17] and are developmentally dependent on IRF8, ID2, and
BATF3 [22]. Human cDC1s express CD11c, HLA-DR, XCR1, CLEC9A, DNGR1, and CD141.
Although cDC1s are the rarest subset of DCs, they play a key role in generating immunity to
cancer. Indeed, cDC1s capture apoptotic tumor cells, migrate to draining lymph nodes, and
cross-present tumor antigens to CD8+ T cells [23,24]. The importance of cross-presentation
of cDC1s in cancer immunity has been demonstrated in several mouse models. Mice with
impaired cross-presentation, such as mice deficient in DC-specific Sec22b or Wdfy4, are
unable to mount antitumor responses and reject tumors [25]. These data clearly document
that cross-presentation of cDC1s is crucial for inducing a potent antitumor response. In
mouse models, cDC1s are present as lymph node resident (CD8α+) and migratory (CD103+)
populations. The migratory DC population transports antigens from peripheral tissues to
the lymph nodes and spleen in a CCR7-dependent manner [24,26]. A substantial fraction
of intratumoral CD103+ cDC1s does not migrate to the lymph nodes, but still plays a
crucial role in cancer immunity. Broz et al. demonstrated that, in mouse models, non-
migrating CD103+ cDC1s mediate their effects directly in the TME by producing distinct
chemokines [27]. The crucial role of CD103+ cDC1s was further demonstrated in Batf3−/−

mice lacking CD103+ cDC1s, which fail to reject tumors and do not respond to immune
checkpoint inhibition [28,29]. Given the importance of cDC1s in cancer immunity, several
authors have focused their efforts on attempting to recall cDC1s within the tumor site,
thereby promoting subsequent CD8+ T cell recruitment and efficient control of tumor
growth [30,31].

Unlike cDC1s, the role of cDC2s in cancer immunity is less defined. cDC2s are the
most important subset of human DCs in blood, lymphoid organs and non-lymphoid tissues,
as well as the most efficient APCs for CD4+ T-cell activation and expansion [32]. cDC2s also
express different markers in mouse and human (Table 1). Murine cDC2s express CD11c,
MHC-II, CD11b and CD172a, whereas human cDC2s are characterized by the expression of
CD11c, HLA-DR, CD1c, CD1a and CD172a. Compared with cDC1s, cDC2s are superior in
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inducing CD4+ T cell responses through antigen presentation on MHC-II, and in activating
Th17 cells, a population with controversial roles in cancer that produces high levels of
proinflammatory cytokines [33]. cDC2 are associated with good prognosis in many human
cancers. Recently, Binnewies and colleagues demonstrated the crucial role of cDC2s in
supporting the antitumor effect of CD4+ T cells and response to anti-PD-1 therapy [34].
Indeed, CD4+ T-cell responses are significant against tumors. Although CD8+ T cells are a
very powerful tool in fighting cancer, the help of CD4+ T cells is also crucial in establishing
efficient and long-lasting cytotoxic CD8+ T-cell responses. Moreover, activated CD4+ T
cells also contribute to antitumor immunity through the production of type II interferon
(IFN-γ), which activates Natural Killer (NK) cells and macrophages, inhibits angiogenesis,
regulates the generation of tumor stroma, and promotes direct cytolytic effects [35].

Table 1. Mouse and human DC markers.

DC Subset Mouse Surface Markers Human Surface Markers

cDC1 CD11c+ CD11c low

MHC-II+ HLA-DR+

CD103+ CD141+

XCR1+ XCR1+

CLEC9A+ CLEC9A+

DEC205+ DEC205+

CD8α+

cDC2 CD11c+ CD11c+

MHC-II+ HLA-DR+

CD172a+ CD172a+

CD11b+ CD1a+

CD1c+

pDC CD11c low CD11c−

MHC-II low HLA-DR low

CXCR3+ CXCR3+

CD317+ CD123+

SIGLEC-H+ CD303+

B220+ CD304+

moDC CD11c+ CD11c+

MHC-II+ HLA-DR+

CD11b+ CD11b+

CD14+ CD14+

CD64+ CD64+

CD206+ CD206+

CD209+ CD209+

CCR2+ CCR2+

Ly6C+ CD1a+

CD1c+

2.2. pDCs

pDCs are characterized by different markers in mice and human (Table 1) [36]. This
DC subset is primarily found in lymphoid organs and can migrate through the bloodstream
into lymph nodes. pDCs act like APCs, but less efficiently than cDC1s and cDC2s [37].
Although pDCs are a subset of DCs studied in relation to viral infections and autoimmune
diseases, they also play an important role in cancer, although this is still controversial. pDCs
are potent producers of type I interferon (IFN-α/β) which inhibits tumor cell proliferation,
angiogenesis and metastasis [38]. Moreover, in mouse models of breast cancer, pDCs have
direct cytotoxic activity mediated TRAIL and Granzyme B expression, both in vitro and
in vivo [39,40]. On the other hand, pDCs are known to induce immune tolerance and
promote tumor growth. In human melanoma, ovarian and breast cancers, pDCs contribute
to the generation of an immunosuppressive TME that supports tumor progression by
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reducing the cytotoxic activity of CD8+ T cells and increasing the recruitment of Foxp3+

Tregs that produce IL-10 and TGF-β. Therefore, the presence of pDCs in the TME of these
tumors is associated with a poor prognosis [41,42]. In addition, other studies have reported
the induction of angiogenesis by several cytokines produced by pDCs, such as TNFα, IL-8
and IL-1α [43,44].

2.3. MoDCs

MoDCs are another subset of DCs generated by monocytes in an inflammatory envi-
ronment. These cells are characterized by the expression of cDC2-like markers. Murine
moDCs express CD11c, MHC-II, CD11b, Ly6C, CD14, CD64, CD206, CD209 and CCR2,
while human moDC additionally express CD1c and CD1a (Table 1).

