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Abstract: Iron is a key transition metal required by most microorganisms and is prominently utilised
in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and
becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural
environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection,
the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron
is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host.
Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting
factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully
characterised, with key components of these systems having major roles in virulence. Most recently,
proteins involved in these pathways have been linked to the development of antifungal resistance.
Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic
fungi, and the role iron may have on the development of resistance to antifungals with emphasis on
species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.

Keywords: fungal pathogens; fungal infection; metal homeostasis; antifungal resistance; zygomycetes;
mucoromycotina; mucoromycetes; Mucor; Rhizopus; Lichtheimia

1. Introduction

In biology, iron is an essential micronutrient for almost all eukaryotes and most prokaryotes [1].
Iron is the fourth most abundant trace element in the environment, but the bioavailability (Fe2+) is limited
due to oxidation into the insoluble ferric hydroxides (Fe3+) by atmospheric oxygen [2]. In this state,
iron has a solubility of approximately 10−9 M at neutral pH [3]. Nonetheless, the involvement of iron
in numerous important metabolic processes and as enzyme cofactors is due to its capacity for electron
exchange [4]. This transition metal is required in DNA, RNA and amino acid synthesis, oxygen transport,
cellular respiration (iron-sulphur cluster (Fe-S) containing ferredoxins, haem-containing cytochromes),
enzymatic reactions such as Fe-S proteins, e.g., fumarase and aconitase of the tricarboxylic acid cycle
(TCA cycle) [5–7]. Although it is a key trace element, iron also presents a danger to biological systems.
Iron (Fe2+) triggered Fenton reaction produces reactive oxygen species (ROS) such as superoxide
(O2•

−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•) (Equation (1)) [8]. Hydroxyl radicals
produced during these reactions are deleterious and can damage cellular components such as DNA,
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proteins, and lipids [9]. Due to the redox property of iron, it is imperative that organisms have tightly
regulated homeostatic mechanisms to maintain enough intracellular iron while actively avoiding the
detrimental effects of excess iron [10].

Fe3 + O2• → Fe2 + O2

Fe2+ + H2O2→ Fe3+ + OH• + OH−

Net Reaction: O2•
− + H2O2→ OH• + OH− + O2

(1)

In low iron environments, cells employ strict iron usage called the iron-sparing response,
which allows small concentrations to be used in essential enzymatic processes [11]. High-affinity
acquisition systems are expressed under these conditions, which allows for the rapid and efficient
uptake of iron [3,12]. Under high-iron conditions, these uptake systems are repressed, and excess iron
is stored in intracellular compartments, e.g., vacuole or ferritin in mucoralean fungi [3,13–15].

In the host, iron is kept extremely low (i.e., <10−24 M for Fe3+ in serum), and other trace metals,
are usually bound to proteins [16]. During infection, iron is further restricted by numerous host
mechanisms [17]. These mechanisms function by actively chelating extracellular Fe3+ to high-affinity
iron-binding proteins such as glycoproteins, transferrin, and lactoferrin, including intracellular
sequestration by haemoglobin, ferritin, cytochromes, and the hepcidin axis, to name a few [2,18].
These elegant pathways and mechanisms for controlling systemic iron concentrations are known as
nutritional immunity, and its importance in the host immune response to infections has been thoroughly
described [2,17,19].

Invading fungal pathogens must overcome these limitations to access host iron and other
key metals such as zinc, copper, manganese, and nickel to proliferate and cause disease.
As such, healthy individuals are usually not susceptible as their immune system is robust [17].
On the other hand, fungal pathogens can cause debilitating and devasting diseases to various patient
groups, especially among those who are immunocompromised or hospitalised with severe underlying
conditions [20,21]. Those at high risk include patients undergoing haematopoietic stem cell (HSCT),
solid organ transplant recipients (SOTs), AIDS patients, those receiving antilymphocyte monoclonal
antibodies, and other immunomodulators, as well as patients with other underlying diseases
associated with immune dysfunction [20,21]. Opportunistic fungal infections are underappreciated
in comparison to bacterial, viral, and parasitic infections [22]. With the current advancements in
medicine and the increasing cohort of immunosuppressed individuals, the mortality rate caused by
fungal infections is on a constant rise [23]. For instance, Candida albicans and other Candida species
are the most common fungal pathogens responsible for superficial mucosal infections as well as
life-threatening systemic diseases [24]. Cryptococcus neoformans is the most important opportunistic
pathogen in HIV/AIDS patients. Although access to antiretroviral therapy (ART) has improved
globally, the number of cryptococcal infections remains high, with an estimated 278,000 reported
cases worldwide and a mortality rate of approximately 81% [24–28]. Aspergillus fumigatus and other
pathogenic Aspergillus species cause a wide spectrum of diseases known as aspergilloses. These include
allergic bronchopulmonary, chronic pulmonary, and invasive aspergillosis [29]. As fungi cause serious
opportunistic infections, there is a new precedent for novel approaches in treatment options, as the
range remains limited and there are increasing reports of resistance [30].

