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Abstract: Pancreatic cancer has a low survival rate and has limited therapeutic options due to the
peculiarity of the tumor tissue. Cancer nanotechnology provides several opportunities to resolve
such difficulties as a result of the high surface-to-volume ratio of nanostructures. Peptide-drug
nanocomplexes have proved to have immense potential in anticancer activity against pancreatic
cancer cells. Thus, in the present study apamin (APA) and alendronate sodium (ALS) were combined
to form nanocomplexes (APA-ALS-NC) against pancreatic cancer cells. Optimization of ALS, incu-
bation time, and sonication time in terms of particle size of the nanocomplex was carried out. The
optimized formulation was evaluated for anticancer activities in pancreatic cancer cells (PANC-1
cells). A Box-Behnken design using ALS, incubation time, and sonication time as independent
factors and particle size as the response was chosen to optimize the APA-ALS-NC formulation. The
optimized APA-ALS-NC had a particle size of 161.52 ± 8.4 nm. The evaluation of APA-ALS-NC
in PANC-1 cells was carried out using various in vitro tests. The IC50 values were determined by
MTT assay and found to be 37.6 ± 1.65, 13.4 ± 0.59, and 1.01 ± 0.04 µg/mL for ALS, APA, and
APA-ALS-NC, respectively. The higher cytotoxicity activity of APA-ALS-NC was confirmed from
the higher percentage of cells in the necrosis phase (apoptosis study) and the G2-M phase (cell cycle
study) compared to that of ALS and APA. While the loss of mitochondrial membrane potential was
less for APA-ALS-NC, the levels of IL-1β, TNF-α, caspase-3, ROS, IL-6, and NF-kB showed that
APA-ALS-NC can significantly enhance apoptosis and cytotoxicity in PANC-1 cells. Moreover, Bax
(10.87± 1.36), Bcl-2 (0.27± 0.02), and p53 (9.16± 1.22) gene expressions confirmed that APA-ALS-NC
had a significant apoptotic effect compared to ALS and APA. In summary, the APA-ALS-NC had a
more significant cytotoxic effect than ALS and APA. The results of the present study are promising
for further evaluation in pre-clinical and clinical trials for arriving at a successful therapeutic strategy
against pancreatic cancer.
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1. Introduction

Pancreatic cancer has emerged to be one of the leading causes of cancer-associated
mortality and it has a distressing 5-year survival period [1]. The availability of few suc-
cessful therapeutic approaches and its inoperability makes pancreatic cancer more serious
than other cancers [2]. The major hurdle in drug therapeutics in pancreatic cancer is the
restricted blood supply. This poses major concerns in drug targeting to pancreatic cancer
cells [3]. Pancreatic cancer cells, however, are able to adjust themselves to hypoxia and they
depend less on blood vessels. Moreover, the adjacent cancer stem cells also cause hindrance
to chemotherapy. These worsen the scenario and reduce the probability of successful
therapeutics. Thus, systemic delivery of chemotherapeutic agents cannot be effective and
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some advanced therapeutic approaches are needed. Targeting the metabolic pathways and
the presence of an acidic microenvironment can be considered as opportunities for the
development of advanced drug delivery systems. Surgery, radiation, and chemotherapy
are the present treatment strategies for pancreatic cancer [4].

Targeting drugs to pancreatic cancer could offer higher efficacy and reduced toxicity.
Several approaches can be tried to target pancreatic cancer [5]. Targeting transmembrane
receptor proteins, such as EGFR, insulin-like growth factor 1 receptor (IGFR), and vascular
endothelial growth factor (VEGF) receptor, is one of these [5,6]. Overexpression of such
receptors in pancreatic cancer is an advantage for drug targeting. Targeting the RAS
signaling pathway is yet another approach but the compensatory mechanisms and toxicities
are some limitations [7]. Meanwhile, targeting the acidic tumor microenvironment is a
widely reported strategy for tumor-targeted delivery. This approach has been tried for
pancreatic ductal adenocarcinoma [8]. Targeting cancer stem cells and DNA damage repair
systems are two other promising approaches still under evaluation [5].

