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Despite the growing resources and tools for high-throughput characterization and analysis of genomic information, the dis-

covery of the genetic elements that regulate complex traits remains a challenge. Systems genetics is an emerging field that

aims to understand the flow of biological information that underlies complex traits from genotype to phenotype. In this

study, we used a systems genetics approach to identify and evaluate regulators of the lignin biosynthesis pathway in

Populus deltoides by combining genome, transcriptome, and phenotype data from a population of 268 unrelated individuals

of P. deltoides. The discovery of lignin regulators began with the quantitative genetic analysis of the xylem transcriptome and

resulted in the detection of 6706 and 4628 significant local- and distant-eQTL associations, respectively. Among the locally

regulated genes, we identified the R2R3-MYB transcription factor MYB125 (Potri.003G114100) as a putative trans-regulator of
the majority of genes in the lignin biosynthesis pathway. The expression of MYB125 in a diverse population positively cor-

related with lignin content. Furthermore, overexpression ofMYB125 in transgenic poplar resulted in increased lignin content,
as well as altered expression of genes in the lignin biosynthesis pathway. Altogether, our findings indicate that MYB125 is
involved in the control of a transcriptional coexpression network of lignin biosynthesis genes during secondary cell wall

formation in P. deltoides.

[Supplemental material is available for this article.]

Uncovering the genetic elements that regulate complex traits is a
critical but still challenging goal of biology. Genome-wide associ-
ation (GWA) analysis has become the most common approach to
unravel the relationship between genotype and phenotype. GWA
studies have identified numerous DNA polymorphisms associated
with complex traits in humans, plants, and animals (Porth et al.
2013; Sonah et al. 2015; Fahrenkrog et al. 2017a; Tieman
et al. 2017; Turuspekov et al. 2017; Zhang et al. 2018; Furches
et al. 2019; Guerra et al. 2019). These studies largely validated
the early quantitative genetics theory that complex traits are influ-
enced by many small-effect variants (Visscher et al. 2017) but also
exposed the statistical power limitation of the approach.
Furthermore, phenotype–DNA association studies do not account
for many factors that may contribute to phenotypic variation by
changes in gene expression (Vazquez et al. 2016). Integrating tran-
scriptomedata to the analysis of complex traitsmay contribute to a
better understanding of what determines a phenotype, as well as
targets to modify them.

Single-nucleotide polymorphisms (SNPs) associated with
complex phenotypes are enriched for variants that affect gene ex-

pression (Nicolae et al. 2010). Gene expression regulation itself is
largely genetically controlled and heritable, as first described in
yeast (Brem 2002) and later in several plant species (Schadt et al.
2003; Kirst et al. 2005; West et al. 2007). Therefore, transcript
abundance can be considered a complex, quantitative phenotype
and can be subjected to association mapping to identify polymor-
phisms responsible for transcript abundance variation among in-
dividuals and gene expression regulation. In this context,
polymorphisms associated with gene expression are referred to
as expression quantitative trait loci (eQTL) and are classified as lo-
cal (putative cis) and distant (putative trans), depending on their
physical location relative to the gene whose expression is affected.
To date, most eQTL studies in plants have been conducted on rel-
atively small, closely related, and unreplicated populations. This
limits the power to detect variants affecting gene expression in
cis and, to a greater extent, in trans, because they usually have
smaller effects (Holloway et al. 2011; Wang et al. 2014; Ranjan
et al. 2016; Mähler et al. 2017). Hence, the use of a small sample
size in eQTL studies has hampered the discovery of variants that
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contribute to gene expression regulation and further identification
of potential master regulators of biosynthetic pathways and meta-
bolic networks.

Integrative systems analysis, such as systems genetics, is an
emerging field that aims to decipher biological networks and path-
ways involved in complex traits and map their genetic variants
(Ayroles et al. 2009; Civelek and Lusis 2014; Moreno-Moral and
Petretto 2016). The starting point of a systems genetics approach
is the identification of polymorphisms modulating gene expres-
sion.Once genes that are under genetic control are identified, their
respective gene regulatory networks are further explored to obtain
a deeper understanding of the mechanisms underlying complex
traits. One of the most common approaches is the use of ge-
nome-wide transcript abundances to construct gene coexpression
networks, as coexpressed genes often function in the same path-
way (Mackay 2014). By coupling information from coexpression
networks and eQTL studies, it is possible to develop hypotheses re-
garding the regulatory function of genes in a given pathway. This
leads to the systematic unraveling of key genetic drivers of biosyn-
thetic pathways or metabolic networks underlying complex traits.
Integration of information from different layers of omics data has
been shown to improve the understanding of complex pheno-
types in humans (Vazquez et al. 2016; Hasin et al. 2017; Bakker
et al. 2018; Qin et al. 2019) and some plant species (Acharjee
et al. 2016; Chauffour et al. 2019).

In this study, we used a systems genetics approach to identify
regulators of the lignin biosynthesis pathway in Populus deltoides.
Lignin is a complex phenolic polymer derived from the phenyl-
propanoid pathway that provides structural support to plants.
Lignin is also themajor contributor to the recalcitrance of biomass
(Studer et al. 2011), which considerably increases its processing
cost and, consequently, hinders biofuel production. Because of
the vast industrial and biological importance of lignin, uncovering
the elements of its biosynthesis pathway and regulation is critical
for industrial and agricultural purposes. To date, the genes encod-
ing for enzymes in the lignin biosynthesis pathway have been
largely identified (Hefer et al. 2015; Wang et al. 2018). Studies in
model systems have revealed that the expression of these genes
is primarily under the coordinated control of secondary cell wall
(SCW) NAC-mediated and R2R3-MYB–mediated transcriptional
network (Xie et al. 2018). Several R2R3-MYB transcription factors
playing important roles in regulating secondary wall thickening
have been identified and well characterized in Arabidopsis (Xie
et al. 2018). It is hypothesized that in perennial woody species,
such as poplar, a similar but more complicated regulatory mecha-
nism of the lignin biosynthesis pathway exists. For instance, the
Populus genome has at least 192 annotated genes encoding
R2R3-MYB transcription factors (Wilkins et al. 2009), yet only a
few members of this family have been functionally characterized
(Wilkins et al. 2009; McCarthy et al. 2010; Zhong et al. 2011;
Tian et al. 2013; Zhong and Ye 2014; Li et al. 2015; Petzold et al.
2018a; Gui et al. 2019, 2020). Therefore, the complete genetic net-
works underlying the control of the lignin biosynthesis pathway
for Populus and other commercially important woody species re-
main largely unknown.

Here we used a system genetics framework to uncover the
gene expression network implicated in the control of lignin bio-
synthesis in Populus. First, we surveyed the genetic regulation of
gene expression in differentiating xylem of a genetically unrelated
population of P. deltoides using an eQTL approach. Next, we inte-
grated information from eQTL and gene coexpression network
to dissect the genetic regulation of the lignin trait.

