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Abstract: There is substantial interest in mining neoantigens for cancer applications. Non-canonical
proteins resulting from frameshift mutations have been identified as neoantigens in cancer. We
investigated the landscape of non-canonical proteins in non-small cell lung cancer (NSCLC) and
their induced immune response in the form of autoantibodies. A database of cryptoproteins was
computationally constructed and comprised all alternate open reading frames (altORFs) and ORFs
identified in pseudogenes, noncoding RNAs, and untranslated regions of mRNAs that did not align
with known canonical proteins. Proteomic profiles of seventeen lung adenocarcinoma (LUAD) cell
lines were searched to evaluate the occurrence of cryptoproteins. To assess the immunogenicity,
immunoglobulin (Ig)-bound cryptoproteins in plasmas were profiled by mass spectrometry. The
specimen set consisted of plasmas from 30 newly diagnosed NSCLC cases, pre-diagnostic plas-
mas from 51 NSCLC cases, and 102 control plasmas. An analysis of LUAD cell lines identified
420 cryptoproteins. Plasma Ig-bound analyses revealed 90 cryptoproteins uniquely found in cases
and 14 cryptoproteins that had a fold-change >2 compared to controls. In pre-diagnostic samples,
17 Ig-bound cryptoproteins yielded an odds ratio ≥2. Eight Ig-bound cryptoproteins were elevated
in both pre-diagnostic and newly diagnosed cases compared to controls. Cryptoproteins represent a
class of neoantigens that induce an autoantibody response in NSCLC.

Keywords: noncanonical open reading frames; altORFs; neoantigens; autoantibodies; NSCLC

1. Introduction

There is an increasing appreciation of the role of humoral immunity in immune surveil-
lance, with findings of tumor infiltrating B lymphocytes being documented in numerous
cancers [1,2]. The B-cell response occurs early during tumor development, resulting in
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the production of autoantibodies against tumor antigens [3–5]. Several strategies have
been applied for the discovery of circulating autoantibodies in cancer, including the sero-
logical screening of cDNA expression libraries (SEREX) [6], recombinant arrays [7,8], and
phage-display libraries [9]. Tumor cell lysate-derived protein arrays have been utilized to
define autoantibody signatures [10,11]. A more global approach consists of utilizing mass
spectrometry to identify circulating antigen–antibody complexes.

Recent studies have demonstrated that eukaryotic transcripts may encompass non-
canonical alternate open reading frames (altORFs), resulting in proteins with altered subcel-
lular localization signals or different biological activities [12]. Additionally, some transcripts
contain short upstream open reading frames (uORFs) that have a well-described role in
translational regulation [13]. A recent report indicated that 6.5% of MHC-bound peptides
were derived from a non-canonical reading frame. These peptides originated from the
frameshifted translation of protein-coding transcripts, and the resulting peptides were
shown to be immunogenic to peripheral blood-derived mononuclear cells [14]. Another
study incorporated transcriptomics, ribosomal profiling, and mass spectrometry to elu-
cidate hundreds of shared and tumor-specific, non-canonical HLA-bound peptides [15].
A study of melanoma cell lines showed that the induction of IFNγ through depletion of
tryptophan contributes to the immune recognition of melanoma cells through an aberrant
peptidome [16]. However, to date, there have been no global searches for immunogenic
non-canonical proteins in cancer.

In prior studies, we identified autoantibody signatures in lung cancer from samples
collected at the time of diagnosis as well as samples collected one or more years preceding
diagnosis [17–19]. These signatures consisted of proteins and peptides derived from the
canonical ORFs. We hypothesized that, given widespread translational dysregulation in
cancer [20,21], novel proteins derived from altORFs, pseudogenes, intronic regions, and
other transcripts considered not to encode proteins represent a novel source of tumor
antigens that can elicit an immune response resulting in autoantibodies. We designate these
non-canonical proteins ‘cryptoproteins’. We first constructed a database of novel crypto-
proteins with no homology to the canonical human peptidome that could be identified
with a low false discovery rate using mass spectrometry-based proteomic analysis. We then
applied this approach to demonstrate the occurrence of cryptoproteins in lung adenocarci-
noma cell lines. Next, we identified circulating cryptoprotein–antibody complexes elevated
in plasma samples from newly diagnosed non-small cell lung cancer (NSCLC) patients as
well as plasma samples collected prior to diagnosis compared to controls.