Peptide-mediated pancreatic-cancer targeting and imaging have emerged significantly
in recent times [9,10]. Apamin (APA), a peptide found in bee venom (apitoxin), has been
used in targeted drug delivery [11]. APA has a plethora of pharmacological actions which
could be tailored for therapeutic applications [12]. In addition, the cytotoxic activity of
bee venom components is also reported [13]. Meanwhile, alendronate sodium (ALS) is a
bisphosphonate that can be used as both a therapeutic agent and targeting moiety. The
cytotoxicity of ALS could be utilized successfully [14,15]. ALS is particularly useful for
bone-targeted delivery of drugs [16]. Importantly, bisphosphonates have demonstrated an
anti-angiogenic effect and induction of apoptosis in several cancer cells in vitro [17]. Fur-
thermore, bisphosphonates are considered potential adjutants for tumors in the digestive
system [18]. Among the bisphosphonates, nitrogen-containing bisphosphonates have better
anti-tumor effects by inhibition of protein prenylation and adversely affecting cell function
and survival [19]. Meanwhile, among the nitrogen-containing bisphosphonates, ALS alone
has proven cofilin downregulation activity [20]. Downregulation of overexpressed cofilin in
pancreatic cancer cells has been established to be a promising strategy [21,22]. In addition,
ALS has sensitization action in pancreatic cells resulting in cell death [23]. Thus, ALS was
chosen in the present study.

Cancer nanotechnology provides several opportunities to overcome present hurdles
in cancer chemotherapeutics. The high surface-to-volume ratio of nanostructures provides
several advantages as a drug carrier. Nanoparticles, nanotubes, nanovesicles, nanocapsules,
nanoemulsions, nanodots, and nanowires are some of the nanostructures studied for cancer
therapeutics and imaging [24]. Meanwhile, drug nanocomplexes can be considered as a
special system of nanocarrier wherein the drug is conjugated or attached to a carrier part.
The carrier molecule can be polymer, lipid, peptide, or even DNA [25–28]. Interestingly,
peptide-drug nanocomplexes have been shown to have significant anticancer activity
including against pancreatic cancer cells [29]. Nevertheless, several parameters determine
the efficacy and success of the drug nanocomplexes, and optimization of these formulation
parameters is required for the success of this therapeutic strategy against pancreatic cancer.

The application of statistical techniques through the design of experiments has been
widely used for the optimization of pharmaceutical processes and formulations. This
significantly reduces the time and effort in reaching an optimum formula with satisfactory
and reliable performance [30]. In the case of nanocomplexes, optimization of particle
size is very important as it has a direct relation to the tumor-cell uptake and targeting
efficacies [31]. Therefore, the parameters that can influence the particle size significantly
need to be optimized.

The present study aimed to formulate nanocomplexes using APA and ALS (APA-ALS-
NC) against pancreatic cancer cells. Optimization of ALS, incubation time, and sonication
time in terms of particle size of the nanocomplex was carried out. The optimized formula-
tion was evaluated for anticancer activities in pancreatic cancer cells (PANC-1 cells).
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2. Results and Discussion
2.1. Formulation and Optimization of APA-ALS-NC

Hydrophobic ion-pairing has been widely tried for ALS for the preparation of nanocar-
riers. The process involves the interaction of charged hydrophilic molecules (ALS) and
oppositely charged molecules with hydrophobic groups (peptides and proteins). The
resultant complex will precipitate in aqueous media as a nanostructure [32,33]. Such a
hydrophobic ion-pairing complex formation can occur between ALS and APA resulting
in the formation of APA-ALS-NC. Here, negatively charged alendronate can attach to
positively charged groups of strongly basic APA [33,34]. The formulation and optimization
of APA-ALS-NC were carried out using a three-factor, three-level Box-Behnken design
(BBD). The responses obtained for various APA-ALS-NC formulation trials are presented
in Table 1. The design predicted values were found to be in good agreement with the
observed values.

Table 1. The responses obtained (observed and predicted values) for various APA-ALS-NC formulation trials.