Results

A large fraction of the xylem transcriptome of P. deltoides is highly
heritable

To obtain a comprehensive understanding of the global profile of
the P. deltoides xylem transcriptome, we sequenced paired-end,
150-bp RNA-seq libraries from 343 individuals. This population
shows low levels of subpopulation differentiation (FST = 0.022–
0.106), high genetic diversity (θW=0.00100, Π=0.00170), a large
effective population size (Ne≈32,900), and low to moderate levels
of linkage disequilibrium (LD) (Fahrenkrog et al. 2017a). These in-
dividuals were previously genotyped with 68,885 SNP markers by
targeted resequencing of 18,153 genes and 23,835 intergenic re-
gions (Fahrenkrog et al. 2017b). In total, 23.1 billion reads were
generated with an average of 23.4 million reads per sample. To
be considered for further analysis, each genotype was required to
have at least 15million reads for at least two of the three biological
replicates, resulting in 268 individuals being used for downstream
analysis. Next, the raw reads were filtered and mapped to the
Populus trichocarpa v3 reference genome. The mapped reads were
independently assembled using alternative approaches (see
Methods), and the transcripts constructed by each assembler
were grouped into a single transcriptome file, which resulted in
18,207 genes composed of 52,708 transcripts expressed in the pop-
ulation.Over 92%of the genes expressed in the population are pre-
sent in the P. trichocarpa v3 reference genome annotation.
Therefore, 1709 transcriptional units represent potentially novel,
unannotated open reading frames composed of 1914 unannotated
transcripts.

We used mixed-effects models to estimate the broad-sense
heritability (H2) of each of the 18,207 expressed genes
(Supplemental Fig. S1). Heritability estimates ranged from 0.0 to
0.88 with a mean (±SD) of 0.15 (±0.13). The experimental design
explained on average 12.3% of the variance in FPKM. However,
the percentage of variance in gene expression varied among genes
(10th percentile 3.5%, 90th 23.2%). In this data set, genetic struc-
ture is obvious in the first two principal components, which group
the genotypes according to their geographic origin (Fahrenkrog
et al. 2017b). The first five principal components accounted for
9.9% of the total sum of the eigenvalues of the genomic relation-
ship matrix. The proportion of variance of gene expression ac-
counted for by these five principal components was on average
(i.e., across genes) 2.2%, with a 10th–90th percentile range of
0.5%–4.4%.

Permutation analyses showed that 12,579 genes had H2 esti-
mates greater than what was expected by chance (P-value<0.01)
(Supplemental Fig. S1). Analysis of Gene Ontology (GO) of the
genes with high heritability (H2 >0.5) showed enrichment for
GO categories such as programed cell death (PCD; GO: 0012501,
P-value=3.6 ×10−7) (Supplemental Table S1).

Distant-eQTLs explain a higher proportion of the genetic variance

for gene expression

We decomposed the variation of gene expression in local and dis-
tant components to quantify the proportion of gene expression
variance explained by each category. The local relationshipmatrix
was built using an average of 404 SNPs, whereas the distant rela-
tionship matrix used an average of 68,480 SNPs per gene. The ma-
jority of the SNPs explained individually a small fraction of the
phenotypic (gene-expression) variance, particularly for the distant
SNPs (Supplemental Fig. S2A,B). However, the aggregate effect of
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the distant SNPs associated to each gene was larger than the local
SNPs (mean 1.35-fold more variance explained, P-value<0.0001)
(Fig. 1A). These results indicate that distant SNPs contribute
more to the heritability of gene expression, even though their in-
dividual effects are generally very small.

To dissect the genetic regulation of gene expression, we per-
formed an eQTL analysis of all genes with H2 estimates greater
than expected by chance (P-value <0.01). We detected a total of
11,334 eQTLs at a 5% empirical FDR. These significant eQTLs
represent pairwise associations between the expression of 5533
genes and 8470 SNPs, with an average of 1.5 significant SNPs
per gene (Fig. 1B). For >89% of the genes, a single SNP was detect-
ed in association with their expression. We classified the eQTL
based on the physical distance between the SNP and the associat-
ed gene as local (if the SNP is located within the gene or up to 1
Mb upstream of or downstream from the transcript start site [TSS]
of the gene), and distant otherwise. According to this classifi-
cation, 6706 (59%) were local-eQTLs and 4628 (41%) were
distant-eQTLs. Three thousand twenty genes had only distant-
eQTLs, 1738 genes had only local-eQTLs, and 775 genes were reg-
ulated by both distant and local SNPs (Fig. 1C). On average, genes
with significant association showed higher heritability than her-
itable genes for which no significant association was found (P<
0.0001) (Fig. 1D).

Next, we considered the genomic location of the SNPS with
significant association. The distribution in the genomeof SNPs (lo-
cal and distant) with significant association and the distribution of
all the SNPs were similar, with the majority of the SNPs located
within the coding sequence of a gene (Fig. 1E; Supplemental Fig.
S3; Supplemental Table S2). This result was expected because the
majority of the probes (89%) used to genotype the population
was designed to capture 18,153 genes (Fahrenkrog et al. 2017a).

Moreover, we observed that local associations had a proportionally
higher number of SNPs located in intergenic regions (21%) com-
pared with distant associations and all SNPs (4.2% and 4.1%, re-
spectively) (Supplemental Table S2). Finally, we observed that
approximately half of the local SNPs were located within the asso-
ciated gene, whereas the remaining were within an adjacent gene.

Coexpression network analysis shows two modules enriched

for genes in the lignin biosynthesis pathway

Global coexpression networks were constructed from all the
18,207 genes expressed in the population using a weighted corre-
lation network analysis (WGCNA) (Langfelder and Horvath 2008).
Overall, we identified 28 coexpression modules with an average
size of 650 genes (min=56, max=2316) (Supplemental Fig. S4).
We performed KEGGpathway enrichment analysis in all themod-
ules and found that two of them were enriched for genes involved
in the lignin biosynthesis pathway (modules in black, containing
656 genes, and in red, containing 803 genes in Supplemental Fig.
S5). Together, these modules included 20 of the 31 genes that are
preferentially expressed in xylem and active in the phenylpropa-
noid biosynthetic pathway (Hefer et al. 2015). Moreover, we
also found that six genes from the shikimate and methionine sal-
vage pathways, which provide the precursors for the lignin biosyn-
thesis pathway, were present in both modules (Supplemental
Table S3).

Next, we investigated how the black and redmodules relate to
each other using their eigengene value (i.e., the first principal com-
ponent of the module). After eigengenes were clustered
(Supplemental Fig. S6), the modules black and red were found to
be grouped together, which indicates that they have similar ex-
pression patterns (Supplemental Fig. S6). Thus, we constructed a
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C D

Figure 1. Characterization of eQTL associations. (A) Expression variance explained by all SNPs for each gene. (B) Number of associated genes per SNP in
significant eQTL associations. (C) The distribution of genes regulated by local and/or distant SNPs. (D) Broad sense heritability for genes with and without
significant eQTL associations. (E) Genomic location of SNPs with significant eQTL associations. Promoters are defined as 500 bp upstream of the gene. Data
were analyzed using Kruskal–Wallis test followed by Dunn’s multiple comparison test. Significance is indicated by asterisks: (∗∗∗∗) P-value < 0.0001.
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new coexpression network with only
the genes present in these two modules.
This resulted in five coexpression mod-
ules with the number of genes varying
from 16 to 1138 (Supplemental Fig. S7).
The largest module (colored turquoise)
contained 18 out of the 20 genes of
the lignin biosynthesis pathway pre-
sent originally in the black and red
modules (Supplemental Table S4). An
alternative approach to investigate
whether the genes in modules red and
black are indeed correlated is to adjust
the mergeCutHeight parameter in the
analysis. In fact, when we applied the
mergeCloseModules function, genes in
modules black and red were grouped.