2. Results

The cryptoproteome of human lung adenocarcinoma cell lines
Using our customized pipeline and cryptoDB, we evaluated the cryptoproteome

of 17 human lung adenocarcinoma cell lines previously profiled by mass spectrometry
(Supplemental Table S1) [22,23]. A total of 420 cryptoproteins were identified with PSM ≥ 5
and that were quantifiable in two or more cell lines. The abundance of cryptoproteins was
not associated with prevalent (KRAS, EGFR, KEAP1, LKB1, TP53) mutations commonly
observed in lung adenocarcinomas (Figure 1A) [24]. Of the 420 quantified cryptoproteins,
183 (43.6%) were derived from protein-coding genes, 101 (24.0%) from retained introns, 46
(11.0%) from processed transcripts, 32 (7.6%) from antisense RNAs, 25 (6.0%) transcripts
flagged as undergoing nonsense mediated decay, 14 (3.3%) from long intergenic noncoding
RNA (lincRNA), 6 (1.4%) from processed pseudogenes, 5 (1.2%) from non-experimentally
confirmed regions, two (<1%) from sense intronic, and one each (<1%) of macro-lincRNA,
miscellaneous RNA, unspecified pseudogene, sense overlapping, transcribed processed
pseudogene, and transcribed unprocessed pseudogene (Figure 1B).
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Figure 1. Cryptoproteins are widely detected in human lung adenocarcinoma cell lines: (A) A
heatmap representation of cryptoprotein expression in lung adenocarcinoma cell lines with annotated
driver mutation (KRAS, EGFR, KEAP1, TP53, LKB1, EML4/ALK) shows no association between
mutational status and cryptoprotein production. (B) Cryptoproteins identified and quantified in
lung adenocarcinoma cell lines. (C) Ingenuity pathway analyses of genes corresponding to the
420 cryptoproteins detected in lung adenocarcinoma cell lines revealed enrichment of inflammatory
pathways with B-cell receptor and immunoglobulin families as central network nodes.

Ingenuity pathway analysis of the 420 canonical gene names corresponding to the
identified cryptoproteins revealed immune-centric networks, with the B-cell receptor and
immunoglobulin (Ig) genes family being represented as central nodes (Figure 1C), consistent
with previous findings [14–16].

Circulating Ig-bound cryptoproteins in NSCLC
To expand upon our findings and determine the extent by which cryptoproteins

