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X-linked agammaglobulinemia (XLA) is an inborn error of immunity characterized by insufficient produc-
tion of immunoglobulins and lack of measurable antibody response to vaccines. The rise of novel infec-
tions limits the protective effect of immunoglobulin replacement in immunodeficient patients though.
While XLA patients are not expected to mount an antibody response to COVID-19 vaccination, it has been
demonstrated that XLA patients can mount a T-cell response to COVID-19 vaccines, similar to the influ-
enza vaccine. We present three patients with XLA who received an mRNA COVID-19 vaccine. One patient
demonstrated positive antibody response. Many XLA patients do not receive routine vaccinations due to
ongoing immunoglobulin replacement therapy and lack of native antibody production, but in addition to
T-cell response to vaccination, select XLA patients may mount a positive antibody response. Therefore,
COVID-19 vaccination should be encouraged for all XLA patients.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

X-linked agammaglobulinemia (XLA) was one of the first
identified inborn errors of immunity (IEI) characterized by defec-
tive B-cell development resulting in B-cell lymphopenia
(usually < 2 %) due to mutations in the Bruton tyrosine kinase
(BTK) gene on the X-chromosome [1]. This results in significantly
reduced levels of all immunoglobulins and ineffective specific anti-
body production. Milder mutations in BTK have been associated
with some residual function resulting in older age of diagnosis,
higher than expected immunoglobulin levels, and increased B cells
counts compared to other mutations considered more severe [2,3].
The primary treatment for XLA is immunoglobulin replacement,
either intravenous immunoglobulin (IVIG) or subcutaneous
immunoglobulin (SCIG), which offers protection against many
vaccine-preventable diseases with high titers, except for certain
viral antigens such as each yearly circulating influenza strain [4].
Antibody deficiencies are most commonly associated with risk of
bacterial sinopulmonary infections, but patients with XLA have
also demonstrated increased risk of viral infections, such as chronic
enterovirus meningoencephalitis [5]. While patients with XLA
typically do not mount significant antibody response to vaccina-
tion, it has been shown that they can produce normal virus-
specific T-cell responses to the inactivated influenza vaccine [6].
Due to the risk of vaccine associated illness, it is generally recom-
mended to avoid live vaccination in patients with XLA, and routine
inactivated vaccines are typically not given due to the lack of
response and ongoing treatment with immunoglobulin replace-
ment.[7] Yearly inactivated influenza vaccine is recommended in
virtually all patients with XLA due to the low antibody levels for
current influenza strains in the supplemental immunoglobulin
preparations.[4,7] Data on response to COVID-19 vaccination in
patients with immunodeficiency is growing, several case series
and studies have now been published demonstrating encouraging
results for humoral and cellular response to the vaccines in this
group.[8–10] We present 3 patients (one previously reported[8])
with XLA, to further demonstrate the effectiveness and hetero-
geneity of antibody response to COVID-19 vaccination in IEI. All
patients had no prior history of COVID-19 infection.

Patient case information was obtained from retrospective chart
review as part of an institutional review board approved study.

2. Case series

Patient #1 is 47-year-old male with XLA and bronchiectasis
receiving IVIG 40 g monthly. Current immunomodulation includes
hydroxychloroquine for chronic lower extremity rash likely
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consistent with erythema nodosum. The patient has a known
pathogenic hemizygous variant in BTK (c.763C > T, p.Arg255)
resulting in a premature stop codon. Flow cytometry demonstrated
absent CD19+ and CD20+ B-cells. Btk protein expression was
reduced in monocytes (patient’s MFI = 1.23, control MFI = 4.31),
consistent with XLA. His most recent immunoglobulin levels (on
IVIG) were IgG 1090 mg/dL, IgA < 1 mg/dL, and IgM < 5 mg/dL.
Two weeks following his second dose of Pfizer mRNA COVID-19
vaccination, in May 2021, SARS-CoV-2 spike antibodies were neg-
ative (<0.80 U/mL) as well as negative SARS-CoV-2 nucleocapsid
antibodies. See Table 1.

Patient #2 is a 44-year-old male with XLA and bronchiectasis on
IVIG 30 g every 3 weeks, with no additional immunomodulation.
This patient was previously reported in a case series on response
to COVID-19 vaccination in patients with immunodeficiency.[8]
He has a variant in the BTK gene (c.1657delA, p.Ser553Alafs*3) cre-
ating a frame shift starting at codon Ser553 and resulting in a pre-
mature stop codon. He demonstrated absent CD19+ and CD20+ B-
cells by flow cytometry and decreased Btk protein expression in
monocytes (patient’s MFI = 2.36, control MFI = 7.88). Most recent
immunoglobulin levels (on IVIG) were IgG 1060 mg/dL,
IgA < 1 mg/dL, and IgM < 5 mg/dL. SARS-CoV-2 spike (<0.40 U/
mL) and nucleocapsid antibodies were negative in March 2021,
>4 weeks after the second dose of the Pfizer mRNA COVID-19 vac-
cine. See Table 1.

Patient #3 is 64-year-old male with XLA on IVIG 45 g monthly,
on no additional immunomodulation. On flow cytometry, his abso-
lute CD19+ B-cell count was 1 cell/mcL and CD20+ B-cells are
essentially absent (0.12 %). Genetic testing revealed a missense
variant in exon 2 of the BTK gene (c.76A > G, p.Lys26Glu), encoding
the pleckstrin homology (PH) domain. Btk protein expression was
reported as present intracellularly in B-cells and monocytes, and
intracellular Btk protein expression appeared to be normal in
monocytes. This patient has a strong family history of XLA, with
diagnosis in 2 maternal cousins as well as his great-grandson.
The patient’s most recent immunoglobulin levels (on IVIG) were
IgG 896 mg/dL, IgA < 1 mg/dL, and IgM < 5 mg/dL. In April 2021,
Table 1
XLA Patient Characteristics and Response to mRNA COVID-19 Vaccination.