Following this, we selected themost
connected genes of the turquoisemodule
(Supplemental Fig. S7). These genes are
expected to play a central role in this
functional-based network. We consid-
ered geneswith eigengene-based connec-
tivities (kME) higher or equal to 0.7 to be
the hub genes of the module and the
most highly connected genes (Horvath
2011). By using this criterion, we identi-
fied 179 hub genes within the turquoise
module (Supplemental Table S5). These
included nine genes of the lignin biosyn-
thesis pathway present in the turquoise
module, as well as two genes from the
shikimate pathway and two genes from
the methionine salvage pathway. We
further assessed if significant eQTL
associations were detected for any of
these genes and found that 10 of them
had significant local-eQTL associations
(Supplemental Table S5). Out of the 10 genes identified as being
regulated by local SNPs, onlyMYB125 (Potri.003G114100) is anno-
tated as a transcription factor. Because of its potential role in the
expression regulation of other genes, we chose it for further anal-
ysis. We found five SNPs (Fig. 2A,B; Supplemental Table S6) to be
significantly associated with the expression of MYB125 in cis
(FDR<0.05) (Fig. 2C; Supplemental Fig. S8). Out of the four SNPs
located in the coding sequence, only one of them causes a nonsy-
nonymous mutation, through a substitution of threonine (Thr) to
alanine (Ala) in residue 255 of the protein (Supplemental Table
S6). The pairwise LD pattern among the five SNPs shows that
four of them (SNPs 1, 3, 4, and 5) are in almost complete LD (R2

>0.97) (Supplemental Table S7). The fifth SNP (SNP 2) shows a
lower LD (R2 varying from 0.26 to 0.28). The minor allele frequen-
cy (MAF) for this variant is 0.07, which is considerably lower com-
pared with the MAF of the other four SNPs (MAF>0.22) (Fig 2;
Supplemental Table S6).

MYB125 is a major trans-acting regulator of the lignin biosynthesis

pathway

We used Cytoscape (Shannon 2003) to create a gene interaction
network including all the genes present in the turquoise module
(Supplemental Fig. S7), yielding a total of 713 nodes and 57,023

edges (Supplemental Fig. S9). MYB125 is directly connected to
all nine genes that are part of the lignin biosynthesis path-
way and identified as highly connected genes of the turquoise
module (F5H indicates ferulic acid 5-hydrolase; C4H1, cinna-
mate-4-hydrolase 1; COMT1, O-methyltransferase 1; PAL4,
phenylalanine ammonia-lyase 4; PAL2, phenylalanine ammo-
nia-lyase 2; CCoACOMT1, caffeoyl-CoA 3-O-methyltransferase;
C3′H, P-coumaroyl shikimate 3′-hydrolase; CSE, caffeoyl shiki-
mate esterase; 4CL3, 4-coumarate:CoA ligase 3) (Supplemental
Fig. S9). These results suggest that MYB125 may be a trans-acting
regulator of these genes and, consequently, a key regulator of
the lignin biosynthesis pathway. To investigate further, we indi-
vidually tested the local-regulatory SNPs ofMYB125 for trans-regu-
lation of the nine genes of the lignin biosynthesis pathway that
are directly connected to MYB125. The single marker regression
analysis showed that all the nine genes are trans-regulated by
the local-regulatory SNPs of MYB125 (P-value< 0.05) (Fig. 3A–I).

Moreover, we found the expression of these nine genes to be
positively correlated with the expression of MYB125 (R2 = 0.25–
0.41, P-value< 0.0001) (Supplemental Fig. S10). We also tested
the local-regulatory SNPs of MYB125 for trans-regulation of the
other nine genes of the lignin biosynthesis pathway present in
the turquoise module that are not directly connected to
MYB125. Except for the gene cinnamyl alcohol dehydrogenase

B
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Figure 2. Local SNPs regulate the expressionofMYB125. (A)Manhattanplot displaying the eQTL results
forMYB125. The significant SNPs associatedwith the expression ofMYB125 are locatedwithin the coding
andUTR sequences ofMYB125. The x-axis shows the chromosomepositions, and the y-axis shows the sig-
nificance expressed as –log10. (B) Pattern of linkagedisequilibrium in the regionofMYB125 across the SNPs
with significant association. Darker red indicates stronger correlation. (C) Boxplot for expression of
MYB125 plotted as an effect of genotypes at the SNP with the smallest P-value for the eQTL association
(for boxplot for expression of MYB125 plotted as an effect of genotypes of the other SNPs, see
Supplemental Fig. S8). The horizontal line represents the median, and the vertical lines mark the range
of the minimum and maximum values. Data were analyzed using ANOVA followed by Tukey’s multiple
comparison test. Significance is indicated by asterisks: (∗∗∗∗) P-value < 0.0001; (∗∗∗) P-value < 0.001;
(∗) P-value < 0.05.
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(Potri.009G095800), none of these other genes showed signifi-
cant association with the local-regulatory SNPs of MYB125
(Supplemental Fig. S11). Finally, to validate the potential role of
MYB125 as a key regulator of the lignin biosynthesis pathway,
we performed a single marker regression between the local-regula-
tory SNPs ofMYB125 and the lignin content percentage previously
measured in this population (Fahrenkrog et al. 2017b). As ex-
pected, we observed a significant association between the local-reg-
ulatory SNPs of MYB125 and lignin content percentage (P-value=
0.003) (Fig. 3J). Accordingly, the lignin content percentage is also
positively correlated with the expression of MYB125 (P-value=
0.03) (Supplemental Fig. S10).

MYB125 induces the expression of genes in the lignin biosynthesis

pathway and increases the lignin content

To verify the role ofMYB125 in the regulation of lignin biosynthe-
sis, we generated transgenic roots overexpressing MYB125
(Supplemental Fig. S12A). We performed qRT-PCR to determine
the expression level of the genes in the lignin biosynthesis path-
way shown to be possibly trans-regulated by MYB125 (Fig. 3,
Supplemental Fig. S10). Of the nine genes, we confirmed eight
genes (4CL3, CSE, F5H, C3′H, PAL2, CCoAOMT1, PAL4, and
COMT1) to be significantly up-regulated in transgenic roots over-
expressing MYB125, compared with WT roots (Fig. 4A–I).