Run

Independent Factors Dependent Factor

Factor A:
ALS Amount (mM)

Factor B:
Incubation Time

(min)

Factor C:
Sonication Time

(min)

Response 1:
Mean Particle Size (nm)

Observed Predicted

1 1 50 5 192 190.5

2 5.5 90 5 342 334.5

3 1 90 3 218 227.0

4 10 10 3 389 380.0

5 5.5 50 3 321 319.3

6 10 50 1 421 422.5

7 1 50 1 191 186.0

8 5.5 50 3 319 319.3

9 5.5 50 3 318 319.3

10 5.5 10 1 298 305.5

11 1 10 3 176 173.5

12 10 50 5 363 368.0

13 10 90 3 432 434.5

14 5.5 10 5 265 269.0

15 5.5 90 1 352 348.0

The analysis of variance (ANOVA) data of the model is provided in Table 2. The
p-values confirmed that ALS (Factor A), incubation time (Factor B), and sonication time
(Factor C) had a significant influence on the particle size of APA-ALS-NC formulations. In
addition, the interaction terms AA and AC were also found to significantly influence the
particle size. The R-squared value (99.6052%) and the adjusted R-squared values (98.8947%)
were observed for the design data.
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Table 2. ANOVA data for particle size of APA-ALS-NC formulations.

Source Sum of Squares Degrees of
Freedom Mean Square F-Ratio p-Value

A: ALS (mM) 85,698.0 1 85,698.0 1133.07 0.0000

B: Incubation time
(min) 5832.0 1 5832.0 77.11 0.0003

C: Sonication time
(min) 1250.0 1 1250.0 16.53 0.0097

AA 1338.78 1 1338.78 17.70 0.0084

AB 0.25 1 0.25 0.00 0.9564

AC 870.25 1 870.25 11.51 0.0194

BB 44.1603 1 44.1603 0.58 0.4793

BC 132.25 1 132.25 1.75 0.2433

CC 269.391 1 269.391 3.56 0.1178

Total error 378.167 5 75.6333 – –

Total (corr.) 95,795.7 14 – – –

The polynomial equation suggested by the software for PS is provided in Equation (1).
The regression coefficients for the independent factors implied that all these selected
factors influenced the particle size. The value of the regression coefficient was highest
for ALS (38.1908) compared to that for incubation time (0.23559), and sonication time
(11.9826). Thus, the influence of the independent factors on particle size was in the order
ALS > incubation time > sonication time.

Size = 119.695 + 38.1908A + 0.23559B + 11.9826C− 0.940329A2 + 0.00138889 AB−1.63889 AC+0.00216146B2+
0.071875 BC−2.13542C2 (1)

The Pareto chart (Figure 1a) indicated significant effects of ALS, incubation time, and
sonication time on particle size. The chart showed positive effects for ALS and incubation
time and negative effects for sonication time. Thus, higher levels of the factors ALS
and incubation time increase the particle size whereas higher levels of sonication time
decrease it. These observations were in consensus with the inferences obtained from
Equation (1). This behavior was confirmed from the main effects plot too (Figure 1b). The
increase in particle size of the drug-lipid conjugate on increasing the drug level has been
demonstrated earlier [35]. Such an effect can be also anticipated in the case of APA-ALS-
NC. In the case of preparation of APA-ALS-NC, incubation time is similar to reaction
time offered for the attachment of ALS (drug) to APA. Increasing reaction time increases
the conjugation process, i.e., the attachment of drug [36]. Thus, increasing incubation
time increases the chance for attachment of more drug molecules and subsequent increase
in particle size. Therefore, an increase in the incubation time can increase the particle
size. Meanwhile, the reduction of nanoparticle size on increasing the sonication time has
already been demonstrated [37]. Thus, the observation of the present study can be justified.
Meanwhile, the statistically significant interaction effect of AA and AC on particle size was
also confirmed. Further, the interaction effects of AA and AC were found to be negative
with decreasing the particle size. The iso-value curves in the contour plot were more
dependent on the ALS confirming the observations of the main effects plot (Figure 1c). The
significant elevation of the response surface (Figure 1d) on increasing the levels of ALS was
also seen.
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The optimum formula of APA-ALS-NC suggested by the software is shown in Table 3.
The particle size, size distribution, and zeta potential for the optimum APA-ALS-NC
formula were 161.52 ± 8.4 nm, 0.234 ± 0.01, and 29.67 ± 1.90 mV, respectively (Figure 2A).
The actual particle size of optimized formulation determined by TEM was less than 200 nm
(Figure 2B). The size distribution and zeta potential value indicate the homogenous size
distribution and better stability of formulation.

