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M O L E C U L A R  B I O L O G Y

Transcription factor–nucleosome dynamics 
from plasma cfDNA identifies ER-driven states  
in breast cancer
Satyanarayan Rao1,2†, Amy L. Han3†, Alexis Zukowski1,2, Etana Kopin3, Carol A. Sartorius4, 
Peter Kabos2,3,5*, Srinivas Ramachandran1,2,5*

Genome-wide binding profiles of estrogen receptor (ER) and FOXA1 reflect cancer state in ER+ breast cancer. However, 
routine profiling of tumor transcription factor (TF) binding is impractical in the clinic. Here, we show that plasma 
cell-free DNA (cfDNA) contains high-resolution ER and FOXA1 tumor binding profiles for breast cancer. Enrichment 
of TF footprints in plasma reflects the binding strength of the TF in originating tissue. We defined pure in vivo tumor 
TF signatures in plasma using ER+ breast cancer xenografts, which can distinguish xenografts with distinct ER states. 
Furthermore, state-specific ER-binding signatures can partition human breast tumors into groups with significantly 
different ER expression and mortality. Last, TF footprints in human plasma samples can identify the presence of 
ER+ breast cancer. Thus, plasma TF footprints enable minimally invasive mapping of the regulatory landscape of 
breast cancer in humans and open vast possibilities for clinical applications across multiple tumor types.

INTRODUCTION
Transcription factors (TFs) are at the apex of gene regulation (1). 
They usually bind small stretches of DNA in a sequence-specific 
manner (2). The size of the mammalian genomes is several orders of 
magnitude greater than the size of TF binding motifs. Hence, there 
are many more TF binding site (TFBS) sequences that occur by 
chance compared to functional TFBS (3). Although the question of 
how TFs discriminate functional binding sites from random motif 
occurrences is still being actively investigated (4, 5), at least two 
mechanisms enable us to connect TF binding to cell state. First, the 
cell type–specific expression of TFs restricts the pool of motifs recog-
nized in a given cell type. Second, most motifs in the genome are 
occluded by nucleosomes most of the time (6, 7). As a result, the 
sites in the genome bound by any given TF contribute to the epig-
enomic signature of a cell type. Furthermore, because functional TF 
binding drives gene regulation, mapping a TF’s binding sites in a cell 
also contributes to an understanding of the regulatory landscape of 
the cell (8). Methods like chromatin immunoprecipitation with DNA 
sequencing (ChIP-seq), chromatin immunoprecipitation, exonuclease 
digestion and DNA sequencing (ChIP-exo), and cleavage under target 
and release using nuclease (CUT&RUN) have been used to identify 
binding sites of human TFs across cell types (9–11).

Connecting genome-wide TF binding landscape to cell state ac-
quires added significance in TF-driven diseases like estrogen receptor–
positive (ER+) breast cancer. In ER+ breast cancer, the subset of all 
possible binding sites that are occupied by ER reflects disease prognosis 
(12, 13). Furthermore, endocrine therapies work by either modu-
lating ER binding, removal of ligand, or degrading ER, resulting in 

global changes in ER binding and, in some cases, even increased ER 
residence times on chromatin (14). ER binding also depends on the 
pioneer factor FOXA1 (15). FOXA1 expression and binding might 
persist after ER removal during endocrine therapy, possibly driving 
treatment resistance (13). Together, a genome-wide map of the binding 
profiles of ER and associated factors could be leveraged for defining 
disease state, predicting treatment outcome, and possibly choosing 
effective therapy. However, routine and serial mapping of TF binding in 
tumors is currently not possible in the clinic because of risks involved 
in obtaining tumor tissues. Here, we leverage an alternate means to 
obtain the same information one would get from ChIP or CUT&RUN in 
a minimally invasive manner to define underlying disease biology.

Dying cells in the human body release their content into the 
bloodstream (16). Genomic DNA that is bound by nucleosomes and 
TFs escapes endogenous nucleases and so remains protected in plasma 
(Fig. 1A) (17). Regular turnover of lymphoid and myeloid cells in 
the human body is the major contributor to the pool of cell-free 
DNA (cfDNA) in plasma (18). However, in the presence of cancer, 
a detectable fraction of cfDNA arises from tumors (19,  20). This 
suggests that cfDNA has the potential to map the tumor epigenome 
in real time and therefore can help uncover the regulatory land-
scape of cancer from plasma. Fragmentomics seeks to uncover the 
tissue of origin of cfDNA using the information in cfDNA fragment 
length. Fragmentomics had its earliest application in prenatal diag-
nosis and is now being explored as an alternative to mutations and 
methylation profiling to identify cfDNA tissue of origin in cancer 
(21–23). cfDNA properties such as promoter nucleosome dynamics, 
locus-specific fragment length distribution, nucleosome spacing in 
gene bodies, and nucleosome depletion at promoters have been used 
to identify the tissue of origin of cfDNA to aid detection of cancer 
(17, 24, 25). Because TFs and nucleosomes protect distinctly different 
lengths of DNA, cfDNA facilitates direct mapping of protein-DNA 
interactions in their cells of origin (17). TF binding from cfDNA has 
also been characterized by averaging across thousands of putative sites, 
either looking at short protections (17) or by inferring TF binding 
by nucleosome depletion at TFBS (26). However, classifying single 
binding sites as either TF bound or nucleosome bound to then develop 
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a regulatory signature from cfDNA data has not been attempted 
before. Such a regulatory signature has the potential to distinguish 
distinct TF-driven cancer states.

Here, we map TF binding from plasma at single binding sites to 
define cfDNA signatures that reflect distinct ER+ disease states. We 
map TF footprints in plasma cfDNA by combining library protocols 
that enrich for short fragments with computational methods that 
identify the subset of TFBS that leave footprints in plasma. We further 
show that the strength of TF footprints in plasma is proportional to 
the binding strength of the TF in the tissue of origin of the cfDNA 
fragments when compared with gold standard methods of CUT&RUN 
and ATAC-seq (assay for transposase-accessible chromatin using 
sequencing) datasets from tumor cells. This confirms that we can map 
regulatory landscapes of tumors from plasma. We further show that 
different states of ER lead to distinct ER binding profiles inferred 
from plasma that reflect unique ER-regulated gene expression. We 
can use the cfDNA signatures of unique ER states to partition ER+ 
breast tumors in The Cancer Genome Atlas (TCGA) into groups 
that not only have distinct ER expression but also have significantly 
different mortality. Last, we identify TFBS where the enrichment of 
TF footprints in human plasma samples is used to identify the pres-
ence of breast cancer. Thus, our results show that plasma cfDNA 
contains TF binding information that is specific to tumor state.

RESULTS
Unique cfDNA fragment length distributions identify  
TF binding in the tissue of origin
ChIP-seq and CUT&RUN applied to cell lines and tissue samples 
represent gold standard methods of determining TF binding across 

the genome. To study human diseases, it is impractical and nearly 
impossible to perform repeat analyses using biopsy tissues. We there-
fore set out to develop an alternative to ChIP-seq and CUT&RUN 
that can be applied to physiological and pathological states of humans 
in a minimally invasive manner by inferring specific TF binding 
from plasma cfDNA. TF footprints [<80 base pairs (bp)] are too short 
to be captured by standard protocols for preparing genomic libraries, 
but single-strand library protocol (SSP) for cfDNA can robustly 
capture short and longer nucleosomal cfDNA fragments (17). In all 
our analyses, we used cfDNA sequencing datasets generated using 
SSP in this study as well as from a published study (17).

To ask whether we can uncover TF-nucleosome dynamics from 
plasma cfDNA, we undertook a candidate approach of examining 
binding sites of specific TFs. We started with CTCF (CCCTC-binding 
factor) because it is constitutively expressed (27), has a long residence 
time on DNA (28), and has known binding profiles in a large, diverse 
set of cell types (9). We aggregated CTCF binding sites from 70 cell 
lines representing 18 cell types and analyzed fragment length distri-
butions of cfDNA from a healthy donor from the IH02 dataset (17) 
at these sites. At each TFBS, we mapped cfDNA fragment midpoints 
(Fig. 1B) and estimated a fragment length distribution (Fig. 1C). K-
means clustering of these fragment length distributions identified 
two types of clusters—one enriched with short cfDNA fragments 
(<100 bp; clusters 1 and 2) and the other enriched with long cfDNA 
fragments (>120 bp; clusters 3 to 6) (Fig. 1D). When we mapped en-
richment of cfDNA fragments around 1 kb of the TFBS, clusters 1 
and 2 showed strong enrichment of short protections at TFBSs relative 
to 1 kb upstream and downstream of the TFBS (Fig. 2A). Notably, 
these two clusters also showed strong nucleosome phasing at least 
1 kb upstream and downstream of the TFBS (Fig. 2B). It is well known 

Fig. 1. Schematic for identifying subset of binding sites with TF footprints. (A) When TFs or nucleosomes are bound at TFBSs, they protect different lengths of DNA 
from nucleases in dying cells in the human body. (B) When sequenced cfDNA fragments are mapped to TFBSs ± 50 bp, varying numbers of short and long cfDNA frag-
ments are found at the three TFBSs shown in (A). (C) cfDNA fragment length distribution is estimated at each TFBS (purple bars) and smoothed using kernel density esti-
mation (kde) (green line). (D) K-means clustering is performed on smoothed length distribution to group TFBSs with similar cfDNA fragment length distribution. Here, 
smoothened length distributions of clusters of CTCF TFBS are shown. Weighted length (W.L.) for each CTCF length cluster is shown in parentheses. A.U., arbitrary units.
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that CTCF binding organizes nucleosomes in its vicinity (29). Thus, 
the fragment length profile of plasma cfDNA at CTCF binding sites 
not only identified TF binding but also uncovered the chromatin 
structure surrounding the bound CTCF. Because most cfDNA in a 
healthy individual arises from lymphoid and myeloid cells, we asked 
whether the TFBS clustering based on cfDNA reflected nucleosome 
positioning in a representative lymphoblastoid cell line, GM12878. 