To further confirm the role of MYB125 as a positive regulator
of lignin biosynthesis, we measured the levels of acetyl bromide
soluble lignin (ABSL) in both transgenic roots overexpressing
MYB125 andWT roots. Indeed, all three biological replicates over-
expressing MYB125 showed increased levels of ABSL content by
35% to 158% compared with WT roots (Fig. 4J). We observed a
highly positive correlation (R2 = 0.83, P-value =0.0118) between

the expression of MYB125 and the lignin content (Supplemental
Fig. S12B). These results support the hypothesis that MYB125 is a
transcription activator of the lignin biosynthesis pathway during
SCW formation.

Discussion

The genetic architecture of xylem gene expression in P. deltoides

In this study, we examined the xylem transcriptome of 268 geno-
types from a population of unrelated individuals of P. deltoides that
were previously genotyped (Fahrenkrog et al. 2017b). Our primary
aim was to detect potential causal genes and regulatory networks
of whole-plant traits, such as biomass productivity andwood qual-
ity. An initial analysis of the transcriptome showed that 18,207
genes were expressed; of which 1709 represent potentially novel,
unannotated open reading frames. Transcription of a large propor-
tion of these genes is heritable; 12,579 genes had heritabilities sig-
nificantly higher than expected by chance. Among the genes with
the highest heritability (H2 >0.5, n =172), we found significant en-
richment for those involved in cell death. Xylogenesis, the forma-
tion of water-conducting vascular tissue, is a developmentally
regulated process that begins with the division and expansion of
cambial cells and concludes with their programmed cell death
(Funada et al. 2016). This ontogenetic process is intimately con-
nected with cambial cell differentiation and secondary genetic
and physiological and self-destructive process (Danial and
Korsmeyer 2004; Iakimova andWoltering 2017). Our data support
that this developmental stage in xylogenesis is under significant
genetic control in this population.

We assessed the genetic architecture of heritable gene expres-
sion in the P. deltoides population using an eQTL approach, in
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Figure 3. MYB125 is a trans-acting regulator of genes from the lignin biosynthesis pathway. Single marker regression analysis between the local-regu-
latory SNP ofMYB125 (with the smallest P-value) and the expression of (A) 4CL3 (P-value =0.015); (B) CSE (P-value = 0.019); (C) F5H (P-value = 0.005); (D)
C3′H (P-value = 0.003); (E) PAL2 (P-value = 0.014); (F) CCoAOMT1 (P-value = 0.015); (G) PAL4 (P-value = 0.003); (H) COMT1 (P-value = 0.003); and (I) C4H1
(P-value = 0.013). (J) Single marker regression analysis between the local-regulatory SNP ofMYB125 (with the smallest P-value) and the lignin content per-
centage (P-value = 0.003). Boxplot for expression of genes from the lignin biosynthesis pathway (A–J) and lignin content percentage (I) plotted as an effect
of genotypes at the SNP,with the smallest P-value, in the region ofMYB125. The horizontal line represents themedian, and the vertical lines mark the range
of the minimum and maximum values.

Systems genetics of poplar xylem

Genome Research 1135
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.261438.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.261438.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.261438.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.261438.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.261438.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.261438.120/-/DC1


which we detected 11,334 significant associations. We identified
more local- than distant-eQTLs, and an analysis of the genomic
location of the SNPs with significant association showed that
the majority of the SNPs were located within a gene. As men-
tioned previously, this result was expected because the majority
of the probes used to genotype the population was designed to
capture 18,153 genes (Fahrenkrog et al. 2017b). In addition, we
showed that intergenic regions were the genomic features least
represented in the analysis (in local SNPs, distant SNPs, and the
whole set of SNPs), which again indicates a limitation of the gen-
otyping method used to detect putative distant regulatory ele-
ments, such as enhancers. Although in lower number, we were
still able to detect local-acting (21%) and distant-acting (4.2%)
SNPs located in the intergenic regions. These results suggest a
higher power in the detection of putative enhancers in cis-associ-
ations compared with the detection of enhancers that module the
expression of a transcription factor, which in turn regulates the
expression of another gene in trans. The large number of signifi-
cant SNPs also supports the concept that gene expression is itself
a complex trait. Furthermore, we found that distant-eQTLs ex-
plain significantly more of the variance of gene expression than
local-eQTLs. Although in disagreement with previous studies
(Keurentjes et al. 2007; Mähler et al. 2017), our results support
the recent omnigenic model proposing that heritability of com-
plex traits is primarily driven by weak distant-eQTLs, whose ef-
fects are mediated by peripheral genes that impact the
expression of core genes (Liu et al. 2019). The disagreement be-
tween our findings and previous studies (Keurentjes et al. 2007;
Mähler et al. 2017) is most likely owing to the population size.
Most of the eQTL studies in plants have been performed on rela-
tively small, closely related and unreplicated populations. This
limits the power to detect distant-eQTLs, which usually have
smaller effects. Based on our findings and in agreement with
the omnigenic model (Liu et al. 2019), it appears that most of
the heritability of gene expression is controlled by many trans
(distant) eQTLs of small individual effects.

A system genetics approach reveals MYB125 as a potential
regulator of the lignin biosynthesis pathway

Genenetworks can be used to infer the functions of genes based on
their close network neighbors (guilt by association). Furthermore,
by combining gene network with eQTL data one can also find ge-
netic variants responsible for the coregulation of genes in that net-
work. If multiple genes appear to be regulated by the same genetic
variant through a trans-acting eQTL, it may be possible to deter-
mine the “master regulator” by identifying the cis-eQTL causing
the trans-regulation. This is possible because genes under trans-reg-
ulation of specific phenotype-associated genetic variants are often
functionally connected with the pathway associated with the cor-
respondingphenotype. Inplants and animals, the identificationof
such “master regulators” is critical for themanipulationof complex
traits either through genetic engineering or traditional breeding, as
they profoundly impact developmental and regulatory pathways.

We used a system genetics approach in which we combined
eQTL analyses with data from coexpression networks generated
by transcriptome analysis of 268 individuals. The network analysis
revealed two modules enriched for genes involved in the lignin
biosynthesis pathway. Together, these modules contained 20 of
the 31 genes of the lignin biosynthesis pathway expressed in P. del-
toides xylem. The global regulation of a coexpression network can
be assigned to a specific locus by identifying a common eQTL that
controls most members of that network (Moreno-Moral and
Petretto 2016). Because MYB125 is directly connected to nine
genes contained within modules enriched for the lignin biosyn-
thesis pathway and is regulated by a local SNP, we considered it a
potential trans-acting regulator of the lignin biosynthesis pathway.
Although the trans-associations between the genetic variants of
MYB125 and these nine genes of the lignin biosynthesis were
not significant after multiple testing correction, the single marker
regression showed that all the nine genes were identified as trans-
regulated by the local-regulatory SNPs ofMYB125 (P-value<0.05).
The proportion of the genetic variance in the expression of these