In this review, we aim to highlight the most recent advancements in our understanding of iron
acquisition and metabolism in fungi: (1) the reductive pathway, (2) haem and haemoglobin utilisation
(including transferrin, ferritin, and lactoferrin), and (3) ferric iron acquisition from siderophores.
Our expanding knowledge in Mucorales will be briefly updated. In addition, we will also explore
the role of iron in antifungal therapies as well as innate and emerging resistance to current first-line
therapies. Recently, this area has received renewed interest, as iron assimilation is linked to the response
to antifungal treatment in the Mucorales [31–33].
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2. The Reductive System for Iron Uptake

The mechanism for iron acquisition and homeostasis has been well documented in the model
organism Saccharomyces cerevisiae, which established the foundations for further studies in fungal
pathogens [34]. There are two main mechanisms for iron uptake in S. cerevisiae, the reductive high
affinity (HA) and non-reductive systems [35,36]. The reductive HA pathway involves three sequential
steps: (i) the initial reduction of ferric (Fe3+) to ferrous (Fe2+) iron by a dedicated membrane-bound
ferric reductase encoded by FRE1 and FRE2 genes; (ii) the re-oxidation to ferric iron (Fe3+) by the
multicopper ferroxidase (ferroxidase) encoded by the FET3 gene; and (iii) the import of the insoluble
ferric iron (Fe3+) by the high-affinity iron permease encoded by the FTR1 gene [37–39] (Figure 1).
The non-reductive system involves the use of siderophores (xenosiderophores) that bind iron, which are
then translocated across the membrane via specific/specialised transporters. This will be discussed
later [37,40,41].
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Figure 1. General strategies for iron acquisition in pathogenic fungi. (A) the reductive system
responsible for iron assimilation via reduction and oxidation followed by transport into the cytoplasm
via specialised iron permeases; (B) haem -iron uptake and degradation, which facilitates iron chelation
from haemoglobin and haem -proteins; (C) siderophore uptake system that allows for iron acquisition
from a spectrum of siderophores and xenosiderophores (figure adapted from [40]).

Fungal pathogens such as C. neoformans, C. albicans and A. fumigatus as well as pathogenic
Mucorales, i.e., Rhizopus arrhizus (syn. R. oryzae, R. delemar), Mucor circinelloides and
Lichtheimia corymbifera possess a reductive iron uptake system [42]. This system has highly
conserved orthologs of the three major components, i.e., surface ferric reductases, ferroxidases
and permeases similar to those identified in S. cerevisiae [34,35,43]. For these pathogens, the reductive
HA pathway is important for releasing ferric iron bound to other complexes, e.g., transferrin, ferritin,
or siderophores [44–48]. The latter organism, L. corymbifera, has recently been shown to have
conserved orthologs belonging to this system [49]. It has been demonstrated that the ferric reductases
are also involved in intracellular iron transport and storage of iron when present on the vacuole
membranes [50,51]. The ferric reductases encoded by the FRE genes are integral membrane proteins
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that require NADPH, flavin mononucleotides (FMN), and haem for their activity. The oxidation
of cytoplasmic NADPH is catalysed by these ferric reductases, which then transfer the electron
across the plasma membrane to facilitate the reduction of metals, e.g., iron [52–54]. It has also
been shown that these reductases have cupric reductase activity, and they can facilitate the use of
siderophore-bound iron [35,44,45,52,55]. Eight putative ferric reductases have been identified in
C. neoformans; these are FRE1–FRE7 and FRE201 [52]. The transcription of FRE2 and FRE4 is regulated
by FeCl3 or haemin, which indicates that these genes may have an important role in iron homeostasis
during iron-starvation. Saika et al., 2014 demonstrated that Fre2 is essential for fungal growth in
the presence of transferrin and haem and contributed to virulence in mouse inhalation model of
cryptococcosis [52]. Copper also plays a role in the transcriptional regulation of the FRE genes in
C. neoformans, C. albicans, and S. cerevisiae [52,53,56–58].

As previously mentioned, the next stage in the reductive iron uptake system involves the
transport of the reduced iron by the high-affinity ferric transporters. This transport system requires
the dual-protein complex consisting of the ferroxidase Fet3 and the permease Ftr1. The ferroxidase,
Fet3, catalyses the oxidation of ferrous (Fe2+) to ferric iron (Fe3+), which is immediately transported
into the cell by the permease Ftr1 [59]. Components of the reductive iron uptake system have
been identified and characterised in numerous opportunistic fungal pathogens, most of which are
thoroughly summarised in the following review [60]. Characterised and putative homologs of the
reductive pathway components have been identified in pathogenic Mucorales and are summarised
in Table 1. To date, five genes—FET3, FET31, FET33, FET34, and FET99—have been identified in
C. albicans that are orthologs to the S. cerevisiae FET3 gene [44,61]. Under iron starvation, it has been
shown that both FET3 and FET34 and the permease FTR1 are regulated. FET34 has an important
role in iron acquisition, hyphal growth, and virulence in murine models of systemic candidiasis [62].
Ftr1 and the ferric reductase Fre10 may be involved in iron acquisition from host proteins, i.e.,
ferritin and transferrin [45,63,64]. Interestingly, virulence in a mouse model of systemic candidiasis
is attenuated in FTR1 knockouts, and this strongly indicates that the permeases are key virulence
determinants [3,44,45,63].

Table 1. Reductive iron acquisition system in Saccharomyces cerevisiae and pathogenic Mucoralean species.