The heterogeneity of moDCs may explain the contradictory roles observed in many
types of cancers. Notably, moDCs are primarily generated in response to inflammation and
promote CD4+ T-cell differentiation towards a Th1, Th2 or Th17 cell phenotype [45]. They
are also effective in cross-presenting tumor antigens towards CD8+ T cells and inducing
their infiltration into the TME of different mouse tumor models [46]. Conversely, they may
exhibit an immunosuppressive phenotype that expresses high levels of iNOS, TNFα, IL-6,
IL-10, and has the ability to hinder T-cell proliferation [47].

3. Chemokine Networks and DCs in the TME

Chemokines are key regulators of immune cell trafficking in the TME. Many
chemokines drive DC migration to primary and secondary lymphoid organs and to periph-
eral tissues. Circulating cDC1s are recruited to the TME in response to CCL5 and XCL1
produced by different immune cell populations, such as CD8+ T cells, NK cells and innate
lymphoid cells [48]. However, while CCL5 can also recruit tumor-promoting cells, such as
macrophages and Tregs [49], XCL1 is a specific chemoattractant for cDC1s [50]. Expression
of XCR1 is critical for cDC1 functions and for promoting DC migration in response to
XCL1 ligand. Indeed, the XCR1/XCL1 axis is essential for the development of efficient
cytotoxic CD8+ T cells [51]. FLT3L is an important factor produced by intratumoral NK
cells that support the viability and functions of cDC1s within the TME, promoting their
local differentiation from precursor cells [52]. CCL3 and CCL20 drive the migration of
mature and immature DCs to the tumor site [53,54]. Melanoma cells specifically produce
CCL20, which recruit circulating immature DCs through the CCR6 receptor [55].

In addition, cDC1s act by promoting immunity to cancer through the production
of CXCL9 and CXCL10, two important chemokines responsible for the recruitment of
effective T cells to the tumor site [56]. These chemokines are also crucial in positioning
CD8+ memory T cells in cDC1-rich areas to induce local T-cell restimulation [57,58]. The
importance of these chemokines has been demonstrated in mouse models in which the
absence of CXCL9 and CXCL10 prevents CD8+ T-cell recall within the tumor [56,59]. De
Mingo Pulido and colleagues demonstrated that the TIM3 receptor, when expressed by
cDCs infiltrating breast cancer, inhibits CD8+ T-cell recruitment through downregulation
of CXCL9 expression [29]. cDC1 and cDC2 also locally induce IL-12 production and
subsequently CD8+ T cell cytotoxicity and IFN-α/β production [60]. cDC2s produce a
wide variety of cytokines important for CD4+ T-cell activation and Th1 and Th2 responses,
such as IL-1β, IL-6, IL-12 and IL-23 [45].

In addition to cDCs, pDCs are also important in the TME. Their recruitment is
driven by the CXCL12/CXCR4 axis where CXCL12 may act as a survival factor for tumor-
infiltrating pDCs [61,62].

TME may also affect the function and stimulation of DCs. DCs may promote tumor
growth and progression by enhancing immune tolerance. Within TME, several soluble
factors may upregulate transcriptional and metabolic pathways for the generation of the
tolerogenic DC phenotype, such as prostaglandin E2 (PGE2), TGF-β, VEGF, IL-10, IL-6,
and colony stimulating factor-1 (CSF-1). PGE2, produced by tumor cells, can inhibit IL-
12 production by cDC1, downregulate the expression of co-stimulatory molecules, and
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prevent the induction of antitumor responses [63]. TGF-β and VEGF, produced by the
tumor, inhibit DC functions, including differentiation from precursors, activation and
recruitment to the tumor site [64,65]. TGF-β not only inhibits DCs, but also regulates the
activities of several immune cells, including T cells, macrophages and B cells, and may
support Treg cell development [65].

Crosstalk between tumor-associated macrophages and DCs is crucial in the TME.
Indeed, in mouse mammary tumors, IL-10 production by macrophages can suppress IL-12
expression by CD103+ cDC1s resulting in activation of tumor-specific CD8+ T cells [66].
In addition, DCs can produce inhibitor factors. Tumor-derived TLR2 ligands have been
shown to be critical for the generation of immunosuppressive IL-6- and IL-10-producing
DCs [67]. Moreover, Spranger and colleagues demonstrated that Wnt/β-catenin activation
in tumor cells is variously involved in the suppression of DC function by paracrine IL-10
production and CCL4 downregulation [56].

Within the TME, DCs are the main producers of CCL22, a chemokine that regulates
Treg cell migration [68,69]. Treg-DC interaction at the tumor site is critical for the local
suppressive function of Tregs [69]. The production of indoleamine 2,3 dioxygenase (IDO)
is upregulated in tumor-associated DCs, mainly in pDCs, and is responsible for promoting
Treg cell differentiation [70].