E

F
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Figure 4. Overexpression ofMYB125 activates the expression of genes in the lignin biosynthetic pathway. Relative expression levels of (A) C4H1; (B) CSE;
(C ) F5H; (D) C3′H; (E) PAL2; (F) CCoAOMT1; (G) PAL4; (H) COMT1; and (I) 4CL3. Relative transcript levels were quantified by RT-qPCR and normalized with
the housekeeping gene Actin2. (J) Acetyl bromide lignin content of WT and transgenic roots overexpressingMYB125. Error bars, SD. One-tail Student’s t-
test was used to determine statistical significance; n = 3. Significance is indicated by asterisks: (∗) P-value < 0.05; (∗∗) P-value < 0.01.
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nine genes in the lignin biosynthesis pathway explained by the cis-
acting SNPs ranged from 4.83% to 8.71%; furthermore, the SNPs
explained 5.79% of the variance in lignin content (Supplemental
Table S8). It is important to highlight we performed 861,592,405
tests to identify distant-eQTL associations. It is widely knownmul-
tiple testing correction when used in an association study, in
which a large number of tests is performed, may lead to a very
high rate of false negatives. In other words,multiple testing correc-
tions control false positives at the expense ofmanymore false neg-
atives. Hence, in studies of genomics and statistical genetics, one
must find away to balance false-positive and false-negative results.
In our study, the use of a system genetics approach allowed us to
balance the false-positive and false-negative results because,
through gene coexpression network analysis, we found that
MYB125 is coexpressed and directly connected to 4CL3, CSE,
F5H, C3′H, PAL2, CCoAOMT1, PAL4, COMT1, and C4H2. These
results, together with the fact that MYB transcription factors are
known to play a role in the regulation of lignin biosynthesis, led
us to hypothesize that MYB125 is a potential “master regulator”
of the lignin biosynthesis pathway in P. deltoides.

It is important to mention that the SNPs located in MYB125
that are associated with its expression were not identified as signif-
icantly correlated with lignin content in our previous GWA study
(FDR=0.42) (Fahrenkrog et al. 2017a). This is most likely owing to
SNP effects not being of a sufficiently largemagnitude to be detect-
ed. The current study was designed in part to address some of the
shortcomings of our previous GWA study, in which we relied
solely on the detection of direct associations between genotype
and phenotype. Because in that study we had limited genotypic
data in noncoding sequences, we pursued the approach of inte-
grating transcriptome data to obtain additional supporting evi-
dence to pursue the analysis of genes that regulate complex traits
at the transcriptional level.

MYB125 is a transcriptional activator of the lignin biosynthetic

pathway in P. deltoides

Wood is the most abundant biomass on earth, mainly composed
of SCWs. The SCWs of xylem cells provide rigidity andmechanical
strength and enable efficient water conduction through the vascu-
lar system. The SCW is composed of cellulose microfibrils embed-
ded in a matrix of hemicellulose and lignin. The most abundant
components of SCWs and terrestrial biopolymers are cellulose
and lignin, accounting for ∼30% of the organic carbon present
in the biosphere (Ralph et al. 2004). In addition, lignin is also
the major contributor to the recalcitrance of biomass (Studer
et al. 2011), which considerably increases its processing cost and,
consequently, biofuel production. Because of the economic im-
portance in pulp and biofuel production, understanding the mo-
lecular mechanisms regulating SCW deposition not only is an
important topic in plant developmental biology but also is funda-
mental for providing molecular tools to manipulate wood compo-
sition for bioenergy use. Several studies have shown that SCW
biosynthesis is controlled by a transcription factor network, in-
cluding NAC and MYB transcription factors (Patzlaff et al. 2003;
Schrader et al. 2004; Andersson-Gunnerås et al. 2006; Legay
et al. 2007; Bomal et al. 2008; Zhong et al. 2008, 2011, 2013; Du
et al. 2009; Wilkins et al. 2009; McCarthy et al. 2010; Lu et al.
2013; Tian et al. 2013; Li et al. 2015; Zhong and Ye 2015; Yang
et al. 2017, 2019; Gui et al. 2019, 2020).

MYB transcription factors are at least one billion years old and
represent one of the largest plant transcription factor families

(Lipsick 1996). They are characterized by the presence of a highly
conserved MYB domain (required for DNA binding) in the N-ter-
minal of the protein and a modular and more diverse C-terminal
(responsible for the protein’s regulatory activity). The R2R3-
MYBs are the most common type of MYB transcription factor in
plants, and many of these are involved in plant secondary metab-
olism, including the phenylpropanoid pathway (Liu et al. 2015).
To date, R2R3-MYB genes have been extensively described in spe-
cies such as Arabidopsis (Stracke et al. 2001), maize (Du et al. 2012),
wheat (Zhang et al. 2012), rice (Jiang et al. 2004), eucalyptus (Soler
et al. 2015), and poplar (Wilkins et al. 2009). Among the 192 anno-
tated genes encoding R2R3-MYB transcription factors in the
Populus genome, only a small number involved in the regulation
of SCW biosynthesis have been functionally characterized (Li
et al. 2015).

Here we reported the role of MYB125 in activating the lignin
biosynthetic pathway. MYB125 is a homolog of Arabidopsis
MYB42 and MYB85, previously shown to be a positive regulator
of SCW biosynthesis (Zhong et al. 2008). Overexpression of
MYB125 in transgenic roots resulted in increase of lignin content
and a significant up-regulation of 4CL3, CSE, F5H, C3′H, PAL2,
CCoAOMT1, PAL4, and COMT1. Although MYB125 has not
beenassociatedwith lignin regulation inpoplar, it hasbeen shown,
in P. trichocarpa, to bind into the promoter and activate the ex-
pression of PAL4 and CCoAOMT1, Potri.010G224100 and
Potri.009G099800, respectively (Petzold et al. 2018b). Consistent
with our results, MYB92 (Potri.001G118800), a paralog of
MYB125,was shown to activate the expressionof the ligninbiosyn-
thetic genes and induce deposition of lignin in Populus tomentosa
(Li et al. 2015). We evaluated the expression and segregation of
MYB125 closely related homologs (MYB92, Potri.012G127700,
andPotri.015G129100). Among the three closely relatedhomologs,
onlyMYB125 andMYB92were expressed in xylem, and expression
ofMYB125 is on average 30 times higher than that ofMYB92 in the
population.We also evaluated the expression ofMYB92 in our data
and found that its expression is not as variable as MYB125
(Supplemental Fig. S13), showing limited segregation in the popu-
lation. Finally,we found that the correlationbetween expressionof
MYB125 and MYB92 is relatively low (R2 =0.22). Therefore, based
on these findings, we can argue that MYB125, and not MYB92, is
the cause of the effect observed in the phenotype (gene expression
of trans-regulated genes and lignin content).

The regulation of C3′H, CSE, and 4CL by MYB125 suggests
that this transcription factor could be a regulator of the lignin bio-
synthetic pathway branch in which CSE, in combination with
4CL, bypasses the second hydroxycinnamoyl transferase (HCT) re-
action (Fig. 5). CSEwas recently identified as an enzyme central to
the lignin biosynthetic pathway in Arabidopsis (Vanholme et al.
2013). CSE catalyzes the conversion of caffeoyl shikimate into caf-
feate and its activity, combined with that of 4CL to produce caf-
feoyl-CoA, bypasses the second/reverse reaction of HCT.