Component Species Gene Functions Ref

Ferric
reductases

Saccharomyces
cerevisiae FRE1, FRE2 Ferric iron reduction at the cell surface [3,36,65]

Rhizopus spp. FRE (homolog) Putative protein—ferric iron
reduction at the cell surface [48,66]

Mucor
circinelloides FRE (homolog) Putative protein—ferric iron

reduction at the cell surface [47,67]

Lichtheimia
corymbifera

FRE5 (homolog)–three
copies

Putative protein—ferric iron
reduction at the cell surface [49]

Multicopper
ferroxidase

S. cerevisiae FET3
Multicopper-oxidase Ferrous iron
oxidation and high-affinity uptake

coupled with Ftr1 (permease)
[3,55,65,68]

Rhizopus spp. FET3 homolog Putative multicopper oxidase [48]

M. circinelloides FETA, FETB, FETC Ferrous iron oxidation and
high-affinity iron uptake [47]

L. corymbifera FET3/5 homolog–three
copies Putative multicopper oxidase [49]

Iron permease S. cerevisiae FTR1 High-affinity iron uptake, coupled
with FET3 (multicopper oxidase) [3,59,68–70]

Rhizopus spp. FTR1 High affinity iron permease [65,71,72]

M. circinelloides FTR1 (homolog) Putative iron permease [47,73]

L. corymbifera FTR1 (homolog)—four
copies Putative iron permease [49]
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The components of the reductive iron uptake system are also present in A. fumigatus. These include
the cell-surface ferric reductases, ferroxidases (FetC), and the iron permease (FtrA). Like C. albicans Ftr1,
the FTRA gene of A. fumigatus is also expressed under iron starvation. Mutants with an inactivated
FTRA gene showed no difference in growth on iron-depleted medium and in virulence models
compared to wild-type A. fumigatus, thereby indicating that the permease is not a virulence factor
in A. fumigatus [74,75]. In Mucorales, this system was shown to be strongly regulated, particularly
in low iron conditions [47,48]. Recently, it was demonstrated that there is overexpression of the
ferroxidases (FET3) in the lung of mice confronted with invasive M. circinelloides [47]. In addition,
there are three characterised copies of FET3 (Table 1.) in M. circinelloides, which were identified as
FET3A, FET3B, and FET3C, with the latter being the most important for infection [47]. Single and
double knockout strains of the FET3 genes were also shown to be critical components involved in iron
uptake, particularly in low iron conditions both in vitro and in vivo [47]. In R. delemar, the complete
deletion of the iron permease (FTR1) results in reduced virulence [48,66]. Interestingly, iron starvation
induces the metacaspase dependent apoptotic response in strains lacking FTR1 [48]. In addition,
there remains the possibility that the reductive pathway and the iron permeases (Ftr1) in Mucorales
may also have a role in scavenging iron from other host proteins, e.g., ferritin or transferrin [40,64,76].
These examples highlight the importance of the reductive pathway has in survival and virulence under
iron starvation.

3. Haem and Haemoglobin Utilisation

In the host, approximately 60–70% of the iron is bound to haem in haemoglobin, as well as
other haem-containing proteins [77,78]. Other host-proteins that bind iron include haemopexin,
haptoglobin, lactoferrin, lipocalin-1, and lipocalin-2. Additionally, intracellular iron is bound to ferritin,
the second-largest reservoir of iron, and transferrin [78–80]. This sequestration of iron to specific
proteins prevents the iron-dependent catalysis of free radical cascades and the production of toxic
components [2]. Importantly, this mechanism restricts iron availability to invading pathogens [19].
Consequently, the ability of a fungal pathogen to sequester iron from different host iron-containing
proteins for growth and proliferation is a key virulence determinant [81]. It has been thoroughly
demonstrated that C. albicans has a mechanism to obtain iron from haem and haemoglobin that is
independent of both the reductive and non-reductive systems, i.e., xenosiderophore transport [82,83].
The ability to utilise haem/haemoglobin depends on the conserved family of common in several fungal
extracellular membrane proteins or CFEM proteins, which has an eight cysteine-containing domain:
Rbt5, Rbt51/Pga10, Pga7, and the secreted haemophore, Csa2 [81,84–89]. The currently accepted model
for haeme/haemoglobin uptake suggests that there is a cooperation between Rbt5 and Pga7 [40]. The cell
wall-associated Rbt5 facilitates diffusion of haem/haemoglobin across the cell wall and thus accessible
to Pga7, which allows internalisation of haem/haemoglobin by endocytosis [81,90]. This model was
supported by individual mutants lacking Rbt5 and Pga7, respectively [81,90,91]. Mutants of the latter
exhibited significant growth deficiencies in medium containing haem or haemoglobin as the only
iron source. In a mouse model of systemic infection, this mutant was attenuated for virulence [90].
Csa2, is another CFEM protein that is also required for C. albicans growth on haemoglobin. Structural
resolution of the Csa2 protein has identified a novel six α-helix motif with a hydrophobic platform,
which may facilitate attachment of planar haem molecules [81,87,90]. This work added to the model for
haem-iron transport in C. albicans, where haem is cleaved from haemoglobin by Csa2, transferred to the
CFEM proteins Rbt5 and Pga7 for internalisation by endocytosis [81,84,85,87,90]. Pinksy et al., 2020
recently demonstrated that C. albicans strains lacking CSA2 and RBT5 utilise haemoglobin at a weaker
rate in comparison to the wild type. Importantly, mutants lacking PGA7 were unable to utilise
haemoglobin as a sole iron source in vitro [91]. The addition of human serum albumin (HSA) with
haemoglobin restored growth in CSA2 mutants similar to the wild type. However, HSA did not
rescue growth in RBT5 and PGA7 mutants [91]. Growth of the CSA2 mutants on haemin was
similar to the wild type with or without HSA, while mutant RBT5 strains showed slightly improved
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growth in the presence of HSA. In contrast, HSA added with haemin completely abolished growth
of PGA7 mutants. However, growth is seen when higher concentrations of haemin are used as
the only iron source. These results strongly indicate that the Pga7 protein is an essential member
of the CFEM haemophore cascade and it is required for the uptake/utilisation of albumin-bound
haemin [91]. Their results also showed that C. albicans cannot utilise haem bound to haemopexin
(serum haem-binding protein). Adding further to haem utilisation, the expression of only Rbt51 is
enough to confer the ability to use haemoglobin in S. cerevisiae [81,92]. Mutants of RBT51 in C. albicans
grow poorly on either haem or haemoglobin [81,85]. Other pathogenic Candida species can utilise haem
and haemoglobin to various degrees. For example, C. auris, C. parapsilosis, and C. tropicalis can grow on
haem and haemoglobin, but C. glabrata and C. krusei cannot use these iron sources [76,81,86,91,93,94].
Interestingly, anti-Rbt51 antiserum reacted with lysates from C. parapsilosis and C. tropicalis but was
non-reactive with lysates from C. glabrata and C. krusei. The inability of C. glabrata to exploit haem or
haemoglobin suggests that this pathogenic fungus is not well adapted to the host microenvironment, i.e.,
alkaline pH [76,81,95]. C. neoformans can also utilise haem as an iron source [96–99]. This is facilitated
by the endosomal sorting complex required for transport or ESCRT-I protein Vps23, which is involved
in haem uptake e.g., by endocytosis [99]. Other proteins involved in haem utilisation include Vps22,
and Vps20/Snf7, which are components of the cytosolic protein complexes ESCRT-II and ESCRT-III,
respectively [96,98,99]. Recently, Bairwa et al., 2019 confirmed additional proteins involved in the
clathrin-mediated endocytosis (CME) of haem/haemoglobin by C. neoformans [100]. Their work strongly
suggested that the clathrin heavy chain (Chc1) protein (a component of CME), may have a central role
in the uptake and trafficking of haem/haemoglobin. This was demonstrated by the impaired ability of
strains lacking the CHC1 gene to internalise haemoglobin. Additionally, CHC1 mutants were unable
to grow in medium containing haemin or haemoglobin as the sole iron source [100]. Furthermore,
the loss of CHC1 abolishes growth at 37 ◦C, which is a key virulence determinant for C. neoformans
infection. Other components of the CME pathway involved in haem/haemoglobin utilisation include
the Las17 protein, which is the yeast homolog of the Wiskott-Aldrich Syndrome (Wasp) protein in
mammals, and the amphiphysin-like lipid raft proteins Rsv161 and Rsv167. Similar to the CHC1
mutants, strains lacking LAS17, RSV161 and RSV167 showed impaired growth on haemin containing
medium. Mutants of LAS17 were unable to utilise iron from haem and showed increased survival in
preliminary in vivo mouse models. As such, these results indicate that the CME pathway may have
an important role in haem utilisation, growth and virulence of C. neoformans in vivo [100]. Although
haem/haemoglobin utilisation has yet to be demonstrated in Mucorales, putative haem oxygenase
genes have been identified in R. arrhizus and L corymbifera [101,102].