4. DC-NK Cell Axis in Anti-Cancer Immunity

A recent advance in the field of antitumor immunity concerns the reciprocal interplay
between DCs and NK cells [71] (Figure 2). Indeed, in addition to direct cytotoxic activity,
NK cells are able to modulate antitumor immune responses through interactions with
DCs. The first evidence of a bidirectional cross talk between these two innate immune cells
comes from the finding that contact between DCs and resting NK cells induces an increase
in IFN-γ production and cytolytic activity of NK cells [72]. Accordingly, the antitumor
effects triggered by NK cells were significantly reduced in DC-depleted mice [72]. Several
mechanisms have been proposed to demonstrate the ability of DCs to affect NK cell function.
First, the formation of stimulatory synapses between DCs and NK cells promotes IL-12
release from DCs, which in turn activates IFN-γ secretion from NK cells [73]. Second, bone
marrow-derived DCs from wild-type mice are able to activate NK cells to produce IFN-γ in
an IL-12-dependent manner. This was not observed in Batf3-deficient mice lacking CD103+

DCs, which develop more spontaneous metastases and survive less than wild-type control
mice [74]. Third, therapeutic injection of recombinant mouse IL-12 reduced metastases
in both wild-type and Batf3-deficient mice, highlighting the role of IL-12 produced by
CD103+ DCs in controlling NK cell-mediated tumor metastasis [74]. A key role of CX3CL1,
a chemokine expressed by mature DCs, has also been demonstrated in the activation of
resting NK cells [75]. Another factor that has been shown to be crucial in anti-tumor
immunity is IL-15, a cytokine produced by DCs that can promote antitumor activity of NK
cells toward both NK-sensitive and NK-resistant targets [76].

Further evidence has shown that interaction of NK cells with immature autologous
DCs leads to their mutual activation. Specifically, fresh NK cells cultured with immature
DCs in the presence of a specific stimulus strongly enhanced DC maturation and IL-12
production, thereby increasing their ability to stimulate naive CD4+ T cells [77]. Another
mechanism involves the ability of DCs to activate NK cells by IL-18. Once activated, NK
cells release HMGB1, which in turn, promotes inflammation by inducing maturation of
DCs [78].

The ability of NK cells to enhance the activity of DCs has recently been investigated
proving to be a key element in the stimulation of antitumor T-cell responses. First, several
studies have reported that activated NK cells kill autologous immature DCs, both in vitro
and in vivo, in favor of fully activated DCs [79,80]. This evidence led to the proposal that
NK cell-mediated DC killing might be crucial for promoting the development of a more
immunogenic subset of DCs, which can promote the expansion of tumor-specific CD8+

T cells. Interestingly, NK cells have been shown to be necessary for the accumulation
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of cDC1s in mouse tumors, as they produce CCL5 and XCL1, two chemo-attractants of
cDC1s that express CCR1, CCR5 and XCR1 receptors [48]. Furthermore, NK cell-derived
chemokines regulate the distribution of cDC1s within tumor tissues, allowing them to
localize in close proximity to NK cells with which they often form multicellular clusters. It
has been hypothesized that this cross-interaction could be further supported by chemokines
secreted by cDC1s such as CXCL9 and CXCL10, which can attract NK cells to TME via
CXCR3 [48,56,81].
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In addition to chemokines, the abundance of DCs within tumors is also regulated
by the local availability of DC growth factors, such as FLT3L. Recently, NK cells have
been shown to be the major source of FLT3L. Genetic and cellular ablation of NK cells has
provided evidence that these cells are essential in regulating DC accumulation within the
tumor through the production of FLT3L. A positive correlation was found between the
expression of the gene encoding FLT3L and the abundance of DC and NK cells [52]. The
existence of the DC-NK cell axis is further corroborated by the presence of stable conjugates
between these cells within the TME [52]. Consistent with these findings, treatment of
mice with FLT3L resulted in the expansion and accumulation of activated CD103+ DC
progenitors in melanoma lesions [26]. Similar results were shown in mouse models of
breast cancer [30] and pancreatic ductal adenocarcinoma, where treatment with FLT3L plus
CD40 agonist elicited integrated antitumor responses that led to a marked increase in tumor-
infiltrating NK and NKT cells [31]. To date, evidence for the existence of the DC-NK cell
axis comes mainly from studies in mouse tumor models. Since human cDC1s have similar
characteristics to mouse cDC1s, both genetically and functionally, it is likely that the same
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crosstalk may also occur in humans [82]. There is evidence in human tumors to support
this hypothesis. A positive association between the transcription levels of CCL5, XCL1, and
its paralog XCL2, has been detected in human skin cutaneous melanoma, invasive breast
carcinoma, head and neck squamous cell carcinoma and lung adenocarcinoma [48]. Data
are consistent with the hypothesis that these chemokines may be produced by intratumoral
NK cells, as supported by the strong correlation between their transcripts and NK cell
gene signatures [48]. An independent study has shown that the lack of cDC1s correlates
with that of intratumoral NK cells in lung adenocarcinoma [83], supporting the hypothesis
that NK cells contribute to the accumulation of cDC1s within human TME. Consistent
with the report by Bottcher and colleagues [48], Krummel’s group found a significant
correlation between FLT3L expression and DC levels as estimated with a specific DC
gene signature [27]. The authors also demonstrated that DC abundance correlated with
intratumoral NK cell levels, and that both cell types may predict response to anti-PD-1
immunotherapy in melanoma patients. These data indicate that, in humans, intratumoral
BDCA3+ DC levels are controlled by activated NK cells through FLT3L production [52].
The importance of the DC-NK cell axis highlighted in adult cancers paves the way for
new therapies. Interestingly, recent advances in neuroblastoma immune profiling have
highlighted the critical role of both DCs and NK cells in establishing the immune-inflamed
phenotype [84]. Indeed, it has been shown that neuroblastoma specimens highly infiltrated
by T cells are also enriched with intratumoral DCs and NK cells. Melaiu and colleagues,
defined two gene signatures related to DCs and NK cells, which are strongly correlated
with PD-1 and PD-L1 expression. Interestingly, the identified DC gene signature includes
transcripts typically expressed by NK cells, and conversely, the NK gene signature includes
the BTLA transcript that is typically expressed by DCs, thus confirming the existence of
a DC-NK cell axis also in neuroblastoma. This hypothesis was further strengthened by
multiplexed immunofluorescence imaging which clearly shows the interaction between
DCs and NK cells, both with each other and with CD8+ T cells, within the tumor nests of
low-risk neuroblastoma patients [85]. Moreover, the FLT3L and CCL5 genes both strongly
correlated with DC, NK cell and T cell abundance, thus further validating the existence
of a DC-NK cell axis that promotes CD8+ T cell antitumor immunity in this pediatric
malignancy. In line with these findings, Belounis and colleagues recently demonstrated
that stimulation with NK cells by Toll-like receptor (TLR)-activated pDCs enhances the
efficacy of dinutuximab-based immunotherapy by increasing the treatment ability to
mediate autologous killing of patient-derived neuroblastoma cells [86]. All these data may
be of great help in selecting patients with the greatest chance of benefiting from currently
available immunotherapies, which have been extensively reviewed elsewhere [87], as well
as in improving efficiency in the treatment of childhood malignancies.