MNase-seq (Micrococcal Nuclease digestion followed by sequencing) 
data (9) from GM12878 showed strong nucleosome phasing for clus-
ters 1 and 2, but not for the rest of clusters (Fig. 2C). This strongly 
suggests that we are capturing CTCF binding and associated nucleo-
some landscape from lymphoid/myeloid cells in cfDNA and that 
the mechanism of DNA release from these cell types gives a signal 
similar to MNase profiling.

Fig. 2. cfDNA maps CTCF-nucleosome dynamics in plasma from a healthy individual. (A) Enrichment over the mean signal in TFBS ± 1 kb of cfDNA short 
(<80 bp) fragments is plotted as a heatmap (top) (117,144 CTCF TFBS) and as metaplots for each cluster (bottom). E.O.M., enrichment over mean. (B) Same as (A) for 
nucleosome-sized fragments (130 to 180 bp). (C) Same as (B) for MNase-seq dataset from GM12878 cells. (D) Fragment midpoint versus fragment length plot (V plot) 
of cfDNA fragments centered at CTCF binding sites from clusters 1 and 2. Fragment densities at motif center ± 500 bp (top) and motif center ± 200 bp (bottom) are plotted. 
(E) Boxplot of CTCF mean ChIP signal from the GM12878 cell line across length clusters. Number of sites (n) in length clusters and P value using Kolmogorov-Smirnov 
(KS) test with alternative = “greater” option are the following: Cl1: n = 11,978, P(1,6) < 2.2 × 10−16; Cl2: n = 12,811, P(2,6) < 2.2 × 10−16; Cl3: n = 28,132, P(3,6) = 1.1 × 
10−31; Cl4: n = 20,839, P(4,6) = 0.95; Cl5: n = 22,087, P(5,6) = 0.96; Cl6: n = 21,297. P(a,b) denotes P values calculated between scores in length cluster a and scores in length 
cluster b.
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To further visualize the chromatin structure around CTCF-bound 
sites and to identify the minimum protection conferred by CTCF on 
DNA, we plotted the count of cfDNA fragment midpoints around 
CTCF-bound sites as V-plots for sites in clusters 1 and 2 (30). With 
the V-plot spanning TFBS ± 500 bp, we observe strongly positioned 
nucleosomes with protection length between 140 and180 bp, flank-
ing short protections at the CTCF sites in the center (Fig. 2D, top). 
In the V-plot spanning TFBS ± 200 bp, a strong “V” is evident at the 
center, where there is an enrichment of fragments <80 bp. A “V” indi-
cates a well-positioned, strong barrier to nucleases, which further con-
firms that cfDNA is directly mapping TF binding and its associated 
nucleosome landscapes from the cells of origin (Fig. 2D, bottom).

The separation of bound and unbound sites by our clustering 
approach is also apparent when we compare the short and nucleo-
somal fragment enrichment at individual clusters to the aggregate 
enrichments across all sites (black lines in Fig. 2A, bottom). TF en-
richment, nucleosome occlusion, and nucleosome ordering are sub-
stantially weaker in aggregate compared to clusters 1 and 2 as expected. 
In other words, identifying the subset of sites that are bound could 
inform us of TF binding strength in cfDNA cells of origin. To test 
this idea, we calculated the ChIP scores from GM12878 cells at 
TFBS belonging to each cfDNA length cluster. We found that the 
ChIP scores of the first two clusters were almost four times higher 
than those of the other four clusters (Fig. 2E). The fact that hema-
topoietic ChIP scores correlate with our inferred sites of CTCF bind-
ing in cfDNA supports the conclusion that cfDNA length profile at 
TFBS reports on TF binding strength in cfDNA tissue of origin.

Binding sites of hematopoietic TFs are sensitive to  
changes in cfDNA tissues of origin
Because most cfDNA in healthy individuals is of lymphoid/myeloid 
origin, we asked whether we could map protections for lymphoid/
myeloid-specific TFs: PU.1, a pioneer factor that plays a crucial role 
in myeloid and B cell development (31), and LYL1, an important 
factor for erythropoiesis (32) and development of other hematopoietic 
cell types (33). Upon clustering the binding sites of PU.1 and LYL1 
based on cfDNA length distributions of the healthy donor, IH02 dataset, 
we found an enrichment of short protections at a subset of binding 
sites similar to CTCF (clusters 1 and 2; Fig. 3, A and F). Distribution 
of longer fragments around the binding sites showed strong nucleo-
somal phasing in clusters 1 and 2 (Fig. 3, B and G). The presence of 
nucleosome phasing further confirmed specific TF binding, as this 
is a known outcome of LYL1 and PU.1 binding to DNA (26, 34, 35). 
Clusters 1 and 2, which had the highest enrichment of short protec-
tions, also had significantly higher ChIP scores in lymphoid/myeloid 
cell lines compared to cluster 6 (nucleosomal) for both PU.1 and LYL1 
(Fig. 3, C and H). We observe an even bigger separation in ATAC-
seq scores from CD34+ cells (36) between the length clusters of PU.1 
sites (short, cluster 1 and long, cluster 6), indicating that plasma 
cfDNA footprints also reflect ATAC-seq enrichments in cfDNA tis-
sues of origin (fig. S1, A to F). In summary, we can map the binding 
of hematopoietic TFs in plasma cfDNA in humans.

In cancer patients, cancer cells also contribute significantly to plasma 
cfDNA. Hence, we hypothesized that cfDNA derived from cancer 
cells would dilute lymphoid/myeloid signal. Such dilution would lead 
to a proportional decrease in the enrichment of short fragments at 
clusters 1 and 2 of hematopoietic TFBS because of cfDNA contribu-
tions from nonhematopoietic cell types where PU.1 and LYL1 are 
absent. To test this hypothesis, we performed k-means clustering of 

PU.1 and LYL1 binding sites based on the cfDNA length distributions 
for cfDNA from donors with cancer using published datasets (17). 
We found that the short fragment enrichment for the bound clusters 
1 and 2 was the highest for healthy human plasma (Fig. 3, D and I). 
Cancer samples had significantly weaker short fragment enrichment 
at sites from clusters 1 and 2 for PU.1 and LYL1 (Fig. 3, E and J) and 
did not have higher ChIP scores compared to cluster 6 (fig. S2, A to D). 
In addition to using cfDNA from cancer patients, we also used cfDNA 
from xenograft models derived from human cancer cell lines (Fig. 4A). 
Because the only source of human cfDNA in mice bearing a xeno-
graft is from cancer cells, fragments that uniquely map to the human 
genome in this context represent pure circulating tumor DNA (ctDNA). 
We found no expression of PU.1 or LYL1 in breast tumor model 
systems, and accordingly, we observed no nucleosome phasing or 
higher ChIP scores for the top two clusters in the xenograft cfDNA 
(fig. S2, E to H). In addition, we found an expected decrease in en-
richment of short fragments in clusters 1 and 2 from the xenografts 
(UCD65 and MCF7) compared to healthy donor (Fig. 3, D, E, I, and J). 
The clear separation between cfDNA from a healthy donor and 
cfDNA from cancer patients and from xenografts suggests that the 
length profiles of cfDNA at hematopoietic TFBS when combined 
with local enrichment of short fragments can identify dilution of 
lymphoid/myeloid cfDNA across diverse plasma samples.

ctDNA maps tumor-specific TF binding
We were able to uncover strong signals of CTCF and hematopoietic 
TF binding in plasma cfDNA because most cells that release cfDNA 
have these TFs bound in their genome. However, tumor-specific 
TFs will, by definition, have weaker signals because tumor cfDNA is 
a minor fraction of total cfDNA even in stage IV disease (37). To 
develop pure tumor signatures of TF binding in cfDNA, we turned 
to human cancer xenografts implanted in mice. Because the tumor- 
derived cfDNA in xenograft models would map to the human 
genome, whereas the endogenous cfDNA from the mouse would 
map to the mouse genome, we could identify cfDNA molecules from 
sequencing that were specifically from the tumor, hence ctDNA, 
but obtained from an in vivo system (Fig. 4A).