Patient # Age (yrs) Mutation in BTK Intracellular B
Protein Expres

1 47 c.763C > T, p.Arg255 ;
2 44 c.1657delA, p.Ser553Alafs*3 ;
3 64 c.76A > G, p.Lys26Glu Normal

Ab = antibodies.

Table 2
Response to COVID-19 Vaccination in Reported XLA Patients.

Paper Number of XLA patients Assessed Type

Oshiro et al [17] 1 Coro
Ponsford et al [18] 3 Astr
Shields et al [19] 9 Astr
Squire & Joshi [8] 1 Pfize
Hagin et al [9] 4 Pfize
Salinas et al [14] 6 Pfize
Bergman et al [15] 4 Pfize
Delmonte & Bergerson et al [16] 1 Mod
Pham et al [20] 1 Mod
van Leeuwen et al [10] 19 Mod

XLA = X-linked agammaglobulinemia; NA = not assessed; NR = not reported.

5300
2 weeks after 2 doses of Moderna mRNA COVID-19 vaccine, the
patient had evidence of antibody response to the vaccine with pos-
itive SARS-CoV-2 spike antibodies (118 U/mL) and negative SARS-
CoV-2 nucleocapsid antibodies (consistent with vaccination and
not prior infection). See Table 1.

3. Discussion

With the onset of the COVID-19 pandemic, many patients with
immunodeficiency have had significant concerns regarding risk of
infection, complications, mortality, as well as effectiveness of pro-
phylaxis and treatment strategies for COVID-19. Initially reported
cases of COVID-19 infection in patients with congenital agamma-
globulinemia suggested a mild course without significant compli-
cation but a more recent review of published cases of COVID-19
infection in XLA patients indicates that a cause for concern is not
unfounded.[11,12] Ponsford et al identified 28 XLA patients with
COVID-19 infection reported in the literature. Overall, 79 %
(22/28) were admitted to the hospital with median length of stay
of 22 days, 3 of which were admitted the intensive care unit. There
was 1 reported death which equated to a 4 % overall mortality rate.
[12].

Vaccination against COVID-19 infection has demonstrated dra-
matic effect on improving adverse outcomes, including hospital-
izations and deaths, in the US population overall.[13] While there
is less specific data on outcomes in patients with IEI, there has been
growing data on the response to COVID-19 vaccination in immun-
odeficient patients. As expected, majority with XLA have not pro-
duced measurable antibody responses to COVID-19 vaccination,
yet when assessed, almost all had positive T-cell response. Out-
comes of vaccination in XLA patients identified from literature
review are summarized in Table 2.[8,9,14–20] More recently, van
Leeuwen at al published the response to mRNA COVID-19 vaccina-
tion a cohort of adult patients with IEI. Nineteen patients with XLA
were included, 3 of which had positive antibody response.[10] Our
case series supports their findings, that certain subsets of XLA
patients may be able to produce a humoral, in addition to a cellular
tk
sion

Absolute B-cell Count
(cells/mcL)

SARS-CoV-2
Spike Ab
(U/mL)

SARS-CoV-2
Nucleocapsid
(Total Ab)

0 Negative (<0.80) Negative
0 Negative (<0.40) Negative
1 Positive (118) Negative

of Vaccine Received Number with Positive
Antibody Response (%)

Number with Positive
Cellular Response
(%)

naVac 0 (0 %) 1 (100 %)
aZeneca or mRNA 0 (0 %) NA
aZeneca or mRNA 0 (0 %) NR
r mRNA 0 (0 %) NA
r mRNA 0 (0 %) 4 (100 %)
r mRNA 0 (0 %) 5 (83 %)
r mRNA 0 (0 %) NA
erna mRNA 0 (0 %) NA
erna mRNA 0 (0 %) 1 (100 %)
erna mRNA 3 (15 %) 19 (100 %)
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immune response, due to residual B-cell function. While majority
of patients with XLA have classical features, there can be a hetero-
geneity in presentation and severity based on the BTK mutation.
[2,3] A known mutation in the BTK gene may not exclude the abil-
ity for patients with XLA to mount a positive antibody response to
vaccination. Btk protein expression may help differentiate those
with the ability to respond, as patient #3 who had normal intracel-
lular Btk expression in monocytes and who did mount a humoral
immune response, as compared to decreased Btk expression found
in patients #1 and #2.

While studies have demonstrated rising anti-SARS-CoV-2 anti-
bodies in commercially available immunoglobulin products[21],
it is unlikely that the results in patient #3 are due to spike antibod-
ies in differing lots or IVIG products. All three patients received
vaccination at the beginning of 2021 when COVID-19 vaccines first
became available to high-risk patients (betweenMarch-May 2021),
which would not have been enough elapsed time for vaccinated
plasma donors to contribute to the currently available IVIG at the
time. As the nucleocapsid antibodies were negative, this indicates
that the positive spike antibodies were not due to natural infection
antibodies either. It still remains unclear what antibody level is
needed for protection and whether passive immunity itself would
be enough to prevent infection, especially in the context of variant
strains. Our report provides additional support for the safety and
efficacy of mRNA COVID-19 vaccination in patients with XLA.
Therefore, COVID-19 vaccination should be encouraged in patients
with XLA.
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