4. Siderophore Uptake

Siderophore uptake is a non-reductive iron uptake pathway that contributes to iron acquisition in
fungi [40]. Siderophores are small-molecules (usually <1 kDa) that are high-affinity ferric iron chelators
secreted by fungi and used as another indirect strategy to sequester iron from all available sources in the
environment and in the host [103,104]. In some opportunistic fungal pathogens, i.e., Mucorales, the use
of siderophores as therapy directly predisposes to infection [105,106]. Siderophore molecules can be
divided into three main classes, depending on the chemical nature of the group donating the oxygen
ligands for Fe3+; these are the catecholates, hydroxamates, and α-hydroxy carboxylates [107,108].
However, other siderophores containing more complex structures which integrate at least two classes
into one molecule, are classified as mixed-type siderophores [108,109]. Representative structures of the
three main classes are illustrated in Figure 2.
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Most fungi can synthesise and secrete siderophores that bind ferric iron with extremely high
affinity and specificity [110–112]. This iron-binding event, specifically for Fe3+, has a dissociation
constant of approximately 10−29 M, significantly greater than other biologically relevant iron-binding
ligands in nature [3,112,113]. It is worth noting that the majority of the siderophores synthesised by
fungi belong to the hydroxamate class [29,114]. A notable exception is rhizoferrin, a carboxylate-type
siderophore that is produced by various Mucorales [29,107,115]. In siderophore-producing organisms,
the production of one or more of these compounds is associated with iron starvation (intracellular iron
concentration < 10−6 M), which has effects on growth [104,111]. Upon secretion, siderophores form
stable, extracellular complexes with Fe3+. Once iron-bound, the complex can be directly transported
by the membrane-bound siderophore-transporters or the entire complex undergoes reduction and
oxidation, next the iron (Fe3+) is then transported by the Ftr1 of the reductive pathway [113,116].
However, the reductive pathway functions more efficiently in the presence of high concentrations
of siderophore-bound iron [3,116]. Numerous fungi express siderophore transporters capable of
transporting xenosiderophores, i.e., siderophores produced by other fungal species or bacteria
(Table 2) [92,117].

Table 2. Components of the siderophore transport system in S. cerevisiae and in pathogenic
Mucoralean species.