ER+ tumors are driven by the TFs ER and FOXA1 (15). We hy-
pothesized that plasma-derived TF binding profiles could distinguish 
different ER+ disease states. To model different states of ER+ diseases, 
we used three types of ER+ breast tumor cells. MCF7 has elevated ER 
and was isolated from pleural effusion of a metastatic patient. UCD65 
cell line (38) was derived from a lymph node metastasis of a 41-year-old 
woman. UCD65 has ESR1 gene amplification and even higher ER 
levels than MCF7. Amplified ESR1 has been found in ~20% of ER+ 
breast cancers, and significantly, amplified ESR1 was associated with 
longer survival times for patients receiving tamoxifen monotherapy 
(39). Last, UCD4 was derived from pleural effusion of a 68-year-old 
woman, with cells harboring the activating mutation D538G in ER 
that makes it estrogen independent (40). This mutation usually arises 
as an escape from endocrine therapy and is not observed in primary 
tumors [for example, it is absent from all samples in TCGA BRCA 
(Breast Invasive Carcinoma) cohort]. In summary, MCF7, UCD65, 
and UCD4 represent distinct states of ER-driven disease, enabling 
us to ask whether plasma-derived binding profiles of ER and associ-
ated TFs can distinguish these unique disease states.

We first identified ER and FOXA1 binding sites in tumor cells 
using CUT&RUN (10). CUT&RUN relies on a protein A–tagged 
nuclease linked to a primary antibody that binds epitope of choice 
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and is an alternative to ChIP-seq. The nuclease is activated upon 
addition of calcium to release DNA fragments bound to the protein 
targeted by the antibody. Because of the absence of cross-linking 
and release of bound sites rather than enrichment of bound sites, 

CUT&RUN captures TF binding at higher sensitivity and provides 
a greater dynamic range of signals compared to ChIP-seq (10). We 
performed CUT&RUN for ER and FOXA1 in estradiol (E2)–treated 
MCF7 cells and obtained ~80,000 and ~40,000 CUT&RUN sites for 

Fig. 3. cfDNA of lymphoid/myeloid origin contains hematopoietic TF footprints. (A) Enrichment over the mean signal in PU.1 TFBS ± 1 kb of cfDNA short (<80 bp) 
fragments is plotted as a heatmap (top) (53,613 PU.1 TFBS) and as metaplots for each cluster (bottom). (B) Same as (A) for nucleosome-sized fragments (130 to 180 bp). 
(C) Boxplot of PU.1 mean ChIP signal (log2) from GM12878 cell line across length clusters. Number of sites (n) in length clusters and P value using KS test are the following: 
Cl1: n = 6528, P(1,6) = 9.2 × 10−20; Cl2: n = 6447, P(2,6) = 1.7 × 10−22; Cl3: n = 10,377, P(3,6) = 0.00011; Cl4: n = 10,036, P(4,6) = 0.19; Cl5: n = 9673, P(5,6) = 0.7; Cl6: n = 10,552. 
Significant string was determined after Bonferroni correction. (D) Enrichment metaplots for short fragments in PU.1 TFBS belonging to clusters 1 and 2 for healthy (IH02), 
cancer cfDNA (IC15, IC17, IC20, IC35, and IC37), and PDX cfDNA (MCF7 and UCD65). (E) Boxplot of mean of short fragment enrichment (TFBS ± 50 bp) for the samples and 
TFBS plotted in (D). (F) Same as (A) for LYL1 (7999 TFBS). (G) Same as (B) for LYL1. (H) Same as (C) for LYL1. Number of sites (n) in length clusters and P value using KS test 
are the following: Cl1: n = 1083, P(1,6) = 4.7 × 10−12; Cl2: n = 1001, P(2,6) = 3 × 10−7; Cl3: n = 1748, P(3,6) = 0.18; Cl4: n = 1351, P(4,6) = 0.15; Cl5: n = 1415, P(5,6) = 0.62; Cl6: 
n = 1401. Significant string was determined after Bonferroni correction. (I) Same as (D) for LYL1. (J) Same as (E) for LYL1.
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ER and FOXA1, respectively, with sufficient coverage in both MCF7 
and UCD65 xenograft cfDNA datasets.

When we performed fragment length distribution analysis of 
xenograft cfDNA datasets at ER CUT&RUN peaks and defined six 
clusters, the five clusters with the lowest expected fragment length 
(Fig. 4B) showed strong short fragment protections and phased 
nucleosomes (Fig.  4C) as well as significantly higher ER binding 
measured as CUT&RUN score (Fig. 4D). We observed similar trends 
for FOXA1 binding sites (Fig. 5, A to C). Positive correlation between 
ctDNA short fragment enrichment and CUT&RUN scores strongly 
suggests that we are capturing binding in cancer cells and that the 
signal from cfDNA release in vivo is similar to CUT&RUN profiling. 
Thus, defining binding sites in tumor cells using CUT&RUN enables 

sensitive mapping in plasma of the TF binding that occurs in tumor 
cells of origin.

FOXA1, a pioneer factor, binds to nucleosomes and facilitates 
DNA access and binding for other TFs (41). At low levels of MNase, 
nucleosomal protections have been identified at FOXA binding sites, 
pointing to the possibility of a FOXA-bound nucleosome (42). How-
ever, this nucleosomal protection is lost at higher levels of MNase. 
In cfDNA, we found an almost complete lack of nucleosomal-sized 
particles at FOXA1 sites that had strong short footprints (length 
clusters 1 to 4). To probe this further, we analyzed the enrichment 
of nucleosomal fragments (130 to 180 bp) from MNase titration as-
says in K562 (43) and MCF7 cells (GSE77526) at CTCF and FOXA1 
sites. We do not find an enrichment of nucleosomes over mean at 

Fig. 4. ER+ breast cancer xenograft models enable identification of pure tumor cfDNA footprints for ER. (A) Schematic of human cancer cell lines implanted in the 
mouse and the process of identifying tumor cfDNA by mapping mouse plasma cfDNA to an in silico concatenated genome. Fragments mapped uniquely to the human 
genome (violet lines) define tumor cfDNA (ctDNA). Fragments mapped uniquely to the mouse genome (blue lines) arise from the tumor microenvironment and from the 
mouse lymphoid/myeloid cells. Fragments mapped to both genomes were discarded (green lines). (B) Average length distributions at clusters of ER CUT&RUN peaks 
(summit ± 50 bp) generated by k-means clustering (n = 6) of the ctDNA fragment length distribution. (C) Enrichment over the mean signal in TFBS ± 1 kb of cfDNA short 
(<80 bp) fragments is plotted as a heatmap (top) (83,311 ER TFBS) and as metaplots for each cluster (bottom). (D) Boxplot of ER CUT&RUN scores for peak summits in k-means 
clusters. Number of sites (n) in length clusters and P value using KS test are the following: Cl1: n = 12,785, P(1,6) = 1.2 × 10−151; Cl2: n = 13,301, P(2,6) = 7.9 × 10−116; Cl3: 
n = 11,943, P(3,6) = 1.5 × 10−80; Cl4: n = 10,363, P(4,6) = 1.6 × 10−37; Cl5: n = 10,848, P(5,6) = 1.1 × 10−8; Cl6: n = 24,029. Significant string was determined after Bonferroni 
correction. ****P < 0.0001 and ***0.0001 < P < 0.001.
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low MNase levels at CTCF binding sites (fig. S4E). However, FOXA1 
sites feature nucleosomal protection both in healthy cfDNA (fig. S4F) 
and in UCD65 xenograft cfDNA (fig. S4G). This suggests the presence 
of fragile nucleosome at FOXA1-bound sites. However, cfDNA 
nucleosome profile matches that generated from higher levels of 
MNase, suggesting higher fragmentation during cfDNA generation 
that does not preserve these fragile nucleosomes.

Unique sets of TFBS display tissue-specific TF 
protections in plasma
We have defined sets of binding sites that show TF-specific protec-
tions in two pure systems: plasma from a healthy human and plasma 
from xenograft tumor mouse models. We then asked whether we 
could define subsets of these sites that would be unique to tumor 
and hematopoietic cells. In addition, to ask whether we could iden-
tify sites that uniquely captured ER activity, we compared the ER+ 
xenografts with three states of ER: MCF7 (elevated ER), UCD65 
(ER amplified), and UCD4 (containing activating D538G mutation). 
To do this, we performed length clustering analysis at all TFBS with 
both healthy plasma dataset and xenograft plasma datasets to iden-
tify binding site clusters with significantly higher ChIP/CUT&RUN 
binding scores compared to the nucleosomal cluster of binding sites 
for each cfDNA dataset. We then intersected the significant binding 
sites between healthy plasma and xenograft plasma. First, we found 
that PU.1 and LYL1 sites had TF protections that correlated with 
binding strength only in healthy plasma (Fig. 6A), indicating that all 
TFBS of PU.1 and LYL1 with significant footprints in plasma could 
be used to identify hematopoietic contribution to cfDNA. CTCF is 

a constitutive factor, ER is expressed in T cells and other hemato-
poietic cells (44), and factors related to FOXA1 that have the same 
binding motifs are expressed in hematopoietic cells, for example, 
FOXM1 (45). The partial overlap of binding of these or related factors 
in hematopoietic and cancer cells led us to find sites with significant 
TF protections in both healthy plasma and xenograft model plasma 
for CTCF, FOXA1, and ER (Fig. 6A and figs. S3 and S4). For exam-
ple, a large fraction of CTCF sites (16,709 in set 2 and 4945 in set 4) 
are shared between xenograft plasma and healthy plasma, whereas 
the rest of CTCF sites (17,902 in set 1, 6022 in set 3, 4930 in set 5, 
and 4649 in set 6; CTCF in Fig. 6A) are cancer specific. In contrast, the 
top three sets of sites for FOXA1 and ER are xenograft specific, 
with the largest set of sites specific to UCD65 (8226 for FOXA1 and 
13,879 for ER). FOXA1 has sites specific to MCF7 as well (set 3), 
and ER has sites specific to MCF7 (set 3) and UCD4 (set 6). Thus, 
despite the overlap in binding between hematopoietic cells and 
cancer cells, ER and FOXA1 have enough unique sites protected in 
plasma that distinguish healthy plasma from xenograft plasma. 
Significantly, we were able to also find sites that differentiated 
xenografts that differed in ER activity, supporting our premise that 
cfDNA TF footprints identify regulatory landscape of tumors.