Table 3. Optimum formula for the APA-ALS-NC formulation.

Factor Low High Optimum

ALS (mM) 1.0 10.0 1.00171

Incubation time (min) 10.0 90.0 10.0

Sonication time (min) 1.0 5.0 4.99857

2.2. In Vitro Cell Line Studies of APA-ALS-NC in Pancreatic Cancer Cells (PANC-1 Cells)
2.2.1. IC50 Determination Using MTT Assay

The MTT assay was carried out in PANC-1 cells to determine the IC50 value. The
IC50 values were 37.6 ± 1.65, 13.4 ± 0.59, and 1.01 ± 0.04 µg/mL for ALS, APA, and
APA-ALS-NC, respectively. Thus, the nanocomplex was found to be significantly more
cytotoxic (p-value < 0.05) than ALS and APA individually.
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2.2.2. Apoptotic Activity

Apoptosis, an important cellular process, results in cytotoxicity. Thus, screening of
apoptotic activity is essential in the development of anticancer agents. It is also useful in
the evaluation of drug delivery systems. The results of apoptotic studies with the samples
are provided in Figure 3. The results show that ALS results in a greater percentage of
cells in the late phase but without a statistically significant difference (p-value > 0.05) with
APA-ALS-NC. Meanwhile, APA-ALS-NC results in a significantly (p-value < 0.05) greater
percentage of cells in all other phases. The results confirmed the higher necrotic effect
of APA-ALS-NC compared to ALS and APA. The effect of APA was significantly less
compared to ALS and APA-ALS-NC in terms of percentage of cells at all phases.
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2.2.3. Cell Cycle Analysis

The results of cell cycle analysis (Figure 4) demonstrated significant apoptotic activity
of APA-ALS-NC. The higher percentage of cells in the G2-M and pre-G1 phases can be
considered as an indication of the higher potential of the chemotherapeutic agent to induce
apoptosis. In the case of the pre-G1 phase, the ALS and APA-ALS-NC samples showed a
comparable percentage of cells. A similar apoptotic effect of ALS has been demonstrated
in a previous study [38]. In the reported study, anti-proliferative and pro-apoptotic effects
of ALS were evident. However, the percentage of cells in the G2-M phase was significantly
higher (p-value < 0.05) for APA-ALS-NC. Thus, a significant increase in apoptotic activity
was observed after the formulation of ALS to APA-ALS-NC.
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2.2.4. Mitochondrial Membrane Potential (MMP)

A change in MMP can occur, on exposure to apoptotic agents, due to the damage of the
mitochondrial membrane [39]. This change can be measured for the purpose of comparison
of cytotoxicity of samples. The results of the study of MMP after exposure to ALS, APA,
and APA-ALS-NC samples are shown in Figure 5. Surprisingly, the results showed that
APA-ALS-NC caused the smallest percentage loss in MMP. The highest percentage loss
in MMP was caused by ALS. It has been demonstrated that bisphosphonates can inhibit
mitochondrial adenine nucleotide translocase and subsequently influence MMP [40]. This
might have contributed to the higher effect of ALS on MMP compared to other samples.
APA also had a significant effect but less than that of ALS. Compounds such as APA have
been reported to disrupt the mitochondrial membrane and therefore this observation can
be justified [41]. However, the nanocomplexation of ALS and APA resulted in a lower
influence on MMP.
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2.2.5. Determination of Marker Molecules by ELISA

The results of ELISA studies for the estimation of marker molecules are shown in
Figure 6. These studies were carried out in order to ascertain the influence of the ALS, APA,
and APA-ALS-NC samples in comparison to control on IL-1β, TNF-α, caspase-3, ROS, IL-6,
and NF-kB.