Furthermore, the role of CSE in lignification was confirmed
with a loss-of-function mutant showing reduced lignin content
and an increased relative proportion of H units in the lignin poly-
mer (Vanholme et al. 2013). Although it was initially suggested
that this enzymatic step was conserved in plants, it was later
shown that many unrelated species lack a bona fide CSE homolog.
Thus, CSE might not be essential for lignification in all plants (Ha
et al. 2016). In addition to Arabidopsis, the role of CSE in lignifica-
tion was also shown in Medicago truncatula (Ha et al. 2016) and
poplar (Saleme et al. 2017), for which cse plants showed lower lig-
nin levels and preferential accumulation of H units.
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In conclusion, we showed how the use of a system genetics
approach allowed the identification ofmaster regulators that could
not be identified by an eQTL study owing to the high rate of false-
negative results in genetic association studies. By combining eQTL
study with gene coexpression network analysis, we identified
MYB125 as a key regulator of the lignin biosynthetic pathway, like-
ly acting in the lignin biosynthetic pathway branch where CSE to-
gether with 4CL bypasses the second HCT reaction. In addition,
our study provided molecular evidence suggesting that MYB125
acts as a positive regulator of the lignin biosynthetic pathway in
vascular tissue. Finally, besides surveying the genetic regulation
of gene expression in differentiating xylem of a genetically unre-
lated population of P. deltoides, our study shows the importance
and applicability of a large-scale system genetics approach for
identifying candidate genes associated with complex traits.

Methods

Samples

The P. deltoides Bartr. ex Marsh (Eastern cottonwood) population
composed of 579 individuals was sampled in 15 states in the cen-

tral, southern, and eastern United States
and maintained at the University of
Florida. Out of the 425 unrelated indi-
viduals comprising the P. deltoides
association population, we clonally
propagated a set of 343 individuals
from apical green cuttings in a green-
house at the University of Florida as pre-
viously described (Fahrenkrog et al.
2017b). Half of the population was
grown in 2015 and the other half in
2016 in the same greenhouse, under
the same conditions and time of the
year (from April to August). Both exper-
iments were set with three biological
replicates, using a row–column design.
After 16 wk, we collected the xylem
from three biological replicates of 343
individuals after removing bark and
phloem. Xylem was immediately flash-
frozen in liquid nitrogen and stored at
−80°C until lyophilization and RNA
extraction.

RNA isolation

Lyophilized samples were ground using
stainless steel beads in a Geno/Grinder
tissue homogenizer (SPEX SamplePrep)
before RNA extraction. Total RNA
was extracted according to the CTAB-
LiCl protocol (Chang et al. 1993).
DNA contamination was removed using
TURBO DNase kit (Thermo Fisher
Scientific), and the RNA concentration
was measured using the Qubit RNA as-
say kit with a Qubit 2.0 fluorimeter
(Thermo Fisher Scientific). RNA purity
and integrity were evaluated by the
plant RNA nano kit for Bioanalyzer
(Agilent Technologies).

Library preparation and sequencing

NEBNext ultra directional RNA library prep kit for Illumina (NEB)
was used to generate the RNA-seq libraries following the manufac-
turer’s instructions. Briefly, mRNA was purified from 1 µg of total
RNA using poly(T) oligo–attachedmagnetic beads. ThemRNAwas
further fragmented, reverse transcribed, and amplified for 12 cy-
cles using dual indexes primers. The PCR products were purified
with an AMPure XP system (Beckman Coulter). The libraries
were quantified using a Qubit 2.0 fluorimeter and assessed for
quality and purity (Agilent Bioanalyzer 2100 system) before pool-
ing in equimolar proportions. Ninety-six libraries were pooled,
and each pool was sequenced in paired-end mode (2× 150 bp) us-
ing the HiSeq 3000 sequencing system (Illumina). Raw data and
normalized and filtered gene expression data have been deposited
in the NCBI Gene Expression Omnibus (GEO) (Edgar 2002) and
are accessible through GEO Series accession number GSE140232
(see Data access).

Sequencing data processing

RNA-seq FASTQ-files were quality and adapter trimmed using
Trimmomatic v0.32 (Bolger et al. 2014) with the parameters

Figure 5. Summary of the lignin biosynthetic pathway in higher plants. Enzymes are abbreviated as
follows: (PAL) phenylalanine ammonia-lyase; (C4H) cinnamate 4-hydroxylase; (4CL) 4-coumarate:CoA
ligase; (C3H) p-coumarate 3-hydroxylase; (C3′H) p-coumarate shikimate 3-hydroxylase; (HCT) shiki-
mate/quinate hydroxycinnamoyl transferase; (CCR) cinnamoyl-CoA reductase; (CAD) cinnamyl alcohol
dehydrogenase; (CSE) caffeoyl shikimate esterase; (COMT) caffeic acid O-methyltransferase;
(CCoAOMT) caffeoyl-CoAO-methyltransferase; (F5H) ferulate 5-hydroxylase. Enzymes in redwere found
to be directly connected to MYB125 in the gene expression network and to be differentially expressed
when MYB125 is overexpressed in poplar transgenic roots. The enzyme in green was not directly con-
nected to MYB125 in the gene expression network, but single regression analysis showed significant as-
sociation with the local-regulatory SNPs ofMYB125. The box includes the most recent step discovered in
the lignin biosynthesis pathway in plants.
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TRAILING:3, SLIDINGWINDOW:4:20, MINLEN:20. The prepro-
cessed reads were aligned to v3.0 of the Populus trichocarpa refer-
ence genome using STAR 2.5.2b (Dobin et al. 2013) using the
following parameters: “‐‐outFilterMismatchNmax 8 ‐‐sjdbOverhang
100 ‐‐outSAMtype BAM SortedByCoordinate ‐‐outSJfilterReads Unique
‐‐outSAMmultNmax 1 ‐‐outSAMattrRGline ID: < genotype > _ < rep
number > SM: < genotype > _ < rep number > -outFilterType BySJout.”
Picard v1.115 (https://broadinstitute.github.io/picard/) was used
to remove duplicate reads, and only unique alignments were
kept for further analysis. At the time of the RNA-seq data analysis,
only version 3.0 of the P. trichocarpa reference genome was avail-
able. Because an improved version of the genome assembly and
annotation has since became available (v4.0), we assessed any im-
pact that thismay have had in the data presented here, namely, on
the estimations of gene expression and definition of cis and trans
status of SNPs. Estimates of gene expression detected by aligning
reads to both versions of the genome resulted in transcript esti-
mates that are highly correlated (94%). Alignment of the sequence
of the genes discussed in this study to the version 4.0 of the P. tri-
chocarpa genome and of the cis and trans regulatory status of SNPs
remained unchanged in the newest version of the genome.