Although FOXA1 is not expressed in lymphoid/myeloid cells, 
some FOXA1 binding sites identified in MCF7 cells showed significant 
enrichment of TF footprints in healthy plasma. We asked whether 
related FOX factors like FOXM1 and FOXK2 that are expressed in 
lymphoid/myeloid cells may be binding at these sites to give rise to 
short footprints in cfDNA. We therefore calculated scores for FOXM1 
and FOXK2 binding from ChIP experiments conducted in GM12878 

Fig. 5. ER+ breast cancer xenograft models enable identification of pure tumor cfDNA footprints for FOXA1. (A) Average length distributions at clusters of FOXA1 
CUT&RUN peaks (summit ± 50 bp) generated by k-means clustering (n = 6) of the ctDNA fragment length distribution. (B) Enrichment over the mean signal in TFBS ± 1 kb 
of cfDNA short (<80 bp) fragments is plotted as a heatmap (top) (39,500 FOXA1 TFBS) and as metaplots for each cluster (bottom). (C) Boxplot of FOXA1 CUT&RUN scores 
(see Materials and Methods) for peak summits in k-means clusters. P values from KS test. Number of sites (n) in length clusters and P value using KS test are the following: 
Cl1: n = 4220, P(1,6) = 3.4 × 10−36; Cl2: n = 5669, P(2,6) = 3.2 × 10−19; Cl3: n = 5699, P(3,6) = 4.5 × 10−15; Cl4: n = 4831, P(4,6) = 3.1 × 10−10; Cl5: n = 9033, P(5,6) = 3.9 × 10−10; Cl6: 
n = 10,017. Significant string was determined after Bonferroni correction. ****P < 0.0001.
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Fig. 6. Tissue-specific TFBSs enable detection of disease states. (A) Upset plots (67) of cfDNA-inferred bound sites in different plasma samples for LYL1, PU.1, CTCF, 
FOXA1, and ER (left to right). Plots were generated using the ComplexUpset R package (DOI: 10.5281/zenodo.4661589). (B) Boxplots of TF binding scores measured as 
mean enrichment of short fragments at CUT&RUN peak summit ± 100 bp for ER and FOXA1 and motif center ± 50 bp for LYL1, PU.1, and CTCF. CSS, cancer-specific sites; 
HSS, healthy-specific sites. (C) Line plot of median t statistic calculated for change in the binding scores (score in healthy plasma used as baseline) at binding sites of an 
individual TF or a collection of TFs at different in silico dilutions of healthy cfDNA with PDX ctDNA. At each dilution, 100 bootstrapped samples were generated. Horizontal 
dashed line is drawn where the t statistic equals 5. (D) Boxplot of TF binding scores in pure ctDNA (UCD65/MCF7) at ER and FOXA1 sites specific to UCD65. (E) Boxplot of 
TF binding scores in pure ctDNA (UCD65/UCD4) at ER and FOXA1 sites specific to UCD4. (F) Boxplot of TF binding scores in pure ctDNA (MCF7/UCD4) at ER and FOXA1 
sites specific to UCD4. (G) Boxplot of log2 fold change (Log2FC) between UCD4/UCD65 and MCF7 in expression of genes adjacent to sites specific to UCD4 and UCD65. 
(H) Line plot of median t statistic calculated for the change in TF binding scores at UCD65- or MCF7-specific ER, FOXA1, or ER and FOXA1 sites combined at different in 
silico dilutions of healthy cfDNA with PDX ctDNA. At each dilution, 100 bootstrapped samples were generated. A horizontal dashed line is drawn where the t statistic 
equals 5. (I) Same as (H) for UCD4-specific ER and FOXA1 sites against UCD65. (J) Same as (H) for UCD4-specific ER and FOXA1 sites against MCF7.

http://dx.doi.org/10.5281/zenodo.4661589
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cells and found that FOXM1 ChIP scores, but not FOXK2 ChIP scores, 
strongly correlated with short length clusters in healthy plasma (fig. S4). 
This suggests that FOXM1 occupies sites in lymphoid/myeloid cells 
that are a subset of sites bound by FOXA1 in MCF7 cells.

With these collections of sites that were unique to cancer and to 
the ER status (normal ER–MCF7 versus amplified ER–UCD65 ver-
sus mutated ER–UCD4), we calculated a plasma TF binding score, 
which was the number of short reads (<80 bp) mapped within 50 bp 
of the TFBS normalized by the number of reads in 1000 bp around 
the TFBS. This plasma TF score tracks with the identity of the sites 
in that the sites unique to healthy plasma had a significantly higher 
TF score for healthy plasma compared to xenograft models and vice 
versa. Similarly, UCD65, MCF7, and UCD4 had higher plasma TF 
scores at their respective specific sites when compared to others 
(Fig. 6, B and D  to F). Thus, unique sets of sites identified using 
cfDNA length clusters also had localized enrichment of short frag-
ments relative to the surrounding 1000 bp in a system-specific manner. 
Genes adjacent to ER binding sites that were uniquely protected in 
UCD4 and UCD65 also featured significantly higher expression in 
the respective tumor cells relative to MCF7 (Fig. 6G). This indicates 
that the binding sites protected uniquely in UCD4 and UCD65 not 
only represent cfDNA signatures to differentiate these different disease 
states but also reflect their altered gene regulation. In summary, our 
analysis shows the potential of cfDNA length clusters to identify not 
only the tissue of origin but also the breast cancer disease state.

In the plasma of an individual with cancer, both lymphoid/
myeloid cells and tumor cells will contribute to cfDNA, with most 
of the contribution still being from the lymphoid/myeloid cells. To 
ask at what dilution of tumor DNA we could detect the presence of 
cancer using TF footprints, we performed in silico dilutions of 
xenograft plasma cfDNA, which represents pure tumor DNA, mixed 
into healthy plasma cfDNA at 0, 0.5, 1, 2, 3, 4, and 5%. We then 
calculated plasma TF binding score at sites specific to healthy plasma 
and xenograft plasma. We compared these scores between the in 
silico diluted plasma samples and nondiluted plasma sample to cal-
culate a paired t statistic. We set a cutoff of 5 for the median paired 
t statistic to indicate a significant difference between diluted and 
nondiluted plasma sample (fig. S5). We found ER sites to be strongest 
in separating tumor diluted cfDNA from pure healthy cfDNA (detec-
tion at <1% tumor cfDNA) followed by FOXA1 and CTCF (detection 
at ~1% of tumor cfDNA; Fig. 6C). PU.1 (detection at 2% tumor cfDNA) 
and LYL1 had weaker but significant contributions (fig. S6). Com-
bined ER and FOXA1 sites showed a median t statistic greater than 
5 between 0.5 and 1% tumor fraction. Because most metastatic dis-
eases have tumor-derived cfDNA fractions higher than 1% (46, 47), 
our analysis suggests that we would be able to delineate TF binding 
in metastatic tumors, despite the significant interference from cfDNA 
of lymphoid/myeloid origin.

UCD65 has ESR1 amplification and expresses much higher levels 
of ER. UCD4 has a mutated ER (activating D538G mutation) (40). 
The presence of ESR1 amplification results in better survival with 
endocrine treatment (39), whereas D538G mutation confers resist-
ance to endocrine therapy. These two xenografts along with MCF7 
represent three unique states of ER activity and corresponding dis-
ease progression. Thus, this system enables to ask whether cfDNA 
TF fingerprints can provide clinically actionable information. So, we 
asked whether we could use cfDNA TF fingerprints to differentiate 
these three xenograft models. Both ER and FOXA1 sites contribute 
to differentiating UCD65 from MCF7. Combining sites from both 

TFs is synergistic and separates UCD65 and MCF7 at 4% of tumor 
fraction (t statistic > 5; Fig. 6H). Thus, at marginally higher tumor 
fractions, we can even identify signatures of differences in ER ex-
pression levels using TFBS defined by a combination of CUT&RUN 
and cfDNA length clustering. Notably, ER sites could robustly differ-
entiate UCD4 from UCD65 and MCF7 (Fig. 6, I and J), highlighting 
the fact that mutated ER leads to differential binding signature that 
can be identified in plasma cfDNA at 2% tumor fraction. Signifi-
cantly, FOXA1 sites were much weaker than ER in differentiating 
UCD4 from UCD65 and MCF7, highlighting that the mutation-specific 
changes in TF footprints in plasma are strongest for ER. In summary, 
by identifying the subset of high-resolution TFBS protected in dis-
tinct plasma samples, we can define TF signatures unique to ER+ 
breast cancer and further unique to amplified wild-type ER and 
D538G ER mutant.