were associated with a humoral response in the context of NSCLC, we performed the
proteomic mass spectrometry-based analyses of Ig-bound cryptoproteins in plasmas from
30 newly diagnosed NSCLC cases (n = 3 patients per pool; 10 pools in total) and 102 controls
(8–30 individuals per pool; six pools in total) (Supplemental Table S2) [17]. Our analysis
yielded 162 Ig-bound cryptoproteins, of which 104 were quantified exclusively in NSCLC
case samples (n = 90) or had fold-change >2 (n = 14) compared to controls (Supplemental
Table S4, Figure 2A). Of the 104 cancer-associated, Ig-bound cryptoproteins, 46 (44.2%)
were derived from protein-coding genes, 17 (16.3%) from retained introns, 13 (12.5%) from
processed transcripts, 7 (6.7%) from antisense RNAs, 10 (9.6%) from lincRNA, 4 (3.8%)
from processed pseudogenes, 3 (2.9%) from nonsense mediated decay, two (1.9%) from
non-experimentally confirmed regions, and two (1.9%) from sense overlapping transcripts
(Figure 2B). Limited overlap was found between Ig-bound, non-canonical cryptoproteins
and respective Ig-bound canonical proteins in newly diagnosed cases, suggesting preferen-
tial immunogenicity directed against the non-canonical cyptoprotein (Figure 2C). Moreover,
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10 out of 104 elevated cryptoproteins were also identified in adenocarcinoma cell lines
(Figure 2D).
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Figure 2. A unique Ig-bound cryptoprotein signature is detected in plasma from individuals newly
diagnosed with NSCLC: (A) Heatmap depicting 104 Ig-bound cryptoproteins that are either uniquely
identified or had a fold-change greater than 2 in cases compared to controls. Abbreviations: Sq,
Squamous Cell Carcinoma; Adc, Adenocarcinoma. (B) Types of cryptoproteins that were elevated in
the Ig-bound fraction of newly diagnosed lung cancer cases compared to controls. (C) Comparison
of Ig-bound cryptoproteins and their canonical counterparts reveals near exclusivity of Ig reactivity
against cryptoproteins. (D) Venn diagram illustrating overlap between cryptoproteins identified in
lung adenocarcinoma cell lines with cryptoproteins that were elevated in the Ig-fraction of newly
diagnosed lung cancer cases.

We further performed mass spectrometry-based, Ig-bound cryptoprotein analyses
using 6 pools of pre-diagnostic samples consisting of 51 NSCLC subjects diagnosed within
an average of six months following blood draw and compared findings with that of
the 102 controls (Supplemental Table S3). A total of 101 Ig-bound cryptoproteins were
quantified, 17 of which yielded statistically significant (1-sided p < 0.05) odds ratio ≥ 2
(Figure 3A,B, Supplemental Table S5). Of the 17 cancer-associated, Ig-bound cryptoproteins,
9 (52.9%) were derived from protein-coding genes, 3 (17.6%) from retained introns, 3 (17.6%)
from processed transcripts, 1 (6.0%) from antisense RNAs, and 1 (6.0%) nonsense mediated
decay (Figure 3C). Eight Ig-bound cyptoproteins consistently elevated the pre-diagnostic
and newly diagnosed cases compared to controls (Supplemental Table S6).
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Figure 3. Ig-bound cryptoproteins are detectable in NSCLC pre-diagnostic plasma: (A) Heatmap
showing 17 Ig-bound cryptoproteins that were elevated (OR > 2; 1-sided p value < 0.05) in plasmas
collected within 1 year of a lung cancer diagnosis compared to controls. Abbreviations: Sq, Squamous
Cell Carcinoma; Adc, Adenocarcinoma. (B) Tabular representation of the 17 Ig-bound cryptoproteins.
ND = Not Detected. (C) Histogram detailing the cryptoprotein type for the 17 Ig-bound cryptoproteins
that were elevated in cases diagnosed within 1 year of blood draw compared to controls.
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3. Discussion

We constructed a cryptoprotein database of theoretical non-canonical proteins that
we then applied to search untargeted proteomic datasets of proteomic profiling of lung
adenocarcinoma cell lines and patient plasmas. This enabled the discovery of a previ-
ously unreported ‘cryptoproteome’ associated with NSCLC and provided evidence of a
corresponding humoral response in the form of autoantibodies directed against cancer-
associated cryptoproteins. These findings indicate translational potential in the form of
candidate markers for early detection or immunotherapy targets.

In contrast to previous studies, which focused on aberrant peptides resulting from
genomic alteration [14–16], we pursued an untargeted approach for broad non-canonical
protein identification unrestricted by mutational status. The cryptoDB provides a resource
of possible protein sequences non-homologous to previously described human proteins that
can be detected in multiple samples using standard proteomic techniques. This suggests
that increased attention may be paid to the protein-encoding potential of RNAs previously
thought to be noncoding, and provides potential insights into where these RNAs may
alter cellular physiology [25]. We demonstrate application of the database with statistically
significant concordant findings across multiple samples, thereby demonstrating the validity
of the approach.