Organism Transporter Function Siderophore
Substrate Publication

S. cerevisiae Arn1
Ferrichrome and
Ferrichrome A

transporter

Ferrichrome and
Ferrichrome A [3,103,118–120]

Arn2/Taf1p
Triacetylfusarinine

C (TAFC)
transporter

TAFC [3,118,119]

Arn3/Sit1p
Ferrichrome and
Ferrichrome A

transporter

Ferrioxamine B,
Ferrichrome A,
Ferrichromes,

Ferricrocin,
Ferrichrycin,

Ferrirhodin and
Ferrirubin

[3,118,119]

Arn4p/Enb1p Enterobactin
transporter Enterobactin [3,118,119,121]

R.arrhizus
(syn. R. oryzae,

R. delemar)
Fob1, Fob2 Ferrioxamine

binding Ferrioxamine B [48,71]

L. corymbifera Fob1 (putative
protein)

Ferrioxamine
binding Ferrioxamine B [49]

The utilisation of xenosiderophores is advantageous to pathogenic fungi as it means this
facilitation, binding, and transport provides better access to iron for growth and proliferation in
the host [60,103,113,122,123]. S. cerevisiae, C. albicans, and C. neoformans do not synthesise their
own siderophores but can utilise several xenosiderophores produced by other organisms, e.g.,
ferrichrome [110,124]. Early studies in S. cerevisiae provided a clear model for the uptake mechanisms for
xenosiderophores via the Arn/Sit transporters belonging to the major facilitator superfamily [3,35,55].
This family of transporters identified as Arn1, Arn2/Taf1, Arn3/Sit1, and Arn4/Enb1, each show
specificity for the different classes of siderophores produced by fungi and bacteria [111]. The Arn1
proteins transport ferrichrome, other hydroxamates of the ferrichrome-type, and coprogen [125].
Arn2/Taf1 specifically transports triacetylfusarinine C (TAFC) [118,125]. The Arn3/Sit1 membrane
proteins exhibit a broad substrate specificity in comparison to the other transporters, as it recognises
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a variety of ferrichromes, coprogen as well as bacterially derived ferrioxamines [3,29,35,55,93,111].
Arn4/Enb1 exclusively transports the catecholate siderophore, Enterobactin produced by E. coli [65,126].
This phylogenetic relationship between the characterised and putative siderophore transporter genes
are illustrated in (Figure 3).
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Figure 3. Phylogenetic analysis of characterised siderophore transporters from S. cerevisiae (Sc, brown),
S. pombe (Sp, pink), C. albicans (Ca, blue), C. neoformans (Cn, red), A. fumigatus (Af, torquoise),
and A. nidulans (An, green). Putative siderophore transporters from L. corymbifera (Lc, purple) are
also included. CnTri12 is a major facilitator not belonging to the SIT-family of proteins and serves as
an outgroup. All sequences were aligned using MUSCLE (v.3.8.31, Marceille, France). Phylogenetic
tree was reconstructed using the maximum likelihood method implemented in the PhyML program
(v3.1/3/0 aLRT, Marceille, France). The WAG substitution model was selected assuming an estimated
proportion of invariant sites (0.011) and 4 gamma-distribution rate categories to account for rate
heterogeneity across sites. The gamma shape parameters were estimated directly from the data
(gamma = 2.830). Reliability for internal branch was assessed using the aLRT test (SH-Like) [127–133].

The Arn transporters are internalised when the ligands are bound to a siderophore [111].
This complex is then transported via late endosomal vesicles for vacuolar degradation which releases
the iron [119]. This pathway was elegantly shown by Yun et al., 2001 where the trafficking of
ferrichrome and ferroxamine B are transported by Arn3/Sit1 and Arn1 transporters, respectively [35,119].
The transcriptional activator Aft1 in S. cerevisiae responds to iron availability and regulates the
expression of FET3, FTR1, and ARN; it has also been shown to interact with Arn3/Sit1 transporters [119].
This interaction influences the ubiquitination and vacuole-dependent degradation of the protein,
further illustrating that the sensing mechanisms in fungi can be adjusted accordingly for efficient
iron uptake [134,135]. In C. albicans, the Arn1/Sit1 transporter is used to facilitate the utilisation of
xenosiderophores such as coprogen, ferrichrysin ferricrocin, ferrirubin, and triacetyl-fusarine C [93,125].
As a human commensal, C. albicans share the mucosal and gastrointestinal environment with other
flora including bacteria, thus the ability to utilise xenosiderophores was most likely developed in
this environment [125,136]. The Arn1/Sit1 transporter in C. albicans was shown to be required for the
invasion of reconstituted epithelium in a human oral mucosa model [125]. However in mouse models of
systemic candidiasis, it does not contribute to virulence, thus indicating that siderophore-mediated iron
uptake may not be important during bloodstream infections [125]. For C. glabrata, it was demonstrated
that SIT1 mutants showed no difference in survival within the phagolysosome of infected macrophages
when compared to the wild-type strain [93,137]. The highly conserved SIT1 transporter of C. neoformans
is not involved in virulence in murine models of cryptococcosis, but it plays a role in the uptake of
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ferrioxamine B as well as other environmental xenosiderophores [138]. In addition, the Cft1 and Cfo1 of
the reductive pathway is not required for iron assimilation from ferrioxamine [139]. Xenosiderophores
are of high importance in mucormycosis caused by the Mucorales, i.e., Rhizopus, Mucor, Lichtheimia,
as well as uncommon genera, e.g., Apophysomyces [42,140]. The most common causative agents
isolated in nosocomial infections include R. arrhizus and L. corymbifera [140,141]. Mucormycosis is
seen in immunocompromised patients, poorly managed diabetic patients, diabetics with ketoacidosis
experiencing iron overload (DKA), and patients in end-stage renal failure on chelation therapy, e.g.,
desferoxamine B siderophore treatment [141–143]. R. arrhizus and other pathogenic Mucorales possess
cell surface-proteins, i.e., Fob1 and Fob2, which allows for the exploitation of desferoxamine thus aiding
growth in the host [71,115,142,144]. In addition, the reductive iron uptake pathway also provides an
additional mechanism for siderophore-Fe3+ utilisation, and contributes to pathogenesis as defects in
this pathway, i.e., mutants of the iron permease (FTR1) show attenuated virulence [71,72,101,145].