Identified TFBS report on tumor TF binding in individuals 
with breast cancer
Because our in silico dilution analyses indicate that TF footprints in 
plasma can identify breast cancer disease at tumor-derived cfDNA 
fractions of 1 to 4%, we next asked whether the TFBSs we identified 
to be uniquely protected in xenograft model plasma would reflect 
disease states in heterogeneous human samples. To test this, we first 
turned to ATAC-seq datasets generated using primary tumor sam-
ples in the TCGA database. ATAC-seq reports DNA accessibility, 
which highly correlates with TF binding (48). We asked whether 
tumors exhibited TF-specific accessibility at the TFBSs that we had 
identified. We separated BRCA based on a specific TF’s expression 
and then calculated accessibility at sites identified to be UCD65 spe-
cific. BRCA with ER expression [transcripts per million (TPM) ≥ 10] 
were enriched for nonbasal, non-normal–like tumors and vice versa 
(fig. S7). We found that tumors that express ER had much higher 
accessibility at UCD65-specific ER sites compared to tumors that do 
not express ER (TPM < 10; Fig. 7A). Similarly, BRCA with FOXA1 
expression were enriched for nonbasal, non-normal–like tumors and 
vice versa (fig. S7). We found even stronger accessibility differences 
at UCD65-specific FOXA1 binding sites, with FOXA1-expressing 
tumors having much higher ATAC scores than FOXA1-nonexpressing 
tumors at most sites (Fig. 7B).

FOXA1 is known to act as a pioneer factor, enabling ER binding 
by establishing accessibility at its binding sites (15). We asked whether 
we could reproduce this finding at ER and FOXA1 binding sites that 
we identified by taking advantage of the heterogeneity in ER and 
FOXA1 expression across TCGA samples. If the ER and FOXA1 sites 
we identified are representative of ER and FOXA1 function across 
human breast tumors, then accessibility at ER binding sites should 
depend on the presence of FOXA1. CTCF is a good control as its 
expression should not influence accessibility at ER or FOXA1 sites. 
We first calculated the mean ATAC score for each tumor sample by 
aggregating the ATAC score across all sites of a given TF. For CTCF, 
ER, and FOXA1 sites, we performed two-sample t test [sample 1: 
cohorts with high TF expression (top 15 of 74), sample 2: cohorts 
with low TF expression (bottom 15 of 74)]. We found that the mean 
ATAC scores at CTCF, FOXA1, and ER sites were significantly dif-
ferent when tumors were grouped by the expression of the respec-
tive TF, with strongest difference seen for FOXA1 (diagonal cells in 
Fig. 7C). Notably, we observed a strong difference (t statistic = 3.57; 
P = 1.7 × 10−3) in mean ATAC scores at ER sites when tumors were 
grouped on the basis of FOXA1 expression. This difference was 
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stronger than at FOXA1 sites when tumors were grouped on the 
basis of ER expression (t statistic = 2.1; P = 0.047), suggesting that 
FOXA1 expression has a stronger influence on accessibility at ER 
sites than vice versa.

To further explore the effect of FOXA1 at ER sites, we stratified 
BRCA by both ER and FOXA1 expression levels. In tumors with 
low ER expression, increase in FOXA1 expression led to a signifi-
cant increase in mean ATAC scores at ER sites, suggesting that 
FOXA1 keeps the chromatin open at ER sites even in the absence of 

ER (Fig. 7D). Expression of ER and FOXA1 led to the highest acces-
sibility at ER sites, suggesting further chromatin opening after ER 
binding (Fig. 7D). In stark contrast, at FOXA1 sites, accessibility 
increase is seen only due to increase in FOXA1 expression. The 
presence of ER did not lead to a significant increase in accessibility 
(Fig. 7E). Our observation of FOXA1 expression driving accessibility 
at both ER and FOXA1 binding sites recapitulates in human tumors 
the in vitro findings that FOXA1 is a pioneer factor that opens up 
ER sites. Together, our analysis shows that sites with tumor-specific 

Fig. 7. Plasma footprints represent TF-specific accessibility in primary tumors and can predict presence of breast cancer. (A) Boxplot of ATAC scores from TCGA BRCA 
datasets stratified based on ER expression levels (ER low: TPM < 10; ER high: TPM ≥ 10) at cfDNA-inferred ER CUT&RUN peaks with ER motif. (B) Same as (A) for FOXA1 sites. 
(C) Heatmap of t statistic calculated at cfDNA-inferred TFBSs (rows) between top 15 and bottom 15 tumors when stratified by a TF’s expression (columns). (D) Boxplot of mean 
ATAC scores at ER sites for tumors stratified by both ER and FOXA1 expression (FOXA1 low: TPM < 10; FOXA1 high: TPM ≥ 10; ER low: TPM < 10; ER high: TPM ≥ 10). (E) Boxplot 
of mean ATAC scores at FOXA1 sites for tumors stratified by both ER and FOXA1 expression. Tumor stratification was identical to (D). (F) Boxplot of ER expression in TCGA breast 
cancer cohorts (excluding basal) segregated into “MCF7-like” and “UCD65-like” based on ATAC scores at cfDNA-inferred MCF7- and UCD65-specific sites. (G) Survival 
probability curves for TCGA breast cancer cohorts (excluding basal) segregated into MCF7- and UCD65-like. (H) Survival probability curves for TCGA breast cancer cohorts 
(excluding basal) segregated based on ESR1 expression into two quantiles. (I) Heatmap of enrichment [log2 (observed/expected)] of frequency of TF features selected for a 
given classification (rows) divided by the overall frequency of TF features. (J) Prediction accuracy of classifying patients to BRCA (breast cancer) and non-BRCA (non–breast 
cancer) using TF scores from plasma cfDNA using leave-one-out cross-validation (LOOCV). n.s., not significant; ND, not determined. *P < 0.05, ***P < 0.001, and ****P < 0.0001.
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plasma protections in xenograft models can define TF-specific ac-
cessibility across human breast tumors. These results indicate that 
TF protections in plasma can define tumor TF binding in humans.

Because UCD65 and MCF7 represent distinct ER states, we asked 
whether we could use the UCD65- and MCF7-specific sites derived 
from our cfDNA analysis to classify primary BRCA tumors from 
TCGA based on their ATAC scores at these sites. If the unique ER 
sites reflect a disease state, our classification should separate TCGA 
samples based on ER expression and survival: UCD65 has higher 
ER expression because of ESR1 amplification, and patients with 
ESR1-amplified tumors have higher survival. We devised a score based 
on ATAC-seq enrichment at UCD65- and MCF7-specific sites that 
classified each TCGA tumor as UCD65- or MCF7-like. Thus, this 
classification relied only on genome-wide ER binding profile. We 
then compared the ER expression of UCD65-like tumors to MCF7-like 
tumors. We observed higher ER expression in UCD65-like tumors, 
demonstrating that genome-wide ER signature reflects disease state 
(Fig. 7F). Notably, we also observed significantly higher survival in 
patients with UCD65-like tumors compared to MCF7-like tumors, 
recapitulating another aspect of ER-amplified tumors, just with 
genome- wide ER binding profiles (Fig. 7G). Just separating tumors 
into two groups based on ER expression alone does not show any 
significant differences in survival, highlighting the fact that it is the 
genome- wide ER fingerprint that contains predictive value for ER 
function (Fig. 7H). In summary, TF protections in plasma reflect 
ER+ disease state and can be used as prognostic indicators.

Last, we asked whether TF binding scores from plasma cfDNA 
can distinguish cancer from healthy states and breast cancer from 
other cancers and healthy states. We compared TF binding scores in 
19 human plasma cfDNA sequencing datasets [healthy = 4 (2 male 
and 2 female), lung cancer  =  6 (5 male and 1 female), colorectal 
cancer = 1 (female), total non-BRCA = 11, and breast cancer 
(BRCA) = 8 (8 female); table S1]. To take advantage of even samples 
that were sequenced at low depths, we defined TF features as aggre-
gates of 250 binding sites of the TF after ordering all its binding sites 
by ChIP/CUT&RUN score. We ended up with a total of 359 features 
(PU.1 = 43, LYL1 = 7, CTCF = 120, ER = 124, and FOXA1 = 65). We 
made two classification groups: cancer versus healthy (n = 15 and 
n = 4, respectively) and BRCA versus non-BRCA (n = 7 and n = 12, 
respectively). We calculated the Z score for each feature for these 
two groups of classification. We then filtered for those features with 
|Z| > 1 in each of the two classifications as features that differentiated 
the two classes in each classification. We then asked which of the 
TFs had their features overrepresented or underrepresented in each 
classification. We found PU.1 features to be over-represented in having 
higher TF binding scores in healthy samples compared to cancer 
samples (Fig. 7I). In classifying BRCA and non-BRCA, we found no 
TFs to be overrepresented in features that had higher binding scores 
in non-BRCA. However, ER and FOXA1 features were overrepre-
sented with higher binding scores in BRCA compared to non-BRCA 
(Fig. 7I). The fact that FOXA1 and ER binding sites can separate 
BRCA from non-BRCA indicates that the sites identified from xe-
nografts are transferrable to human samples. Furthermore, despite 
dilution by cfDNA from lymphoid and myeloid cells, cancer-specific 
TF protections in plasma are sensitive markers of disease presence. 
To ask how accurate these features are in identifying the presence of 
breast cancer, we resorted to leave-one-out cross-validation. We iden-
tified features that significantly separated BRCA from non-BRCA 
using all but one of the samples (18 of 19) and then used these features 

to predict the status of the left-out sample. We observed an overall 
prediction accuracy of 89.5%, prediction accuracy of 85.7% for BRCA 
(6 of 7 predicted correctly), and accuracy of 91.7% for non-BRCA 
(11 of 12 predicted correctly; Fig. 7J). Notably, these 19 samples 
have diverse sequencing depth ranging from ~41 million to ~600 million 
sequenced cfDNA fragments (table S2). Thus, our analysis of data-
sets consisting of low to intermediate depth sequencing of 19 human 
plasma samples shows potential for plasma TF footprints to identify 
breast cancer tissue of origin.