5. Prognostic Value of cDC1s in Solid Tumors

High density of tumor-infiltrating cDC1s has been associated with better prognosis in
many cancers. Broz and colleagues were among the first to demonstrate the importance of
CD103+ cDC1 in stimulating tumor-specific CD8+ T cell responses within the TME [27]. The
authors identified a DC gene signature based on the ratio of CD103+/CD103−-associated
genes that provides a strong pro-immune survival signal in breast cancer, head-neck
squamous cell carcinoma and lung adenocarcinoma, suggesting that CD103+ cDC1s are
critical for robust tumor control in both mice and humans [27]. Querying the TCGA
dataset, Bottcher and colleagues found a strong association between high expression of
the DC gene signature and improved clinical outcome in patients with skin cutaneous
melanoma, invasive breast carcinoma, head and neck squamous cell carcinoma and lung
adenocarcinoma [48]. Two other studies have demonstrated the prognostic value of cDC1s
in breast cancer. Michea and colleagues used RNA-based next-generation sequencing to
systematically analyze the transcripts of all DC subsets and showed a significant association
between cDC1s and prolonged survival of patients with luminal breast cancer [88]. Hubert
and colleagues demonstrated that human cDC1s play an important role in the antitumor
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immune response through their ability to produce type III interferon (IFN-λ), which is
crucial for promoting a Th1 environment through increased production of IL-12p70, IFN-γ
and cytotoxic lymphocyte-recruiting chemokines [89]. Both IFN-λ1 and its receptor have
been associated with favorable patient clinical outcome. The authors also demonstrated
that TLR3 engagement is able to induce IFN-λ production from tumor-associated cDC1s,
thus proposing TLR3 activation as a potential therapeutic strategy. Interestingly, the authors
also demonstrated a strong positive prognostic value of cDC1s for patients with colorectal
adenocarcinoma, head and neck squamous cell carcinoma, liver hepatocellular carcinoma,
kidney renal papillary cell carcinoma, lung adenocarcinoma, skin cutaneous metastatic
melanoma and thyroid cancer [89]. The positive prognostic value of cDC1 infiltration
in melanoma has been previously demonstrated [90]. Ladányi and colleagues evaluated
the maturation status of DCs and showed that a high peritumoral density of mature DC-
LAMP+ DCs was associated with increased infiltration of activated T lymphocytes and
improved survival of melanoma patients [90]. Roberts and colleagues demonstrated that
CD103+ DCs traffic tumor antigens to lymph nodes in a CCR7-dependent manner and that
this trafficking is critical for effective antitumor CD8+ T cell priming [24]. The authors also
found that intratumoral expression of CCR7 strongly predicts T cell infiltration and overall
survival in patients with metastatic melanoma [24]. Barry and colleagues demonstrated
that high levels of DCs, in combination with NK cells, lead to both improved response to
anti-PD1 immunotherapy and increased survival in melanoma patients [52]. Similar results
were obtained in ovarian cancer, where the high density of tumor-infiltrating LAMP+ DCs
was strongly associated with an immune context characterized by Th1 polarization and
cytotoxic activity, as well as with a more favorable overall survival of patients with high-
grade serous ovarian carcinoma [91]. In lung cancer, mature DCs were found localized
mainly within tertiary lymphoid structures (TLS), known to exacerbate a local immune
response. The high density of TLS-associated DCs correlates with long-term survival
and high expression of genes related to T-cell activation, Th1 phenotype, and cytotoxic
activity [92]. In human neuroblastoma, DCs were sparsely distributed or localized within
the TLS, and significantly correlated with the abundance of tumor-infiltrating T cells and
NK cells, both at the transcriptional and protein levels, and associated with favorable
prognosis [85]. Interestingly, high expression of DC and NK cell-gene signatures were
predictors of good prognosis not only in patients with neuroblastoma, but also in patients
with colorectal cancer, skin cutaneous melanoma, head and neck squamous cell carcinoma
and breast cancer [85], thus representing a robust prognostic tool to be added to those
currently used, in addition to the T-cell infiltration score [93,94].