In A. fumigatus and A. nidulans as well as in Histoplasma capsulatum, siderophore-mediated
iron uptake has been thoroughly studied as knockout strains can be obtained [29,34,38,124,146,147].
Aspergillus species and H. capsulatum can synthesise different hydroxamate-type siderophore. Aspergillus
species can synthesise fusarinine C, triacetylfusarinine C, ferricrocin, hydroxferricrocin, while H.
capsulatum produces coprogen B [29,146,148–151]. In A. fumigatus, the SIDA gene that encodes
the L-ornithine-N-monooxygenase is essential for siderophore production and contributes to
virulence [75,147,152]. A. fumigatus also possess a highly conserved orthologs of the S. cerevisiae
SIT1 and SIT2 transporter genes, and it was demonstrated that these transporters play a role in the
uptake of ferrioxamine B and ferrichrome [153]. The deletion of the SID1 gene (ortholog of SIDA)
in H. capsulatum, abolishes the siderophore biosynthesis pathway and inhibits fungal growth in
bone marrow-derived macrophages and in mice. This indicates that siderophore production is an
essential virulence mechanism for H. capsulatum [154]. The siderophore uptake system enables fungi to
effectively compete for limited amounts of available iron in the environment and allows opportunistic
fungi another mechanism to efficiently acquire iron during infection.

5. The Fungal Cell Wall: Composition and Role in Diagnostics

5.1. The Cell Wall Composition of Mucorales in Comparison to Other Fungi

The cell wall is an essential structure that maintains the integrity and viability of the fungal
conidia, protecting the cell from the harsh external environment [3,155]. It also confers the distinct and
identifiable morphology that houses important antigenic determinants which are vital for adhesion,
receptor-mediated signalling cascades within the conidia, and subsequent colonisation leading to
disease [61,156]. For nutrients, e.g., iron in any form or iron containing compounds, to gain access
to the plasma-membrane and the embedded uptake-systems, these compounds must first traverse
the fungal cell wall and cross the periplasmic space (Figure 1.) [3,61,157]. As such, the fungal cell
wall must have some level of regulated permeability [157,158]. The intricate structure of the cell
wall consists of a meshwork of complex β-1,3-glucans, chitin, an outer layer of mannoproteins
as well as lipids, glycoproteins, and pigments (Figure 4) [55,61,159–162]. These components are
highly immunogenic and elicit both cellular and humoral response during infection [159,163–165].
Interestingly, the mannoprotein composition and the permeability of the cell wall changes under
different growth stages and conditions, e.g., exposure to antifungals [61,158,160,166]. This subsequently
alters the passage of nutrients through the cell wall into the periplasmic space and to the plasma
membrane. As such, the fungal cell wall represents an ideal target for antifungals [158,167–169].
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Figure 4. Schematic organisation of the fungal cell wall of opportunistic fungi. This illustration
shows the major components of the cell wall based on current knowledge of the fungal model.
Most fungi have chitin, branched β-1,3-glucan and β-1,6-glucan with notable differences in their
architecture and attachments to these basal components. In the yeast, C. albicans, there is an
inner layer of chitin, followed by a β-1,3- glucan and β-1,6-glucan foundation that anchors
glycosylphosphatidylinositol-linked (GPI) glycoproteins. In the conidia of A. fumigatus, the basal
layer consists of β-1,3- and β-1,4-glucans which are attached to a linear α-1,3 and α-1,6-glucan layer.
The mannan chains in A. fumigatus are low molecular weight β-1,5-galactofurans. The cell wall
of A. fumigatus conidia possesses a hydrophobic layer known as the hydrophobin rodlet layer and
a melanin layer; the hyphae consists of α-1,3-glucans, galactomannan (GM), galactosaminoglycan
(GAG) and a few glycosylated proteins (no illustrated). The cell wall of the Basidiomycetous yeast
C. neoformans, consists of aβ-1,3-glucan andβ-1,6-glucan foundation, a mixture of chitin/chitosan. This is
followed by the α-1,3 glucans anchor, the capsule outer layer which consists of glucuronoxylomannan
(GXM) and galactoxylomannan (GalXM). The precise structure of the Mucorales cell wall is yet to be
fully characterised for both the sporangiospores and hyphal form. Illustrated here is the partially
known component of the Mucorales sporangiospore. To date, the cell wall has been shown to consist
of chitin/chitosan, β-1,3-glucans, mannan, mannose, extracellular polysaccharides (EPS) and other
polysaccharides, e.g., mucoran and mucoric acid (hyphae); figure adapted from [170,171].