DISCUSSION
Interaction of TFs with DNA is fundamental to gene regulation, and 
distinct cell types are defined by unique TF binding profiles. It is 
known that cfDNA fragments in plasma maintain information re-
garding chromatin dynamics and TF binding (49). Previous approaches 
have averaged the coverage of short and long cfDNA fragments from 
thousands of sites to infer binding of a single TF (17, 26). These analy-
ses on aggregated sites can be used to build diagnostic classifiers but 
lack the granularity to generate binding profiles of TFs specific to 
the cells releasing cfDNA. We hypothesized that if TF protections 
in tissue of origin lead to short footprints in plasma, then mapping 
these footprints at individual sites would allow us to study the TF’s 
function in cfDNA tissues of origin. To this end, we first defined the 
subset of all possible sites of a TF that give rise to short footprints in 
cfDNA. Unexpectedly, we found that enrichment of short footprints 
in plasma for a TFBS correlates with strength with which the TF binds 
that site in the cells from which the cfDNA originated. We observed 
this for both constitutive factors with long residence times, such as 
CTCF, and tumor-specific dynamic factors with short residence 
times, such as ER. This finding elevates cfDNA from a mere classi-
fier to a means to understand TF binding in living mammals in a 
minimally invasive manner and in real time.

TFs in the same family use overlapping binding sites in different 
cell types. For example, FOXA1, which is active in hormone-dependent 
cancers of the breast and prostate, shares binding motif with other 
FOX factors like FOXM1, whose expression is enhanced in lymphoid 
tissues (45), and FOXK2, which is expressed in many tissues includ-
ing lymphoid/myeloid (50). We show that a subset of FOXA1 sites 
bound in ER+ tumors also give rise to short cfDNA footprints in 
healthy plasma. We can predict these protections to arise from FOXM1 
rather than FOXK2 binding based on correlation of the enrichment 
of cfDNA TF footprints with binding strengths of FOXM1 in a lym-
phoid cell line, underscoring our ability to uncover specific TF binding 
profiles directly from plasma. Similarly, ER, which drives ER+ breast 
cancers, is also active in T cells (44), with shared and unique bind-
ing sites between tumors and T cells. Our inference of TF footprints 
at each binding site of ER from xenograft models and healthy plasma 
has enabled identification of sites in an ER+ tumor also bound by 
ER in lymphoid/myeloid cells. This careful characterization of ER 
and FOXA1 has enabled us to identify binding sites of FOXA1 and 
ER that are not only specific to ER+ breast cancer but also able to 
distinguish basal levels of ER from ER overexpression and the presence 
of mutated ER. Starting only with a reference set of CUT&RUN sites 
from E2-treated MCF7 cells, we have been able to identify ER and 
FOXA1 binding sites that defined lymphoid/myeloid signatures and 
ER+ tumor subtypes. Thus, further high-resolution characterization 
of TFs in the future can only improve our ability to generate bind-
ing profiles from plasma in health and disease.
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Our results uncover two aspects of cfDNA biology that can vastly 
expand the information we can gain from its study. First, enrich-
ment of short fragments enables accurate identification of TF foot-
prints at single binding sites in plasma. Second, careful consideration 
of which sites in the genome to look at can yield cancer-sensitive sig-
natures that enable tissue-of-origin mapping of TF binding profiles. 
Here, we have shown that analysis of CUT&RUN data on tumor cells 
combined with cfDNA data from xenograft models can identify tumor 
TF sites that are bound in a TF-specific manner across human breast 
tumors. The analytical framework presented in this study is not 
limited to TFs. It can easily be customized to the question of interest 
by defining open/closed chromatin using datasets generated by 
ATAC-seq and DNase I–seq (deoxyribonuclease I sequencing). In 
addition, regions of interest across organisms could be used by im-
putation. Depending on the disease biology, probing for gain or loss 
of TF binding can be of potential use. For example, in the case of 
acute myeloid leukemia, loss of PU.1 expression could lead to over-
all loss in binding (51). In the future, putative tumor state–specific 
TFs, their gene targets, and binding sites where we can analyze cfDNA 
footprints could be identified by mining TCGA ATAC-seq and 
RNA-seq (RNA sequencing) datasets (52, 53) and by de novo iden-
tification of TFBSs from models of pure tumor cfDNA. Given that 
most tumors release cfDNA, we believe that our characterization of 
ER+ breast tumors using cfDNA TF footprints represents the tip of 
the iceberg for characterizing tumor phenotypes from plasma and is 
applicable across disease states.

MATERIALS AND METHODS
Plasma samples
The plasma sample information is described in table S1.

ChIP-seq peaks
We collected ChIP-peaks from publicly available datasets (9, 54, 55). 
We obtained clustered peaks for CTCF and PU.1 from ENCODE 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz). 
For LYL1, we used peaks from ReMap (http://remap.univ-amu.fr/
storage/remap2020/hg38/MACS2/TF/LYL1/remap2020_LYL1_
all_macs2_hg38_v1_0.bed.gz).

TF motifs
We used TF motifs from JASPAR (CTCF: http://jaspar.genereg.
net/matrix/MA0139.1/; PU.1: http://jaspar.genereg.net/matrix/
MA0080.5; ER: http://jaspar.genereg.net/matrix/MA0112.1, http://
jaspar.genereg.net/matrix/MA0112.2, and http://jaspar.genereg.
net/matrix/MA0112.3; FOXA1: http://jaspar.genereg.net/matrix/
MA0148.1, http://jaspar.genereg.net/matrix/MA0148.2, and 
http://jaspar.genereg.net/matrix/MA0148.3) (56) and HOCOMOCO 
(LYL1: http://hocomoco.autosome.ru/motif/LYL1_HUMAN.
H11MO.0.A) (57).

Genome-wide signal
We used publicly available genome-wide signal files in bigwig for-
mat to map ChIP and MNase signal to TFBSs and their flanks. 
CTCF: www.encodeproject.org/files/ENCFF578TBN/@@down-
load/ENCFF578TBN.bigWig, PU.1: www.encodeproject.org/files/
ENCFF324NQZ/@@download/ENCFF324NQZ.bigWig, LYL1: 
GEO: GSE63484.

Xenograft models
All animal experiments were conducted in an AAALAC (Association 
for Assessment and Accreditation of Laboratory Animal Care Inter-
national)–accredited facility at the University of Colorado Denver 
under an Institutional Animal Care and Use Committee–approved 
protocol. Xenograft tumors for MCF7 and UCD4 cells were estab-
lished by mixing 1 × 106 cells in Cultrex and injecting them into the 
mammary fat pad of nonobese diabetic severe combined immuno-
deficient gamma (NSG) female mice. Xenograft tumors for UCD65 
were established by mixing 3 × 106 cells in Cultrex and by injecting 
them into the mammary fat pad of NSG female mice. All tumors re-
ceived continuous estrogen supplementation throughout the study, as 
previously described (38). Tumor measurements were taken weekly 
throughout the duration of the experiment. Tumor burden was mea-
sured as the combined volume of the right and left tumor in each 
animal. Total tumor burden for MCF7 was 811, 1109, and 2534 mm3. 
Total tumor burden for UCD65 was 1741, 1805, 2072, 2332, and 
2897 mm3. Total tumor burden for UCD4 was 2374, 2509, 2999, 
and 3014 mm3. Cardiac exsanguination was immediately used follow-
ing euthanasia by carbon dioxide (using a 50% displacement flow rate). 
Whole blood was drawn into a 25-gauge syringe primed with anti-
coagulant acid citrate dextrose (ACD) solution A from BD yellow 
top ACD tubes. To prevent red blood cell lysis, the syringe needle 
was carefully removed from the syringe and the whole blood was 
carefully ejected into 1.5-ml microcentrifuge tubes containing 10 to 
20% ACD solution A. The tubes were inverted 10 times to mix well. 
Whole blood from mice was processed to capture the cfDNA-rich 
plasma fraction using a series of centrifugation steps. The steps in-
cluded two spins at 1700g for 10 min and once at 14,000g for 10 min. 
All centrifugation steps were performed at room temperature, and 
the top clearer fraction was carefully pipetted and put into a clean tube 
for the next centrifugation step. Samples were either immediately 
processed for cfDNA extraction or stored at −80°C until cfDNA 
extraction could be accomplished.