6. Clinical Trials Exploiting the Efficacy of Agents and Therapies That Promote the
Immunogenic Functions of DCs in Cancer Immunotherapy

Given the importance of cDC1s in cancer immunotherapy, the use of strategies tar-
geting the recruitment, expansion and activation of this subset of DCs in the TME, may
contribute to increase antitumor immunity and the success of cancer immunotherapy. Many
clinical trials of DC-based anticancer immunotherapy have shown encouraging results,
particularly when combined with other therapies aimed at inducing the full maturation
and activation of DCs necessary to stimulate tumor-specific CD8+ T cell responses. Of
great interest are factors that promote the immunogenic functions of DCs, such as ligands
for Toll-like receptors (TLRs), the CD40 receptor, as well as cytokines essential for the
development and mobilization of DCs in lymphoid organs, peripheral blood and bone
marrow [95–97]. In addition, many therapies currently in clinical use have been found
to induce DC activation and maturation by promoting and enhancing CD8-dependent
immune responses in poorly immunogenic tumors. These include chemotherapy, radiation
therapy, irreversible electroporation and cryoablation. Finally, particular interesting are the
recent evidences on the unique role of DCs in the PD-L1-PD1 regulatory axis and in the
regulation of antitumor immunity.
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6.1. Agents Promoting the Immunogenic Functions of DCs

TLR signaling causes DCs to mature, resulting in expression of MHC class I and
II molecules and secretion of pro-inflammatory cytokines. The use of TLR ligands has
been correlated with maintaining DCs in an active state to induce immune responses.
Human CD141+ DCs express high levels of TLR3, and treatment with TLR3 agonists,
such as polyinosinic-polycytidylic acid (Poly I:C) and its derivates Poly-ICLC (Hiltonol)
and poly-IC12U (Ampligen), have been shown to efficiently activate DCs by inducing
cross-presentation, pro-inflammatory cytokines, Th1 cell immunity, NK cells and cytotoxic
CD8+ T cell responses [26,98,99]. Intratumoral administration of Hiltonol and Ampligen,
in combination with other therapies, has been approved for the treatment of melanoma,
glioma, head and neck squamous cell carcinoma, breast and ovarian cancers in eight
ongoing Phase I/II clinical trials (Table 2). Several clinical trials (Phase I/II) with TLR7/8
agonists, such as Imiquimod, in combination with other therapies are ongoing in different
cancer types (Table 2). Local treatment with TLR7/8 agonists activates all DC subsets
and induces NF-kB, pro-inflammatory cytokines and costimulatory receptors [97]. Several
TLR9 ligands able of activating DCs in vivo are also being investigated in combination
with other therapies, including immune checkpoint inhibitors (Table 2) [95,100].

Table 2. Agents used in the clinic to stimulate immunogenic functions of DCs in cancer as monotherapy or in combination.

Agonist Cancer Type(s) Phase(s) Interventions Trials

FLT3L CDX-301 Metastatic Breast Cancer, Head and
Neck Squamous Cell Carcinoma I/II Radiation, Poly ICLC, Pembrolizumab NCT03789097

CDX-301 Non-Small Cell Lung Cancer II Radiation NCT02839265

CDX-301 Colorectal Cancer, Metastatic Cancer I - NCT00003431

Ad-hCMV-TK and
Ad-hCMV-Flt3L

Malignant Glioma,
Glioblastoma Multiforme I - NCT01811992

CDX-301 Non-Small Cell Lung Cancer
Lung Cancer I/II Anti-CD40 Agonist Antibody, SBRT NCT04491084

CDX-301
Stage IV Melanoma, Stage IV Renal
Cell Cancer, Recurrent Renal Cell

Cancer, Recurrent Melanoma
II gp100, MART-1, Montanide ISA-51

tyrosinase peptide NCT00019396

CDX-301 Kidney Cancer, Melanoma (Skin) I Recombinant CD40-ligand NCT00020540

CDX-301 Cutaneous, Mucosal and
Ocular Melanoma II

DEC-205/NY-ESO-1, Fusion Protein
CDX-1401, Neoantigen-based,
Melanoma-Poly-ICLC Vaccine

NCT02129075

CDX-301 Melanoma, Non Small Cell Lung
Cancer and others I

CDX-1140,
Pembrolizumab,
Chemotherapy

NCT03329950

CDX-301 Breast Cancer I
Anti-CD40 Agonist,

Poly ICLC,
Radiation

NCT04616248

CDX-301 Breast Cancer I/II Filgrastim, Thrombopoietin,
Interleukin-3 NCT00006225

TLR2 CBLB612 Breast Cancer II - NCT02778763

TLR4 GLA-SE Colorectal Cancer Metastatic I FOLFOX, Nivolumab, Ipilimumab NCT03982121

GSK1795091 Neoplasms I GSK3174998, GSK3359609,
Pembrolizumab NCT03447314

GSK1795091 Neoplasms I - NCT02798978

GLA-SE Melanoma I MART-1 Antigen NCT02320305

GLA-SE Soft Tissue Sarcoma I Radiation NCT02180698

GLA-SE Merkel Cell Carcinoma I - NCT02035657

OM-174 Neoplasms I - NCT01800812
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Table 2. Cont.

Agonist Cancer Type(s) Phase(s) Interventions Trials

TLR3 Hiltonol Melanoma I/II NY-ESO-1 protein, Montanide NCT01079741

Hiltonol Head and Neck Squamous Cell
Carcinoma, Breast and others I/II Durvalumab, Tremelimumab NCT02643303

Hiltonol Ovarian cancer and others I OC-L, Montanide NCT02452775

Hiltonol Ovarian cancer I Oregovomab NCT03162562

Ampligen Ovarian cancer I/II OC-L, Montanide, Prevnar NCT01312389

Hiltonol Glioma II
Autologous tumor lysate-pulsed DC
vaccination, Tumor lysate-pulsed DC