Analysis of quantifiable cryptoproteins in newly diagnosed Ig-bound samples, pre-
diagnosed Ig-bound samples, and cell lines revealed that quantified cryptoproteins were
predominately derived from protein-coding transcripts (>40%), suggesting that the gen-
eration of these cryptoproteins is at the translation level. While much emphasis has been
placed on proteins resulting from genetic aberrations in cancer, this finding provides com-
pelling evidence of additional routes to the genesis of detectable neoantigens. For instance,
this may partially explain the somewhat limited value of tumor mutational burden in pre-
dicting response to cancer immunotherapy [26]. An analysis of cell lines provides evidence
for this association with translation errors. Several plausible mechanisms may be posited
to account for the generation of a specific cryptoprotein, including a “slippery ribosome,”
altered nonsense mediated decay, relaxed translational fidelity, or aberrant transcription of
ORF-containing pseudogenes [27–30]. An exploration of potential underlying mechanisms
related to the generation of our identified cryptoproteins is warranted; however, such
investigations are beyond the scope of the current study.

Interestingly, more than half (56%) of the Ig-bound cryptoproteins were exclusively
quantified in NSCLC plasmas compared to controls. Moreover, the ability to detect Ig-
bound cryptoproteins in pre-diagnostic plasmas provides the potential that these may be
sensitive and specific markers of lung cancer risk and presence of disease. These could either
serve to complement to existing markers [31–33] or may offer sufficient performance to
stand alone as a new source of biomarkers for lung cancer early detection or risk assessment.
Future studies, exploring the utility of autoantibodies directed against cancer-associated
cryptoproteins alone or in combination with other biomarker types for risk prediction of
lung cancer, are warranted.

On the other hand, there are some limitations to our studies. Detailed information
regarding full smoking history including smoking duration were not available, thus limiting
correlative analyses with smoking exposure. Similarly, the occurrence of cryptoproteins in
cancer-associated exosomes or circulating tumor cells was not evaluated [34]. Our study
focused on the occurrence of Ig-bound cryptoproteins in plasmas of adenocarcinoma and
squamous cell carcinoma lung cancer cases. Whether there is a similar occurrence to be
found in small cell lung cancer cases, as well as other NSCLC subtypes, such as large cell
carcinoma, remains to be determined.

In conclusion, we establish cryptoproteins as a potential source of neoantigens in
NSCLC. Autoantibodies against cancer-associated cryptoproteins are a promising source
of biomarkers that may identify individuals at high risk of developing or harboring lung
cancer. Future work will include validation in independent datasets, the collection of
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additional samples, and the biological confirmation of autoantibody reactivity in plasmas
of lung cancer patients.

4. Materials and Methods

Construction of a cryptoprotein proteomics pipeline and database
The fasta format transcript files from Genome Reference Consortium Human Build

38, release 27 (GRCh38.v27), were downloaded from GENCODE. In silico translation was
completed for all transcripts including protein coding genes, pseudogenes, noncoding
RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), as well as
variants including transcripts with retained introns. We selected all open reading frames
(ORFs) greater than 50 codons, beginning with an AUG and ending with a canonical stop-
codon (UAA, UGA, UAG), and eliminated the largest open reading frame from transcripts
annotated as protein coding, which resulted in 1.1 million ORFs. These were then aligned
against the human non-redundant (nr) protein database using the BLASTP algorithm. ORFs
aligning with an E-score greater than 0.01, indicating a likely successful alignment, were
discarded. This yielded 108,863 ORFs with no known homology to human proteins, which
we termed the Cryptoprotein Database (cryptoDB, Figure 4). The fasta file of the cryptoDB
is available on github (https://github.com/EhsanIrajizad/Cryptoprotein, uploaded April
2021, accessed 10 August 2022).
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Cell Lines
Seventeen lung adenocarcinoma cell lines (H2228, H1395, H2405, H522, H969, H1703,