Human cfDNA datasets
We obtained deidentified human plasma samples from repositories 
listed in table S1. Each repository obtained samples with informed 
consent from volunteers following approved Institutional Review 
Board protocols.

cfDNA extraction
Human plasma (1 to 4 ml) or mouse plasma (0.2 to 0.5 ml) was 
thawed from −80°C storage. Plasma samples were spun at maximum 
speed [21,000 rcf (relative centrifugal force)] at 4°C for 5 to 10 min 
to pellet any cell debris. Supernatant was transferred to new tubes, 
and cfDNA was extracted using the QIAGEN ccfMinElute kit (catalog 
no. 55204), eluted in 30 l of nuclease-free water, and directly added 
to the SSP or stored at −20°C.

Single-stranded DNA library protocol
The capture of cfDNA fragments from plasma was performed similar 
to Snyder et al. (17). Briefly, 1 to 10 ng of cfDNA were dephosphoryl-
ated using FastAP Thermosensitive Alkaline Phosphatase (Thermo 
Fisher Scientific, catalog no. EF0651), denatured, and incubated 
overnight with CircLigase II (Lucigen, catalog no. CL9025K) and 
0.093 to 0.125 M biotinylated CL78 primer (17) at 60°C with shaking 
every 5 min. Captured cfDNA fragments were denatured and then 
bound to magnetic streptavidin M-280 beads (Invitrogen, catalog 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz
http://remap.univ-amu.fr/storage/remap2020/hg38/MACS2/TF/LYL1/remap2020_LYL1_all_macs2_hg38_v1_0.bed.gz
http://remap.univ-amu.fr/storage/remap2020/hg38/MACS2/TF/LYL1/remap2020_LYL1_all_macs2_hg38_v1_0.bed.gz
http://remap.univ-amu.fr/storage/remap2020/hg38/MACS2/TF/LYL1/remap2020_LYL1_all_macs2_hg38_v1_0.bed.gz
http://jaspar.genereg.net/matrix/MA0139.1/
http://jaspar.genereg.net/matrix/MA0139.1/
http://jaspar.genereg.net/matrix/MA0080.5
http://jaspar.genereg.net/matrix/MA0080.5
http://jaspar.genereg.net/matrix/MA0112.1
http://jaspar.genereg.net/matrix/MA0112.2
http://jaspar.genereg.net/matrix/MA0112.2
http://jaspar.genereg.net/matrix/MA0112.3
http://jaspar.genereg.net/matrix/MA0112.3
http://jaspar.genereg.net/matrix/MA0148.1
http://jaspar.genereg.net/matrix/MA0148.1
http://jaspar.genereg.net/matrix/MA0148.2
http://jaspar.genereg.net/matrix/MA0148.3
http://hocomoco.autosome.ru/motif/LYL1_HUMAN.H11MO.0.A
http://hocomoco.autosome.ru/motif/LYL1_HUMAN.H11MO.0.A
http://www.encodeproject.org/files/ENCFF578TBN/@@download/ENCFF578TBN.bigWig
http://www.encodeproject.org/files/ENCFF578TBN/@@download/ENCFF578TBN.bigWig
http://www.encodeproject.org/files/ENCFF324NQZ/@@download/ENCFF324NQZ.bigWig
http://www.encodeproject.org/files/ENCFF324NQZ/@@download/ENCFF324NQZ.bigWig
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no. 11205D) for 30 min at room temperature with nutation. Beads 
were washed, and second-strand synthesis was performed using Bst 
2.0 DNA polymerase (New England Biolabs, catalog no. M0537) with 
an increasing temperature gradient of 15° to 31°C with shaking at 
1750 rpm. Beads were washed, and a 3′ gap fill was performed using 
T4 DNA polymerase (Thermo Fisher Scientific, catalog no. EL0011) 
for 30 min at room temperature. Beads were washed, and a double- 
stranded adapter was ligated using T4 DNA ligase (Thermo Fisher 
Scientific, catalog no. EP0062) for 2 hours at room temperature with 
shaking at 1750 rpm. Beads were washed and resuspended in 30 l of 
10 mM TET buffer [10 mM tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0), 
and 0.05% Tween 20]. DNA was denatured at 95°C for 3 min, and 
cfDNA libraries were collected after immediate magnetic separation.

Quantitative real-time polymerase chain reaction (PCR) was per-
formed on cfDNA libraries using iTAQ Supermix (Bio-Rad, catalog 
no. 1725124), and Ct values were used to determine the number of 
PCR cycles needed to amplify each library. PCR was performed with 
KAPA HiFi DNA polymerase (Kapa Biosystems, catalog no. KK2502) 
using barcoded indexing primers for Illumina. Primer dimers were 
removed from the libraries using AMPure beads (Beckman Coulter, 
catalog no. A63881). Libraries were eluted in 0.1× TE (Tris EDTA 
buffer), and concentrations were determined using Qubit. The length 
distribution of each library was assessed by the Agilent Bioanalyzer 
using the D1000 or HSD1000 cassette. Libraries were sequenced for 
150 cycles in paired- end mode on NovaSeq 6000 system at Univer-
sity of Colorado Cancer Center Genomics Shared Resource.

Cleavage under target and release using nuclease
We used an immunotethered strategy for profiling the binding of 
the ER and FOXA1 TF in human MCF7 breast cancer cells. MCF7 
cells were estrogen-withdrawn for 72 hours before being plated and 
then treated with either ethanol (vehicle control) or 10−10 M E2 for 
1 hour before cell collection. The CUT&RUN method uses an anti-
body to a specific chromatin epitope to tether protein A–MNase at 
chromosomal binding sites within permeabilized cells. The nucle-
ase is activated by the addition of calcium and cleaves DNA around 
binding sites (10). Cleaved DNA is isolated and subjected to paired-
end Illumina sequencing to map the distribution of the chromatin 
epitope genome-wide. We used a primary antibody to human ER 
(ab3575, Abcam, Cambridge, MA) and human FOXA1 (ab170933) 
and protein A–MNase fusion (pA-MNase, a gift from S. Henikoff, 
Fred Hutchinson Cancer Research Center, Seattle WA) (10). 
CUT&RUN profiling with 5 × 105 cells and library amplification 
with 13 cycles of PCR were performed as described (10). Libraries 
were sequenced for 10 million paired-end reads on the Illumina 
NovaSeq 6000 platform at the University of Colorado Denver 
Cancer Center Genomics Shared Resource. Paired-end reads were 
mapped to the GRch38 assembly of the human genome using 
Bowtie2 (58).

CUT&RUN peaks
To call peaks, we used custom Python script (deposited in GitHub). 
Briefly, we first normalized a coverage of <120-bp protected frag-
ments in CUT&RUN data at 10-bp resolution and then smoothed 
the coverage with a Savitzky-Golay filter (59) available as a SciPy 
(60) method “signal.savgol_filter” with parameters window_length = 9, 
polyorder = 1. We determined the cutoff for each dataset by itera-
tively eliminating outliers and used the “find_peaks” method in 
SciPy to call peaks that were separated by at least 250 bp.

Aligning mouse-extracted cfDNA to in silico 
concatenated genome
The names of chromosomes of human (hg38; GRCh38 assembly) 
and mouse (mm10; GRCm38 assembly) reference genomes were 
first prefixed by hg38 and mm10, respectively, and then the fasta 
files were concatenated together to represent an in silico human + 
mouse genome. We then aligned xenograft cfDNA to this con-
catenated genome using Bowtie2 (58) with parameters “--local --very- 
sensitive-local --no-unal --no-mixed --no-discordant -I 10 -X 700” 
(alignment report of both xenograft and human plasma samples 
can found in table S2). We selected for mapped reads and then fil-
tered out reads with secondary alignment from the bam file using 
the command: “samtools view -F 4 <bam file> | grep -v 'XS:'” (61).

This filtering ensured that we did not consider any reads that 
aligned to both human and mouse genomes. To get human aligned 
reads, we filtered for the hg38 prefix in the reads’ chromosome name.

Defining TFBSs under ChIP-seq peaks
We first selected for ChIP-seq peaks that do not overlap with ENCODE 
blacklist regions, and we considered all peaks except the ones on 
chromosome Y. We then used FIMO (Find Individual Motif 
Occurrences) (62) with parameters “--max-stored-scores 10000000 --oc 
<output-directory> <motif-file> <fasta-file>” to scan for motifs on 
sequences underlying ChIP-seq peaks. In case of overlapping peaks in 
50-bp span, we keep the motif with higher FIMO score. The final num-
ber of motifs under ChIP-peaks used for TFs is tabulated in table S3.

cfDNA length distribution clustering
Length distribution of mapped cfDNA fragments to a TFBS is esti-
mated by “density” function in R with a smoothing bandwidth of 3 
at 100 equally spaced points (n = 100) between 35 and 250 bp. Clus-
tering of estimated cfDNA length distribution at individual sites was 
performed using “kmeans” function in R with the following param-
eters: centers = 6, iter.max = 250, and nstart = 20. A cluster is visually 
represented by the mean of fragment length distributions of sites in 
that cluster. Weighted length of each cluster was calculated by mul-
tiplying fragment length to its normalized frequency. Clusters 1 to 6 
were assigned by ranking the clusters by their weighted length.