vaccination+0.2% resiquimod
NCT01204684

Hiltonol Metastatic colon cancer
Neoplasms I/II Pembrolizumab NCT02834052

Hiltonol Glioma II

Bevacizumab,
Peptide Vaccine,

Poly-ICLC as immune adjuvant,
Keyhole limpet hemocyanin

NCT02754362

TLR7 RO7119929
Hepatocellular Carcinoma, Biliary

Tract Cancer, Secondary Liver Cancer,
Liver Metastases

I Tocilizumab NCT04338685

SHR2150 Neoplasms I/II Chemotherapy, PD1 Ab, CD47 Ab NCT04588324

Imiquimod (R837) Breast Cancer II - NCT00899574

Melanoma and others I PD-1 Antibody Blockade NCT04116320

Breast Cancer I/II Cyclophosphamide, Radiation NCT01421017

High Grade Cervical
Intraepithelial Neoplasia I Topical Fluorouracil NCT03196180

DSP-0509 Neoplasms I/II Pembrolizumab NCT03416335

MEDI9197 Neoplasms I Durvalumab NCT02556463

Resiquimod Neoplasms I NY-ESO-1, Montanide ISA®-51 VG NCT00821652

852A Breast Cancer and others II - NCT00319748

NJH395 NON-breast HER2+ Cancers I - NCT03696771

BNT411 Neoplasms I/II Atezolizumab, Carboplatin, Etoposide NCT04101357

TQ-A3334 Non-Small Cell Lung Cancer I/II Anlotinib NCT04273815

NKTR-262 Melanoma and others I/II Bempegaldesleukin, Nivolumab NCT03435640

BCDC-1001 Breast Cancer, Gastric Cancer I/II Pembrolizumab NCT04278144

LHC165
PDR001 Neoplasms I - NCT03301896

TLR9 CpG Pancreatic Cancer, Metastatic
Pancreatic Cancer I Irreversible Electroporation,

Nivolumab NCT04612530

CMP-001 Melanoma II Nivolumab, [18F]F-AraG PET/CT NCT04401995

CMP-001
Locally Advanced Malignant Solid

Neoplasm, Metastatic
Pancreatic Adenocarcinoma

I/II Agonistic Anti-OX40 NCT04387071

Tilsotolimod Advanced Neoplasms I Ipilimumab, Nivolumab NCT04270864

Malignant Melanoma II - NCT04126876

SD-101

Metastatic Pancreatic
Adenocarcinoma, Refractory

Pancreatic Adenocarcinoma, Stage IV
Pancreatic Cancer AJCC

I Nivolumab, Radiation

SD-101
Advanced Malignant Solid Neoplasm,

Extracranial Solid Neoplasm,
Metastatic Malignant Solid Neoplasm

I Anti-OX40 Antibody BMS 986178 NCT03831295

CMP-001 Melanoma II Nivolumab NCT03618641



Cancers 2021, 13, 433 12 of 21

Table 2. Cont.

Agonist Cancer Type(s) Phase(s) Interventions Trials

CMP-001 Colorectal Neoplasms Malignant,
Liver Metastases I Radiation, Nivolumab, Ipilimumab NCT03507699

IMO-2125 Metastatic Melanoma III Ipilimumab NCT03445533

CMP-001 Advanced Cancers II Avelumab, Utomilumab, PF-04518600,
PD 0360324 NCT02554812

EMD
1201081

Head and Neck Squamous
Cell Carcinoma I 5-FU, Cisplatin, Cetuximab NCT01360827

EMD
1201081

Head and Neck Squamous
Cell Carcinoma II Cetuximab NCT01040832

IMO-2055 Colorectal Cancer I Cetuximab, FOLFIRI NCT00719199

CpG-7909 Esophageal Cancer I/II URLC10-177, TTK-567 NCT00669292

The CD40 receptor is a promising target. Increased binding between CD40 and its
ligand CD40L, expressed on CD4+ T cells, results in increased co-stimulatory molecules
and cytokine production, and subsequent activation of CD8+ T cells. The interaction
between CD40 and CD40L may also increase cross-presentation by DCs. The use of a
recombinant receptor containing the cytoplasmic domain of CD40 is a novel method to
amplify DC activation. This domain is combined with ligand-binding domains and a
membrane targeting sequence. Thus, activation of DCs with this recombinant receptor
promotes the induction of CD8+ T cells that could cause tumor cell eradication.

FLT3L binds DCs by inducing their proliferation, differentiation, development and
mobilization. Administration of FLT3L in combination with radiotherapy to promote
immunogenic tumor cell death and maturation of DCs, and dual TLR3/CD40 stimulation
to activate antigen-loaded cDC1 for priming and expansion of tumor-specific CD8+ T
cells, has been shown to enhance tumor immunity in several mouse models [30]. These
encouraging results have led the Food and Drug Administration (FDA) to approve the
use of human recombinant FLT3L (CDX-301) in the clinic for multiple tumors. A Phase
I study initially demonstrated that CDX-301 had an acceptable safety profile and could
mobilize DCs in healthy volunteers [101]. An ongoing Phase II study is planned to evaluate
the combination of CDX-301 with stereotactic body radiation therapy directed at single
tumor lesions in patients with advanced non-small cell lung cancer (NCT02839265). An
in-situ vaccination strategy combining FLT3L, local radiotherapy, and a TLR3 agonist
(poly-ICLC), has been shown to be feasible, safe and able to induce recruitment of antigen-
loaded and intratumoral cross-presenting DCs, resulting in the generation of a systemic
tumor-specific CD8+ T cell response and regression of both primary and untreated distant
tumors in patients with non-Hodgkin’s lymphoma (NCT01976585) [102]. This clinical
trial was followed by others currently on going in patients with breast cancer and head
and neck squamous cell carcinoma (NCT03789097), as well as with non-small cell lung
cancer and lung cancer (NCT04491084) (Table 2). The addition of anti-CD40 antibody to
FLT3L, radiotherapy and Poly-ICLC has been shown to induce regression of poorly T cell-
infiltrated tumors refractory to PD-1/PD-L1 therapy in four syngeneic mouse models: colon
adenocarcinoma, melanoma and two triple-negative mammary cancers of melanoma [30].
Interestingly, this treatment increases the infiltration of CD8+ T cells that mediate the
regression not only of primary, but also of untreated distant tumors poorly infiltrated
by T cells [30]. These very encouraging results were followed by a Phase I clinical trial
initiated on December 1th, 2020 to evaluate the safety of in situ immunomodulation with
recombinant CDX-301, radiotherapy, anti-CD40 mAb and Poly-ICLC in patients with
unresectable and metastatic breast cancer (NCT04616248).