H1650, HCC827, HCC4006, H820, HCC2935, H2009, H650, H1795, H2122, H647, HCC4017,
Supplemental Table S1) were acquired from American Type Culture Collection. Cell type was
confirmed by short tandem repeat analysis. The cell lines were representative of different
mutational backgrounds and were analyzed independently. Detailed information regarding
mass spectrometry-based analysis of whole cell lysates is described elsewhere [35–39].

https://github.com/EhsanIrajizad/Cryptoprotein


Int. J. Mol. Sci. 2022, 23, 8933 8 of 11

Lung cancer plasma collection
Blood samples were collected from two independent cohorts following Institutional

Review Board approval and informed consent. One cohort consisted of plasma collected
from individuals with newly diagnosed NSCLC at the University of Texas MD Anderson
Cancer Center (MDA) (Supplemental Table S2). Another cohort consisted of plasma
samples from individuals collected for the Beta-carotene and Retinol Efficacy Trial (CARET)
cohort. CARET was a randomized, double-blind, placebo-controlled trial evaluating the
cancer prevention efficacy and the safety of daily supplementation with beta-carotene
and retinol palmitate in 18,314 individuals at high risk for lung cancer. Participants were
enrolled at six US centers and were followed for cancer and mortality outcomes [40]. Six
pools of healthy controls (n = 8–28 individuals per pool) were matched to six pools of
pre-diagnostic NSCLC cases (n = 4–14 patients per pool) based on age, sex, and smoking
history. All controls were followed-up for a minimum of four years to ensure that they
were cancer-free (Supplemental Table S3). For the MDA cohort, controls from the CARET
cohort were used to compare the distribution of Ig-bound cryptoproteins between cases
and controls.

Mass spectrometry analysis of Ig-bound protein complexes
Mass spectrometry-based (MS) analysis of circulating Ig-bound protein complexes was

performed as previously described [36,41]. Detailed has been presented in Supplementary
Information.

Data Processing of Mass Spectrometry Data
Spectra from proteomic analyses of human lung cancer cell lines and immunoglobulin(Ig)-

bound plasma proteins were reprocessed through a customized pipeline based on Pep-
tideShaker [42]. To process only those spectra that did not align to a known UniProt
sequence, spectra were first searched against the UniProt Database and spectra identified
as UniProt peptides filtered out. Unaligned spectra were subsequently searched against
the novel cryptoDB using PeptideShaker [42–46]. We compared the peptide-spectrum
match score (PSM) for canonical peptides that matched to the UniProt database to the PSM
for cryptopeptides. Peptides were considered a match if they had a false discovery rate
(FDR) < 10%, consistent with prior approaches [14]. Furthermore, to reduce false positives,
a selection of features in each experiment (cohort) was based on the identified cryptoprotein
having a peptide-spectrum match (PSM) ≥ 5 and detection in 2 or more samples in each
cohort. Cryptoprotein abundance was implied through summation of all aligned spectra.

Ingenuity Pathway Analyses
To identify potential pathway networks associated with cryptoproteins identified in

lung adenocarcinoma cell lines, we used host, canonical gene names corresponding to each
cryptoprotein, and performed Ingenuity Pathway Enrichment Analysis (IPA). Statistical
significance of enriched pathways was determined by two-sided Fisher’s Exact Test.

Statistical Analysis
Predictive performance of Ig-bound cryptoprotein complexes was assessed by odds

ratios (ORs) using logistic regression for the newly diagnosed cohort and conditional
logistic regression for the pre-diagnostic cohort. Analyses were carried out using the
R software environment (version 3.6.1, The R Foundation, https://www.r-project.org,
accessed 10 August 2022). p values are reported based on two-sided Wilcoxon rank sum
test unless otherwise specified.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23168933/s1.
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