Transcriptome assembly and gene expression quantification

We used three transcript assembly platforms to maximize the
detection of novel genes: (1) Cufflinks version 2.2.1 (Bolger et al.
2014) with parameters “‐‐library-type fr-firststrand –u -F 0.05
‐‐max-intron-length 12000 ‐‐no-faux-reads”; (2) StringTie version
1.3.3 (Pertea et al. 2016) with parameters “-f 0.05 -j 2 –rf”; and
(3) Trinity version 2.3.2 (Grabherr et al. 2011) in genome guided
mode with parameters “‐‐genome_guided_bam< input bam file>
‐‐genome_guided_max_intron 12000 ‐‐full_cleanup ‐‐SS_lib_type RF
‐‐min_contig_length 50.” The resulting transcripts detected for
each sample using Cufflinks and StringTie were merged with
StringTie with parameters “-F 1 -f 0.05.” We used PASA 2.0.2
(Haas et al. 2003) to combine thismerged assembly and the assem-
bly generated by Trinity using parameters “-C –R -t<Trinity fasta
output> ‐‐cufflinks_gtf <merged gtf file > -I 12000 ‐‐ALT_SPLICE ‐‐

ALIGNER gmap,blat.” The final assemblies for each sample were
merged with Cuffmerge to generate the master transcriptome rep-
resentative of all transcripts in the population. The master tran-
scriptome was reformatted and annotated using gffcompare
version 0.9.9c (https://github.com/gpertea/gffread) and subjected
to expression filtering to remove artifacts generated bymerging as-
semblies such that each transcript in the assembly was required to
be expressed at FPKM≥3 in at least two of the three biological rep-
licates of at least three individuals and 50 observations.

Gene expression was measured using Cufflinks version 2.2.1
(Bolger et al. 2014). Cufflinkswas runwith the –Goption to disable
novel transcript detection, and themaster transcriptomedescribed
above was used as a reference to quantify against. The Cufflinks
output GTF file was parsed to obtain the expression of each iso-
form of a gene, and the sum of all of the isoforms’ expression val-
ues were used to represent the expression of that gene.

Adjustment of gene expression by systematic effects of the

experiments

We used a standard linear mixed effect model to correct the gene
expression data for the systematic effects of the experiment.
Separate models were fitted to each one of the genes. The response
was abundance (FPKM), and the model included an intercept, the
fixed effect of the experiment, and the random effect of the geno-
type, row, and column within the experiment. Models were fitted
using the lmer function of the lme4 R-package (Bates et al. 2015).

From the fitted model, we extracted the best linear unbiased esti-
mates (BLUEs) of the FPKM for each genotype as the sum of the
best linear unbiased predictor (BLUP) of the genotype effect plus
the average residuals.

Heritability estimation

The mixed-effects model above described also rendered estimates
of variance parameters for each of the random effects, including
genotype (s2

g ), row (s2
r ), column (s2

c ), and errors (s2
1 ). From those,

we estimated gene-specific heritabilities using

h2 = s2
g

s2
g + s2

r + s2
c + s2

1

.

The empirical distribution of the genes’ heritability is dis-
played in Supplemental Figure S1.

Subsequently, we conducted 10,000 permutations of the
data, from which we approximated the distribution of the gene-
specific heritabilities under the null hypothesis, s2

g = 0. This was
performed by permuting the genotype ID while maintaining the
rest of the data structure unchanged.

For the subsequent analyses, we used only the genes with es-
timated heritability greater than the 99th percentile of the corre-
sponding permutation distribution. A total of 12,579 satisfied
that criteria.

SNP liftover from P. trichocarpa hybrid genome to P. trichocarpa V3
coordinates and SNP filtering

A collection of 358,809 high-quality SNPs identified by
Fahrenkrog et al. (2017b) using a hybrid Populus genome assembly
were converted to locations in the P. trichocarpa v3.0 reference
genome assembly using a modified liftOver pipeline (http://
genomewiki.ucsc.edu/index.php/Minimal_Steps_For_LiftOver). This
pipeline extracts the sequence flanking a SNP from the genome
it was identified in and aligns the sequence to the genome one
wishes to convert the SNP coordinates. In total, 313,036 of
the 358,809 SNPs were converted to P. trichocarpa v3 reference ge-
nome coordinates using this pipeline. A stepwise walkthrough of
this pipeline can be found at GitHub (https://github.com/
jdLikesPlants/SNP-liftover). We also filtered out SNPs that depart-
ed from Hardy–Weinberg equilibrium by filtering out SNPs with a
P-value <0.01 on a chi-square test. Finally, we further filtered the
SNP set to remove SNPs with MAF below 0.05, mean sequencing
depth in the population below 8, genotype quality below 20,
andmissing data percentage in the population >75%. This resulted
in a total of 68,885 SNPs that were used for the analysis herein
described.

Expression QTL analysis

The BLUEs for each gene expression were combined with the fil-
tered SNPs and jointly analyzed to identify eQTLs. To avoid having
an excess of false discoveries, the FPKMBLUESwere further adjust-
ed by the first five principal components, which were derived us-
ing scaled and centered SNP genotypes. Subsequently, we
regressed the adjusted FPKM on each of the SNPs using an ordinal
least squares (OLS) regression that had the adjusted FPKMas the re-
sponse variable and a SNPas the predictor. From this regression,we
extracted association P-values for all gene–SNP combinations. We
used the p.adjust function of R 3.2.2 (R Core Team 2019) to obtain
the FDR-adjusted P-values considering the method proposed by
Benjamini and Hochberg (Benjamini and Hochberg 1995). Final
inferences were thus based on FDR-adjusted P-values.
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Partition of the gene variance into cis and trans components

We estimated the overall proportion of variance of FPKM ex-
plained by the SNPs and its cis and trans-regulation components
for all mapped genes. To this end, for each gene, SNPs were classi-
fied as being in cis (covering the gene region plus 1 Mbp upstream
of or downstream from the transcription start site of the tested
gene) (Cubillos et al. 2012; Zan et al. 2016; Azodi et al. 2020) or
trans (elsewhere); all the SNPs that passed the quality control
were used in the analyses. Subsequently, for every gene we fitted
a “GBLUP” model with adjusted FPKM as response and two ran-
dom effects, one (uLi) capturing the total effect of the SNPs in cis
(local) and another one (uDi) capturing the joint effects of the
SNPs trans (distant), that is

yi = m+ uLi + uDi + 1i.

The genomic effects of local and distant SNPs were assumed
to follow a multivariate normal distribution (MVN) with a mean
equal to zero and variance–covariance matrix proportional to ge-
nomic relationship matrices (G.) derived from the SNPs local
(GL) and distant (GD) to the gene. The genomic relationshipmatri-
ces were computed using the getG function of the BGData R-pack-
age (Grueneberg and de los Campos 2019). Thus, the joint
distribution of the data and the random effects were

uL

uD

1
y

⎡
⎢⎢⎣

⎤
⎥⎥⎦MVN 0,

GLs
2
L 0 0 GLs

2
L

0 GDs
2
D 0 GDs

2
D

0 0 Is2
1 Is2

1

GLs
2
L GDs
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2
D + Is2

1

⎛
⎜⎜⎝

⎞
⎟⎟⎠

⎛
⎜⎜⎝

⎞
⎟⎟⎠.