6.2. DCs and Chemotherapy

Many chemotherapeutic agents are known to promote antitumor activity by triggering
immunogenic cell death (ICD) of tumor cells [103,104]. ICD begins with the induction of
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cellular stress and culminates in cell death following exposure to and release of several
DAMPs. ICD-associated DAMPs include surface-exposed calreticulin as well as secreted
ATP, annexin-1, type I interferon, and high-mobility group box 1 (HMGB1). Binding of
DAMPs to specific DC-expressed receptors initiates a cascade of events that ends with
activation of innate and adaptive immune responses. Clinical and preclinical evidence
indicates that DAMPs may have prognostic and predictive values for cancer patients.
DAMPs are capable of eliciting anticancer immune responses to enhance the therapeutic
effects of conventional chemotherapy and radiation therapy. However, only few ICD-
inducing agents have been successfully used in the clinic as therapy [105]. Clinical and
preclinical studies indicate that these agents may be particularly relevant to the activation
of antitumor immune responses triggered by ICI or other forms of immunotherapy in the
context of combinatorial treatment regimens. In this regard, a number of FDA-approved
ICD inducers are currently being studied in the oncology setting, especially in combination
with immunotherapeutic agents [106].

6.3. DCs and Radiation Therapy

Radiation therapy causes cell death in highly replicating cancer cells by creating
breaks in the DNA double-strand. Several evidences indicate that radiation therapy has
an abscopal effect causing cancer regression in non-irradiated metastatic sites [107]. Like
chemotherapy, radiation therapy triggers ICD by causing the release of DAMPs and
tumor-associated antigens and thereby priming tumor-specific immunity [106]. Cytosolic
DNA released from tumor cells after radiation therapy acts as a DAMP by inducing the
production of type I interferon from DCs via cGAS/STING. This pathway is activated on
double-stranded DNA (dsDNA) that binds to cGAS (cyclic guanosine monophosphate-
adenosine monophosphate (cGAMP) synthase, cGAS) [108,109]. cGAMP functions as a
second messenger and binds STING to promote TANK-binding kinase (TAK1)-dependent
signal transduction cascade that initiates IRF3- and NF-kB-dependent transcription and
culminates in secretion of cytokines that recall cDC1s, including type I IFN, IL-6, TNF
and CCL5 [110,111]. Given the importance of type I IFN in early anticancer immune
responses, several STING agonists have been tested in clinical trials with the rationale
of activating STING in tumor cells or tumor-infiltrating immune cells, including DCs, to
achieve immunostimulatory effects alone or in combination with a number of established
chemotherapeutic and immunotherapeutic regimens that directly activate STING [112].

6.4. DCs and Irreversible Electroporation

Irreversible electroporation (IRE) is a new ablative technology that uses high-voltage
electrical pulses to induce ICD through permanent membrane lysis or loss of homeostasis.
The use of IRE for tumor ablation was recently introduced by Jiang and colleagues [113].
This process preserves adjacent structures by contributing to DC activation and maturation
as well as immune cell infiltration. An increase in T-cell levels after IRE has been reported in
several mouse models [114,115]. Recently, the combination of IRE and anti-PD1 treatment
has been shown to promote selective tumor infiltration by CD8+ T cells, and to significantly
suppress tumor growth and prolong survival of immunocompetent mice bearing pancreatic
cancer and melanoma [116].

6.5. DCs and Cryoablation

Cryoablation induces tumor cell death by necrosis and osmosis. In the process of
necrosis, the intracellular contents of damaged tumor cells are preserved, while DNA,
RNA and heat shock protein are released. These agents can induce danger signals, which
are able to mature DCs to fully activate T cells, which can lead to a specific immune
response [117]. In contrast, cells in the outer margin of cryoablated tissue die by apop-
tosis, while DNA, RNA and HSPs are preserved. DCs without a danger signal remain
immature and thus unable to activate T cells. Therefore, cryoablation can induce both
an immunostimulatory and immunosuppressive response. Cryoablation also induces
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the release of immunosuppressive and immunostimulatory cytokines. In liver tumors,
cryoablation in more than 20% of the tissue causes a systemic inflammatory response due
to the release of IL-6, IL-10 and TNFα [118]. Two clinical trials reported improved overall
survival by combining cryoablation with infusion of allogenic NK cells and DC-activated
cytokine-induced killer cells (DC-CIK) in non-small cell lung cancer, respectively [119,120].
The preclinical study by den Brok showed that cryoablation leads to maturation of DCs,
which resulted in a tumor-specific immune response that protected half of the mice from
a new infusion of tumor cells. This antitumor effect was further enhanced (up to 80%)
when combined with administration of the CTLA-4 antibody or Treg-cell depletion [121].
Several immunotherapies can be used to enhance the immunogenic effect of cryoablation
as recently reviewed [117,122,123].

6.6. PD-L1 on DCs and Immune Checkpoint Blockade Therapies

Immune checkpoint blockade (ICB) therapies have shown clinical promise in a variety
of human cancers, being able to restore the anti-tumor immunity response. The significant
contribution of the cDC1 subset in determining response to ICB therapy was recently
reviewed by Wculek and colleague [16]. Noteworthy is the newly discovered role of DCs
in the PD-L1/PD-1 axis and in the regulation of anti-cancer immune responses.