Mapping cfDNA length class to TFBS and its flank
Genome-wide cfDNA read density (bigwig) was generated for short 
(<80 bp) and nucleosomal-sized fragments (130 to 180 bp). First, a 
bedgraph (coverage of bases genome-wide; no normalization per-
formed) file was generated using bedtools (63) genomecov utility 
with the command line option “-bga,” and then the bedgraph file 
was converted to bigwig using kent tools “bedGraphToBigWig” (64). 
While creating the bigwig file, we considered the cfDNA fragment 
center ± 30 bp (if fragment is >60 bp). Bigwig is mapped to TFBS ± 
1 kb using pyBigWig module from deeptools (65), and then enrich-
ment over mean (E.O.M.) is calculated. E.O.M. is smoothed using 
the Savitzky-Golay filter (59) available as a SciPy (60) method 
“signal.savgol_filter” with parameters window_length  =  51 and 
polyorder = 3.

ChIP-seq score calculation sites in cfDNA length clusters
For a TFBS in a given cluster, log2 of mean fold enrichment over 
control was calculated for TFBS ± 300 bp. pyBigWig module from 
deeptools (65) was used to map signal from bigwig file to defined 
genomic regions.
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MNase signal mapping to CTCF sites
MNase data from ENCODE (9) were mapped to CTCF motif center 
± 1 kb. E.O.M. and smoothing were performed similar to how it was 
done for cfDNA length class heatmaps (see the “Mapping cfDNA 
length class to TFBS and its flank” section).

V plots
For CTCF sites in cfDNA length clusters 1 and 2, cfDNA fragment 
centers were mapped to the CTCF motif center ± 500 bp. The total 
number of cfDNA centers of a given length is plotted against the 
distance of the fragment centers from the CTCF motif center.

CUT&RUN score calculation
CUT&RUN score has been calculated as the read density in regions 
spanning CUT&RUN peak summit ± 50 bp.

Defining significant sites and specific sites
cfDNA length clusters that have significantly higher binding scores 
(ChIP scores for CTCF, PU.1, and LYL1 and CUT&RUN scores for 
ER and FOXA1) compared to cluster 6 are considered significant, 
i.e., overall, sites in these clusters have stronger binding strength 
inferred from TF binding experiments compared to cluster 6. Spe-
cific sites are identified by subtracting significant sites of one sam-
ple from significant sites from another sample. In the case of disease 
state detection analysis, i.e., healthy versus cancer, cancer-specific 
sites (CSSs) and healthy-specific sites (HSSs) were defined. CSSs for 
ER, for example, are defined by subtracting sites in healthy plasma 
(IH02) (17) significant clusters 1 and 2 from UCD65 clusters 1 to 4. 
Similarly, HSSs for ER are defined by subtracting sites from UCD65 
clusters 1 to 4 from IH02 clusters 1 and 2. In the case of cancer state 
detection analysis, i.e., separating tumor subtypes (UCD65 versus MCF7, 
UCD4 versus UCD65, and UCD4 versus MCF7) using tumor TFBSs, 
tumor-specific sites were defined by a similar approach. We did not 
observe enrichment at FOXA1 binding sites in UCD4 dataset; 
hence, tumor-specific sites were not defined for FOXA1 in UCD4.

RNA-seq analysis
We used published RNA-seq datasets (40). We used Salmon (66) with 
hg38 release 95 transcripts. We first generated the transcriptome 
indices with the command “salmon index -t Homo_sapiens.GRCh38.
cdna.all.fa -i salmon_index.” We then generated TPM table for MCF7 
24 hours and UCD65 using the following command: salmon quant -i 
salmon_index/ -p 8 -l IU -r <sample>.fastq.gz -o quants/<sample>. 
For UCD4 (paired-end RNA-seq data), we used the following com-
mand: “salmon quant -i salmon_index/ -p 8 -l IU -1 ucd4.fq1.trimmred.
fastq.gz -2 ucd4.trimmed.fastq.gz -o quants/ucd4.”

Dilution analysis
Disease detection
In silico patient data were generated by diluting healthy sample 
(IH02) (17) with different fractions of UCD65 cfDNA. For each 
dilution level, 100 in silico patient datasets were generated by ran-
domly sampling reads from IH02 and UCD65 datasets at the ratio 
defined by the dilution level. For a given cancer/healthy-specific 
binding site, the TF binding score was calculated as the ratio of the 
short fragment coverage in (<80 bp) TFBS ± 50 to the coverage in 
TFBS ± 1 kb. Reference TF binding score is calculated just in healthy 
state, and for each in silico patient dataset, scores are calculated in 
the same fashion. Score (used in Fig. 6C) for CSSs was calculated 

as the difference between patient and healthy states (gain in score), 
but for HSSs, the sign was reversed (loss in score). T test was per-
formed on Score values from all sites (healthy-specific + cancer- 
specific) to reflect how many SDs away the scores are from the 
healthy reference.
Cancer state detection
For each xenograft (UCD4, UCD65, and MCF7) model, 100 in silico 
patient data were generated by diluting healthy plasma (IH02) with 
different fractions of ctDNA. For each of three comparisons of xeno-
graft models, the following were calculated (using UCD65 versus 
MCF7 as an example): (i) TF binding scores at tumor subtype–specific 
sites using UCD65 and MCF7 in silico patient data, respectively, and 
(ii) calculated Score for UCD65-specific sites by subtracting scores 
of MCF7 dilution from UCD65 dilution. Similarly, Score values 
for MCF7-specific sites were calculated by subtracting scores of UCD65 
dilution from MCF7 dilution, and (iii) calculated t statistics on 
Score using “ttest_1samp” function from scipy.stats module (60) 
with expected value in null hypothesis = 0.

TCGA ATAC-seq and expression analysis
FPKM (Fragments Per Kilo Base per Million mapped fragments) files 
for each cohort were downloaded from the TCGA website. FPKM 
for a gene was converted to TPM using the following formula

  TPM( Gene  i   ) =   FPKM( Gene  i  )  ───────────  
 ∑ i=1  N   FPKM( Gene  i  )

   *  10   6   

where N is the total number of genes found in the FPKM table.
ATAC insert bigwig files from Corces et al. (48) were used to 

map ATAC signal around TF sites (peak ± 150 bp).

Classifying TCGA BRCA tumors as MCF7- or UCD65-like
From cfDNA-inferred MCF7- and UCD65-specific ER CUT&RUN 
sites (Fig. 6A, ER UpSet plot), we selected the subset of sites with 
ERE (Estrogen Response Element). We found a total of 1603 EREs 
specific to MCF7 and 2320 for UCD65. For each TCGA BRCA sample, 
we first calculated the average ATAC enrichment score (mean signal 
in ERE ± 150 divided by the mean signal in ER ± 1 kb) for MCF7- 
and UCD65-specific sites. We then Z-scaled MCF7- and UCD65- 
specific enrichment scores separately across cohorts and subtracted 
MCF7-specific Z scores from the UCD65-specific scores to define a 
Z score for each cohort. A negative Z score indicates MCF7-like 
tumor, whereas a positive Z score indicates a UCD65-like tumor 
based on accessibility at ER binding sites.

Survival analysis
We collected “days_to_last_follow_up” and “days_to_death” as well 
as “vital_staus” data from TCGA for 59 breast cancer cohorts with 
ATAC-seq data and who had PAM50 (Prediction Analysis of Micro-
array 50) classification other than “Basal.” We assigned a label of “1” 
for patients with “Alive” status, and “2” for patients with “Died” status. 
We replaced the days_to_last_follow_up value with days_to_death 
for Died status. For survival analysis based on ESR1 expression, we 
formed two groups based on median ESR1 expression (88.256).

Cancer versus healthy and breast cancer versus non–breast 
cancer prediction analysis
HSSs and CSSs were ordered by their binding strength inferred 
from ChIP (motif center ± 300 bp; for PU.1, LYL1, and CTCF) or 
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CUT&RUN (summit ± 100 bp; for ER and FOXA1) and grouped in 
a bin of size 250 to define TF features. cfDNA-inferred binding 
score at TF features is defined by the following formula

  Binding Score  (feature)  sample   =   
 ∑ i=1  250   #  short cfDNA  sample   fragments in  Site  i   ± 50 bp

    ─────────────────────────────    
 ∑ i=1  250   #  short cfDNA  sample   fragments in  Site  i   ± 1 kb

    

To identify what TF features are class specific (for example, 
class1 – cancer and class2 – healthy), we defined a Z-score metric 
using the following formula

   Z  feature   =   
Mean  ( Binding score  feature  )  class1   − Mean  ( Binding score  feature  )  class2  

     ─────────────────────────────────────     
[SD  ( Binding score  fearure  )  class1   + SD  ( Binding score  feature  )  class2   ] / 2

    

where SD stands for standard deviation. Features with ∣Zfeature∣ > 1 
were selected and, depending on the sign, were annotated as class1 
specific (+ve) or class2 specific (−ve). Enrichment of a TF in particular 
category (for example, healthy specific) was calculated by abundance 
of the TF features as log2 (observed frequency/expected frequency).

To predict a class (breast cancer or non–breast cancer) for a 
cfDNA sample, the leave-one-out cross-validation approach was 
adopted, where the cfDNA sample of our interest was kept away during 
the feature selection process described above. Each sample was then 
assigned a single score by subtracting the sum of binding scores of 
features with negative Z scores (Zfeature < −1) from the mean of fea-
tures with positive Z scores (Zfeature > 1) and then dividing by the 
total number of features (∣Zfeature∣ > 1). For the left-out sample, 
distances from the median of two classes were calculated and as-
signed the class label with closest distance.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm4358

View/request a protocol for this paper from Bio-protocol.
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