The above-described model was implemented in a Bayesian
setting using the BGLR R-package (Pérez and de los Campos
2014) using the default prior settings, 35,000 iterations, a burn-
in of 5000, and a thinning of 5.

From the variance parameters, we estimated the proportion of
the phenotypic variance of each gene explained by SNPs local and
distant to the gene, that is,

h2
L = s2

L

s2
L + s2

D + s2
1

and

h2
D = s2

D

s2
L + s2

D + s2
1

,

respectively.

Weighted gene coexpression network analysis

Coexpression network analysis was performed using the R package
WGCNA (Langfelder and Horvath 2008). Briefly, the gene coex-
pression networkwas constructed from the pairwise Pearson corre-
lation coefficients for all gene–gene comparisons using an
unsigned network and soft thresholding power of eight, which
was the smallest threshold that resulted in a scale-free topology
(R2 > 0.9), a minimum module size of 30, a maximum block size
equal to the total number of genes, and the other parameters set
as default. The topological overlap matrix (TOM) was further gen-
erated using the TOMsimilarity function. A dissimilarity matrix
based on TOM (1−TOM) was used to identify network modules
through a dynamic tree-cutting algorithm (Langfelder et al.
2008). Enrichment analyses for GO categories and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway was per-
formed using the Populus Genome Integrative Explorer
(PopGenIE) platform in PlantGenIE.org (Sjödin et al. 2009). The

enrichment analyzes were performed using all the genes as a back-
ground, in part because our data suggest that a large proportion of
poplar tree genes are expressed in the differentiating xylem.
Finally, the gene coexpression network was visualized and ana-
lyzed by Cytoscape 3.7.1 (Shannon 2003).

After the initialmodules were generated using the default, the
output was manually curated by inspecting each module for their
eigengene values. In this step, we noticed that the modules black
and red showed a similar expression pattern and showedKEGGen-
richment for lignin biosynthesis genes. Thus, the genes presented
in the modules black and red were used to construct a new coex-
pression network. The analyzes were performed as described above
but using a soft thresholding power of seven.

Generation of transgenic poplar hairy roots

For transgenic hairy root generation, we followed a protocol previ-
ously described (Yoshida et al. 2015). Briefly, we excised leaves
from in vitro grown P. tremula×P. alba clone INRA 717-1-B4 plants
and placed them on preculture solid medium (0.25 g of MES, 0.1 g
of myo-inositol, 30 g of sucrose, and 4.33 g of MS salts in 1 L at pH
5.7). The leaves were wounded by cutting the veins gently before
transformation with Agrobacterium rhizogenes carrying a binary
plasmid vector containing the coding sequence of MYB125 under
the control of Actin2 promoter. The construct also contained a
fluorescent marker (TdTomato) for rapid detection of transgenic
roots. The binary vector construct was assembled using Golden
Gate Modular Cloning (Engler et al. 2014). Hairy roots arising
from transformed leaves were excised and maintained in the
dark at 25°C in petri dishes on solid antibiotic-containingmedium
(cefotaxime 200 mg/mL, Timentin 200 mg/mL). Individual hairy
roots clones were subcultured every 21 d. Screening for positive
transformants was conducted by TdTomato detection under fluo-
rescentmicroscope.Wild-type and transgenic roots were harvested
and immediately frozen in liquid nitrogen for total RNA extraction
and lignin content measurement.

RT-qPCR expression analysis of MYB125 and genes of lignin

biosynthesis pathway in WT and transgenic roots of poplar

Five-to-eight WT and transgenic roots (∼3 g) were pooled to gen-
erate one biological replicate. Roots were ground in liquid nitro-
gen and divided in two samples containing ∼1.5 g of ground
tissue each (one sample was used for RNA extraction and the sec-
ond sample for cell wall isolation). Total RNA was extracted ac-
cording to the CTAB-LiCl protocol (Chang et al. 1993) and
treated with DNase to remove genomic DNA contamination.
Quantitative reverse transcription–polymerase chain reaction
(RT-qPCR) analyses were performed using a Luna universal probe
one-step RT-qPCR kit (New England Biolabs) following the man-
ufacturer’s instructions, using 200 ng of total RNA. Gene expres-
sion levels were assessed in three independent biological
replicates. The relative expression of each sample was determined
after normalization to Actin2 using the relative standard curve
method (Larionov et al. 2005). Actin2 was chosen based on a pre-
vious study that showed that it does not show significant varia-
tion in expression among different tissues in poplar and one of
the smallest residue values on average among the housekeeping
genes tested (Brunner et al. 2004). Means of different groups
were compared and analyzed using a one-tail Student’s t-test.
Differences were reported as statistically significant when P-val-
ue < 0.05. Sequences of gene-specific primers used in the experi-
ment are found in Supplemental Table S9.
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Cell wall isolation and measurement of acetyl bromide lignin

Cell wall material (alcohol insoluble residue [AIR]) was obtained
from three independent biological replicates ofWT and transgenic
roots as previously described (Barnes and Anderson 2017). Briefly,
ground tissue (1.5 g) from each sample was freeze-dried, and 100
mg of dried sample was washed with 70% (v/v) ethanol followed
by washing with chloroform/methanol (1:1 v/v) and 100% ace-
tone. The pellet was air dried to obtain the AIR. To remove starch
from the sample, the AIR pellet was resuspended in 0.1 M of
sodium acetate (pH 5.0) and heated for 20 min at 80°C . The ice-
cooled samples were further digested with α-amylase (0.5 U/mg
AIR, from Bacillus species, Sigma-Aldrich) and pullulanase (0.3
U/mg AIR, from Bacillus acidopullulyticus, Sigma-Aldrich) over-
night at 37°C under gentle shaking. The pellet was washed three
times with water and once with acetone. The pellet was air dried,
and AIR samples (2 mg) were incubated with 100 µL of freshly
made acetyl bromide solution (25% v/v acetyl bromide in glacial
acetic acid) for 4 hwith vortexing every 15min at 50°C. After com-
plete digestion, samples were cooled down, and 400 µL of 2M
NaOH, 70 µL of freshly prepared 0.5Mhydroxylamine hydrochlo-
ride, and glacial acetic acid (to complete 2 mL) were added to into
the samples. After inverting the tubes several times to mix, 200 µL
of the solutionwas transferred into aUV-specific 96-well plate. The
ABSL was calculated from the UV absorbance at 280 nm using a
molar extinction coefficient of 18.21 g−1 L cm−1 and a 0.539-cm
path length, according to the following formula:

% ABSL = abs
(18.21 × 0.530 cm)

× (2 mL × 100%)
weight (mg)

.

Means of different groups were compared and analyzed using
a one-tail Student’s t-test. Differences were reported as statistically
significant when P-value<0.05.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) (Edgar 2002) under acces-
sion number GSE140232. All significant associations are available
at Dryad Data set (https://doi.org/10.5061/dryad.12jm63xt6).
Custom scripts are available in the Supplemental Material.
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