Assays that measure PD-L1 expression on tumor cells has been approved by the FDA
as a useful biomarker to determine whether a patient may benefit from checkpoint blockade
therapy. However, the fact that nearly half of patients with PD-L1-positive tumors do not
respond, whereas some patients with PD-L1 negative tumors may still respond to PD-L1
blockade, suggests the existence of more complex mechanisms than originally presumed.
Recent observations have highlighted the functional importance of PD-L1- expressing
immune cells, particularly DCs. Peng and colleagues [124], found that DCs upregulate
PD-L1 upon antigen uptake, following the production of type II interferon by CD8+ T cells.
Expression of PD-L1 on DCs correlate with good prognosis and CD8+ T cell infiltration in
colon cancer [125], and it is essential to protect them from killing by cytotoxic T cells [124],
thereby dampening antitumor immune responses. Indeed, the therapeutic effects of PD-L1
blockade disappeared completely in cDC1-deficient mice, even in the presence of other cells
with high levels of PD-L1 [124]. Similarly, Oh and colleagues demonstrate the importance
of PD-L1 expressed by DCs for antitumor immunity, compared with that expressed by
other immune cells of the myeloid lineage [126]. Notably, deletion of PD-L1 in DCs, but not
in macrophages, significantly reduced tumor growth and led to enhanced antitumor CD8+

T-cell responses [126]. Several authors [124,127–130] have shown that PD-L1 expressed on
DCs is also able to bind in cis CD80, a key costimulatory molecule expressed by DCs [127].
Mayoux et al., demonstrated that the PD-L1/CD80 cis interaction traps PD-L1 preventing
its binding to PD-1 and the subsequent inhibition of T-cell function [131]. The authors
showed that blocking PD-L1 on DCs relieves CD80 sequestration in cis by PD-L1, which
allows the CD80/CD28 interaction to stimulate allogeneic T cell proliferation and enhance
T cell priming. The contribution of tumor-associated DCs to anti-PD-L1 therapies was
further supported by the fact that patients with renal cell carcinoma or lung cancer treated
with PD-L1 blockade (atezolizumab) experienced clinical benefit in the presence of high
level of the DC gene signature, thus highlighting the importance of detecting the amount of
DCs to support decision-making on treatment option [131]. These recent findings suggest
that ICB therapy is effective not only by directly activating T cells, but also by triggering
a complex network, in which DCs play a pivotal role at the interface between innate
and adaptive antitumor responses [132], and that blocking the PD-1 pathway early with
immune checkpoint inhibitors, at the time of priming and expansion of memory T cells,
could be critical for enhancing antitumor immunity.

7. Ex Vivo Manipulation of cDC1s in Cancer Immunotherapy

In addition to in vivo modulation of cDC1s, ex vivo manipulation is also yielding
encouraging results for clinical purposes. Due to the scarcity of cDC1s in peripheral blood,
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representing only 0.03% of human PBMCs, great efforts have been made to optimize novel
protocols for their ex vivo differentiation. Poulin and colleagues identified a method to obtain
functional CD141+ DCs from in vitro expanded cord blood CD34+ precursors by culturing
them in medium supplemented with SCF, GM-CSF, IL4 and FLT3L [133–136]. These cells
are able to internalize material from dead cells and cross-presenting processed antigens
to CD8+ T cells [133]. Other authors obtain a large number of functional cDC1s from
cord blood or GM-CSF-mobilized blood CD34+ cells by inhibiting the aryl hydrocarbon
receptor with its antagonist StemRegenin 1 (SR1) [137]. Other methods consist in obtaining
a population of functional CD141+ DCs from moDCs exposed to mycolic acid and/or
lipoarabinomannan or induced pluripotent stem cells (iPSCs) [138,139].

Strategies currently evaluated in clinical trials also include the increasing XCL1 ex-
pression within the tumor to recruit CD141+ XCR1+ DCs. The safety and immunological
effect of genetically modified neuroblastoma cells to express XCL1 and IL-2 were evaluated
in two Phase I clinical trials (NCT00062855 and NCT01713439). The results indicated an
improved immune response at the tumor site leading to more effective tumor cell killing in
relapsed/refractory neuroblastoma [140,141]. The promising results allowed the initiation
of another Phase I/II clinical trial (NCT00703222), which is currently ongoing, to evaluate
the safety and immunological and clinical monitoring of the efficacy of combined neu-
roblastoma cell administration. Another ongoing Phase I/II clinical trial (NCT01192555)
focuses on the administration of a biologic vaccine using the same neuroblastoma cell line
that produces XCL1 and IL-2 in combination with cyclophosphamide, with the aim of
further preventing incomplete elimination and recurrence of high-risk neuroblastoma.

8. Conclusions

T-cell infiltration in the TME is a critical determinant of response to immunother-
apy [142]. The ability of cDC1s to remodel the type, density and repertoire of intratumoral
T lymphocytes by converting poorly T cell-infiltrated tumors to T cell-inflamed, has en-
couraged investigations to identify rationally combined treatment regimens to induce
and activate these cells in situ in patients with poorly T cell-infiltrated tumors refractory
to anti PD-1/PD-L1 therapy. Recent evidence also showed that cDC1s engaged other
immune cell types, including NK cells, establishing intricate immune cross-talks within
the TME. The DC-NK axis involvement in mediating the recruitment of tumor-specific
CD8+ T cells within the tumor site has been shown to be of great importance in promoting
improved survival of both adult and pediatric patients. These results pave the way for
the exploitation of new immunotherapeutic strategies that, in addition to enhancing the
activity of T cells, look behind the scenes, orchestrating the action of all those cellular actors
that, together with DCs, are crucial to fight cancer progression.
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