IL-1β favors tumor growth and progression and thus a reduction in the concentration
of IL-1β can be considered as the ability to suppress tumor growth and progression [42]. It
was therefore inferred that APA-ALS-NC has significant (p-value < 0.05) tumor inhibition
activity compared to all other samples (Figure 6a). The activities of APA and ALS were
without any significant difference (p-value > 0.05). Thus, the formulation of ALS to APA-
ALS-NC can be considered to enhance the suppression of tumor growth and progression by
inhibiting IL-1β. TNF-α induces cytotoxicity and the production of higher levels of TNF-α
can be considered as an indication of cytotoxicity of samples [43]. Thus, a significantly
(p-value < 0.05) higher level of TNF-α produced by APA-ALS-NC can be attributed to its
high cytotoxicity compared to ALS and APA samples (Figure 6b). Similar to that observed
for IL-1β, the activities of APA and ALS on TNF-α were similar (p-value > 0.05). In-
creased levels of caspase-3 are indicative of higher cytotoxicity [44]. Thus, the significantly
(p-value < 0.05) higher level of caspase-3 after APA-ALS-NC treatment compared to other
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samples indicated enhancement of cytotoxicity of ALS after formulation to APA-ALS-NC
(Figure 6c).
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In this study, total ROS was detected using antibodies. The ROS levels (Figure 6d)
show that APA and APA-ALS-NC have comparable effects (p-value > 0.05). APA can
augment ROS production and this might have contributed to the higher ROS levels
on APA and APA-ALS-NC treatments [45]. However, their ROS levels were signifi-
cantly (p-value < 0.05) higher than those produced by ALS. Meanwhile, the levels of IL-6
were significantly (p-value < 0.05) different for all the samples and followed the order
control > ALS > APA > APA-ALS-NC (Figure 6e). Low levels of IL-6 increase the cytotox-
icity of TNF-α [46]. Thus, samples that can reduce the expression of IL-6 can provide a
higher cytotoxic effect. Therefore, APA-ALS-NC with the lowest expression of IL-6 could
be expected to have higher toxicity than the other samples. In the case of NF-kB, low levels
inhibit tumor growth and progression. Thus, samples that reduce NF-kB level favors higher
cytotoxicity. The lowest level for NF-kB was observed for APA-ALS-NC (Figure 6f). This
reduction in NF-kB level was statistically significant (p-value < 0.05) compared to all other
samples. The ability of APA to reduce the expression of NF-kB is already reported [47], but
the nanocomplex was able to reduce the level of NF-kB more significantly than APA.
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2.2.6. Estimation of Bax, Bcl-2, and p53 Gene Expressions Using RT-PCR

Determination of Bax and Bcl-2 gene expressions are useful in monitoring of apoptotic
ability of samples. High levels of Bax indicate apoptosis whereas low levels of Bcl-2 favor
apoptosis [48]. Bax expression was significantly higher (p-value < 0.05) for APA-ALS-NC
compared to other samples (Figure 7). The Bax expression produced by APA was more
than that produced by ALS. Nevertheless, a previous study reported a reduction in Bax
expression by APA [49]. However, such an influence was not observed in the present study.
In the case of Bcl-2 expression, APA-ALS-NC produced the lowest level corresponding
to the highest apoptosis (Figure 7). The molecular structure of APA is favorable for the
activation of p53. Thus, a higher effect of APA on p53 expression was expected. However,
the Bcl-2 expression was found to be more for APA than ALS. Such an enhancement of Bcl-2
expression by APA is already reported [49]. p53 transcription factor produces apoptosis
and higher expression can be considered favorable for apoptosis and cytotoxicity [50]. The
effect on p53 expression was in the order APA-ALS-NC > APA > ALS (Figure 7). However,
there was no significant difference (p-value < 0.05) in the p53 expression of samples treated
with ALS and APA. In addition, APA-ALS-NC showed the highest cytotoxicity potential.
Thus, the results of Bax, Bcl-2, and p-53 expressions confirmed that the formulation of ALS
to APA-ALS-NC using APA significantly enhanced the cytotoxicity.
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3. Materials and methods
3.1. Materials