Fungal β-glucans, which represents approximately 50–60% of the structure’s dry mass, are the
most abundant polysaccharides in the cell wall and are characterised by the presence of β-(1,3-)-glucans
backbone with or without branches of β-(1,6-)-linked glucans, β-(1,4-), α-1,3 and α-1,4 links [172].
For example, the cell wall of C. albicans contains β-(1,6-) linkages, while Aspergillus spp. do
not [165,168,173,174]. The most important component of the cell wall is the β-1,3-D-glucan, which
is synthesised by 1,3-β-D-glucan synthase. This protein complex consists of two subunits: (1)
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Fks1, which is the catalytic subunit that produces the glycosidic bonds, and (2) Rho1, which is
a Ras-like GTP-binding protein that regulates the activity of the β-D-glucan synthase [175–178].
Chitin, on the other hand, accounts for 1-2% of the cell wall content and is made up of a linear
polymer of β-1,4-linked acetylglucosamine (β-1,4-linked GlcNAc), which forms microfibrils in the
cell wall [160,179,180]. The synthesis of chitin from N-acetylglucosamine is catalysed by the chitin
synthase enzyme, afterwards, the chitin polymers are deposited on the outer region of the plasma
membrane [179,181–184]. The glycoproteins represent between 30–50% of the dry mass of the fungal
cell wall, e.g., in S. cerevisiae or Candida spp. They are composed of modified N-and O-linked
carbohydrates or mannan [168]. In some fungi, the mannan backbone consists of either single
residues or side chains of different sugars [180,185]. These glycoproteins have diverse functions,
from participating in maintenance and remodelling of the cell wall structure to adhesion and in
signal transduction into the cytoplasm [157,168,180,186]. Another component of the cell wall that
has been shown to be important for protection, survival, and viability of the conidia is the pigment
melanin. This pigment has a relatively high molecular weight that is negatively charged, hydrophobic,
and insoluble [162,187–189]. Melanin plays an important role in fungal virulence for some pathogenic
fungi, as it has a role in the inhibition of phagocytosis as well as disturbing host immune response,
invasion, and dissemination [162,184,188,190–193]. The presence of melanin offers protection from
oxidative stresses, temperature, and UV damage [159,161,191,192]. Overall, these various components
of the fungal cell wall represents ideal targets for diagnosis and antifungals treatment [158,167–169].

5.2. Diagnostic Methods Based on Properties of the Fungal Cell

Numerous challenges arise for the accurate diagnosis of invasive fungal infections (IFIs) in
immunocompromised patients, especially those with underlying malignancies and/or HSCT [194].
The clinical manifestations are non-specific, usually requiring a degree of suspicion for early recognition
and prompt antifungal treatment [195]. According to the International Society for Heart and Lung
Transplantation, IFIs are defined as the presence of fungus in the respiratory secretions including
sputum or bronchoalveolar lavage (BL) detected by PCR, biomarkers or cultures in the presence
of symptoms, radiological and endobronchial changes or signs of histological changes indicative
of tissue invasion by fungi [195–197]. The invasive fungal infections cooperative group (IFICG) of
the European Organisation for Research and Treatment for Cancer (EORTC) and Mycology Study
Group (MSG) of the National Institute of Allergy and Infectious Diseases (NIAID) have published
standard classifications of IFIs for research purposes. These classifications apply possible, probable
and proven to the patient evaluation data based on a combination of host factors, clinical presentations,
microbiological and biomarker indications [195,197,198]. The standard diagnostic tools used in the
clinical setting to diagnose IFIs are summarised in Table 3. To date, more comprehensive reviews are
available that provide details on the most relevant and applicable diagnostic techniques currently used
in the clinical settings [199–204].
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Table 3. Techniques used for diagnosis of fungal infections.

Method Organism Comment Publications

Microscopy Direct histology
and cytology

Candida spp.;
Cryptococcus spp.;
Aspergillus spp.;

Mucorales

Gold standard,
demonstration of

tissue invasion
[199,205]

Cultures

Mycological
culture

Cryptococcus spp.
Candida spp.;

Aspergillus spp.;
Mucorales

Slow
turn-around time [206–210]

Blood cultures
Candida spp.;
A. fumigatus,

A. terreus;

Gold standard for
candidemia; [211,212]

Serological
methods

1,3-β-D-glucan
(BDG) *

Candida spp.;
Aspergillus spp.

Exceptions:
Mucorales and

Cryptococcus spp.
[195,197,199,205,213–215]

Galactomannan
(GM) enzyme

immunoassay *
Aspergillus spp. [216]

Molecular
approaches

PCR
(18s rDNA,
28s rDNA,

ITS, mtDNA

Candida spp.;
Cryptococcus spp.;
Aspergillus spp.;

Mucorales

- [217–220]

Imaging
technologies

X-rays, CT and
CTPA

Aspergillus spp.;
Mucorales -

[218,221]
MRI and PET scan

Cryptococcus spp.;
Aspergillus spp.;

Mucorales
-

* Fungal cell wall component; PCR: polymerase chain reaction; ITS: internal transcribed spacer region; mtDNA:
mitochondrial DNA; CT: computerised tomography; CTPA: CT pulmonary angiography; MRI: magnetic resonance
imaging; PET: positron emission tomography.