Apamin (APA) was purchased from Sigma Aldrich (St. Louis, MO, USA), ALS was
gifted from SPIMACO from Riyadh, Saudi Arabia. All other chemicals used in the study
were of analytical reagent grade. The pancreatic cancer cell line (PANC-1) was procured
using a cell strain from the American Type Cultural Collection (ATCC). PANC-1 cells were
cultured in a DMEM medium supplemented with 10% fetal bovine serum (FBS), penicillin,
and streptomycin (Gibco, Thermo Fisher Scientific, Grand Island, NY, USA).

3.2. Formulation and Optimization of APA-ALS Nanocomplex (APA-ALS-NC)

ALS-APA nanocomplex formulation was prepared according to the Box-Behnken
design (Table 1). The design was generated and evaluated using Statgraphics software
(Statgraphics Technologies, Inc., The Plains, VA, USA). ALS concentration (mM, X1),
incubation time (min, X2), and sonication time (min, X3) were considered as independent
variables whereas particle size was considered as a dependent variable. The numerical
optimization of APA-ALS-NC was done by setting a minimum value for particle size as
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the goal. The optimized APA-ALS-NC was prepared using optimized formula having ALS
(1.00171 mM) and APA (1 mM), placed in 20 mL of 0.01 M phosphate buffer 7.4 pH levels
before being whirled for 2 min for dissolution. The incubation and sonication time were
optimized as 10 min and 5 min, respectively.

Determination of Particle Size, Size Distribution, and Zeta Potential

The particle size, size distribution, and zeta potential of APA-ALS-NC were deter-
mined after 10 times dilution of the mixed solutions in the same buffer using Zetasizer
Nano ZSP (Nano ZSP, Malvern, Worcestershire, UK). Transmission electron microscopy
(TEM) analysis was performed and examined under TEM (JEOL JEM-HR-2100, JEOL, Ltd.,
Tokyo, Japan).

3.3. In Vitro Cell Line Studies of APA-ALS-NC in Pancreatic Cancer Cells (PANC-1 Cells)
3.3.1. IC50 Determination Using MTT Assay

The IC50 determination was done in PANC-1 cell lines by MMT assay. The cells in
96-well plates (5 × 103 cells/well) were permitted to attach by overnight incubation. The
cells were subjected to treatment with APA-ALS-NC at different concentrations for 4 h at
37 ◦C. The supernatant was then removed and 100 µL of DMSO was used to solubilize
the formazan formed after the sample treatment. The sample absorbance at 570 nm was
determined in a microplate reader. In addition to the sample with ALS, APA and control
(without any treatment) treatments were also carried out. The IC50 values were then
determined (n = 3) and reported.

3.3.2. Apoptotic Activity

The study was carried out following a previously reported method in PANC-1
cells [51]. The cells were subjected to incubation for 24 h with the IC50 concentration of formu-
lation samples (control, ALS, APA, and APA-ALS-NC) in a 6-well plate (1 × 105 cells/well).
After sample treatment, the PANC-1 cells were centrifuged and separated. Thereafter, the
cells were washed using phosphate-buffered saline and later re-suspended in 500 µL of 1X
binding buffer. The staining of the PANC-1 cells was done using a commercially available
kit (Annexin v-FITC/PI kit, K101-100, Biovision Inc, Milpitas, CA, USA) and following
the prescribed procedure. The cells were quantified by flow cytometry (FACS Calibur, BD
Bioscience, San Jose, CA, USA) and reported.

3.3.3. Cell Cycle Analysis

Cell cycle analysis was carried out by flow cytometry. The procedure described for
apoptotic activity was used for the cell cycle analysis too.

3.3.4. Mitochondrial Membrane Potential (MMP)

MMP was determined by employing an assay kit with tetramethylrhodamine methyl
ester (TMRM) as the probe. The cells at a density of 1.5 × 104 cells/well were obtained in a
96-well plate and after 24 h, they were incubated with samples (ALS, APA, and APA-ALS-
NC) in 300 µL DMEM medium (supplemented with 10% FBS and 1% antibiotics). After
sample treatment, the medium was replaced with the probe solution and incubated in
dark. After replacing the probe solution, the live-cell imaging buffer was added and flow
cytometry was carried out [52].

3.3.5. Determination of Marker Molecules by ELISA

Interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), caspase-3, reactive oxy-
gen species (ROS), interleukin-6 (IL-6), and nuclear factor kappa B (NF-kB) were the
marker molecules studied. The analysis of molecular markers was done by ELISA kit for
the biomarker. Briefly, PANC-1 cells (5 × 104 cells/well in a 96-well plate) were treated
with samples (ALS, APA, and APA-ALS-NC) and allowed to undergo equilibration at
ambient temperature. Later, the reagent (100 µL) was added to each well containing 100µL
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of the medium. After mixing for 30 s at 500 rpm, the samples were kept aside at ambient
temperature for 30 min. Finally, IL-1β (R&D Systems, Inc. Minneapolis, MN, USA), TNF-α
(Abcam, Waltham, MA, USA), caspase-3 (Invitrogen Corporation, Camarillo, CA, USA),
ROS kit (ROS ELISA kit, Amsbio, Abingdon, UK), IL-6 (R&D Systems, Inc. Minneapolis,
MN, USA), and NF-kB (MyBioSource, Inc, San Diego, CA, USA) were estimated using the
corresponding ELISA kit.

3.3.6. Estimation of Bax, Bcl-2, and p53 Gene Expressions Using RT-PCR

Bax, Bcl-2, and P53 gene expressions (mRNA) were analyzed in all samples by RT-
PCR [53]. The Qiagen RNA extraction/BioRadsyber green PCR MMX kit was used in the
study. A Rotorgene RT- PCR system was used for reading. The system was equipped with
Rotor-Gene 1.7.87 software. The sequences of the primers used for the study are shown in
Table 4.

Table 4. Sequences of the primers used in real-time polymerase chain reaction (RT-PCR).

Bax F 5′-TGGCAGCTGACATGTTTTCTGAC-3′

Bax R 5′-TCACCCAACCACCCTGGTCTT-3′

Bcl-2 F 5′-TCGCCCTGTGGATGACTGA-3′

Bcl-2 R 5′-CAGAGACAGCCAGGAGAAATCA-3′

p53 F 5′-GACGGTGACACGCTTCCCTGGATT-3′

P53 R 5′-GGGAACAAGAAGTGGAGAATGTCA-3′

GAPDH F 5′-AATGCATCCTGCACCACCAA-3′

GAPDH R 5′-GATGCCATATTCATTGTCATA-3′

3.4. Statistical Analysis

Statistical analysis was carried out to determine statistical significance by one-way
ANOVA followed by Tukey’s multiple comparison test and p-value less than 0.05 (p < 0.05)
was considered significant.

4. Conclusions

The nanocomplex using APA and ALS was prepared and optimized for particle size
using a Box-Behnken design. The optimum formula contained 1.00171 mg ALS. The
incubation time was 10 min and sonication time was 5.99857 min. The optimized APA-
ALS-NC had a particle size of 161.52 nm. Various in vitro cell line studies of APA-ALS-NC
were carried out in PANC-1 cells. The IC50 value of APA-ALS-NC was significantly lower
compared to that of ALS and APA samples. Furthermore, the apoptosis studies revealed a
higher necrotic effect of APA-ALS-NC compared to ALS and APA. The cell cycle analysis
confirmed the significant apoptotic activity of APA-ALS-NC. Nevertheless, the APA-ALS-
NC sample had the lowest effect on change in MMP. ALS produced the highest change
in MMP. The levels of biomarkers showed that APA-ALS-NC can significantly enhance
apoptosis and cytotoxicity in PANC-1 cells. Overall, the study results revealed that the
formulation of ALS to APA-ALS-NC using APA significantly enhances the cytotoxicity
towards PANC-1 cells.
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