6. Iron Acquisition and Susceptibility to Antifungals: Implications in Therapy

6.1. Antifungal Treatment and Iron Chelation Therapy

Successful management of IFIs are based on the timely initiation of optimal antifungal therapy,
reversal or discontinuation of underlying predisposing factors and the use of relevant adjunctive
therapies [222]. Additionally, immediate correction of metabolic disorders or abnormalities in patients
with uncontrolled diabetes is mandatory in suspected mucormycosis cases. Surgical intervention
for the complete removal of infected tissue in urgent cases significantly improves patient
outcome [199,202,204,223]. Only four classes of antifungal medications are currently available for the
treatment of IFIs, these are: polyenes, pyrimidine analogue, echinocandins and triazoles [207,210,224].
The latter i.e., echinocandins and azoles will be discussed later as emerging resistance is becoming
more prevalent [225]. The first line treatment of invasive candidiasis is typically the echinocandins as
well as formulations of amphotericin B (AMB) [205]. For Cryptococcal infections, the gold standard
antifungal drugs include the polyenes, flucytosine (5-FC), triazoles and their combinations [226,227].
Treatment options for invasive aspergillosis include voriconazole, liposomal amphotericin B (LAMB)
and most recently isavuconazole [199,228,229]. In mucormycosis, the lipid formulations of AMB, i.e.,
LAMB and AMB lipid complex, (AMLC) is the optimal treatment option [199,202,204,222,228,230]. It is
important to note that Mucoralean fungi are innately resistant to most antifungals in vitro, including
voriconazole [231]. Most recently, posaconazole and isavuconazole have exhibited activity against
Mucorales [228,231,232].
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Currently, therapeutic strategies to combat complicated infections as well as innate,
emerging resistance in fungal pathogens include adjunctive therapies and new antifungal drugs [233].
Adjunctive therapies functions by interfering with resistance mechanisms or modifying drug
activity [197]. Examples of the former include efflux pump inhibitors, which increase intracellular
antifungal concentration, and histone deacetylase inhibitors, which are used in combination with
azoles to inhibit fungal growth [197,234–236]. Compounds that modify antifungal activity usually act
synergistically by altering the fungal stress response mechanisms [237–240]. These include statins,
heat-shock protein 90 (Hsp90) inhibitors, nonsteroidal anti-inflammatory drugs, inhibitors of calcineurin
and calmodulin, calcium homeostasis, selective serotonin reuptake, and iron homeostasis [197,207].

Iron metabolism holds a central role in fungal pathogenesis, particularly in the development of
mucormycosis. Thus, there is the possibility to use iron chelators as an adjunctive therapy strategy as this
could limit/inhibit fungal growth. The iron chelator deferasirox is used for the treatment of iron overload
in immunocompromised patients and those with elevated serum iron, e.g., diabetic & DKA patients.
Preclinical data on DKA murine models of R. oryzae (R. arrhizus) infection found that treatment with
deferasirox was as effective as LAMB therapy and combination treatment, i.e., deferasirox-LAMB, acted
synergistically to improve survival [31,101,143,241,242]. Although this showed promise, in the clinical
application of deferasirox-LAMB, it was demonstrated to significantly increase mortality in patients
with hematologic malignancies [101,210,241,243,244]. On the other hand, this treatment strategy
remains a viable option for other high-risk patient groups, e.g., DKA patients [200,202]. Deferasirox
was also seen to enhance LAMP treatment in a murine model of invasive pulmonary aspergillosis.
However, relevant clinical applications or data remain lacking [242,245]. Synergy was shown with
fluconazole, ketoconazole, or AMB when combined with other iron chelators, including deferiprone,
lactoferrin, and ciclopirox. These combinations proved successful in inhibiting A. fumigatus growth
in vitro [237]. Another potential novel target for the treatment of Mucorales include the inhibition or
blocking of the proteins involved in the reductive pathway. Antibodies targeting the iron permeases
(Ftr1) of R. oryzae (R. arrhizus) protected DKA mice from infection [33,72,246]. Additionally, antibodies
targeting the unique host proteins involved in receptor mediated endocytosis of fungal spores, i.e.,
78kDa glucose-regulated protein (Grp78/HspA5) are possible targets. Grp78/HspA5 is overexpressed in
patients with hyperglycaemia, DKA, and elevated serum iron; thus, antibodies, i.e., anti-Grp78 may be
promising novel targets as it was shown to offer protection in a murine DKA model. Similar protective
attributes were seen when antibodies of the fungal spore coat protein H or CotH i.e., anti-CotH
(the interaction partner of Grp78/HspA5) were used in DKA murine model [105,231,247].

6.2. Antifungal Resistance and Iron

6.2.1. Echinocandins

Antifungal compounds that specifically target the cell wall components include Ibrexafungerp
(SCY-078) and the Echinocandins, e.g., caspofungin, micafungin, and anidulafungin [181,248].
Ibrexafungerp (SCY-078) functions by actively inhibiting the 1,3-β-D-glucan synthase while the
Echinocandins inhibit the 1,3-β-D-glucan synthase by noncompetitively binding to the Fksp subunit
of the enzyme, which leads to a decrease in the amount of β-D-glucans present in the cell
wall (Figure 5) [249–254]. Cell death is seen in C. albicans when this enzyme is inhibited by
caspofungin and micafungin [252,254–257]. Interestingly, ∆CCC2 cells (defectives in copper transport)
show hypersensitivity to echinocandins [258]. On the other hand, elevated proportions of chitin in
the cell wall of Candida species exhibit increased resistance to caspofungin, particularly in in vivo
candidiasis models [238,248,251,259]. Recently, Pradhan et al. 2019 demonstrated that iron-limitations
induces a β-glucan masking phenotype as well as cell wall remodelling and thickening. However,
defects in this phenotype was observed in mutants lacking the permease and transcription factor
(∆FTR1 and ∆SEF1, respectively) [64]. Through this β-glucan masking, there is reduced phagocytosis
and a dramatic reduction in proinflammatory cytokines (TNF-α and IL-6) produced by peripheral
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blood mononuclear cells (PBMCs) [64,163,164]. However, the use of caspofungin enhances β-glucan
exposure [163,164]. Interestingly, the 1-3-β-d-Glucan inhibitor ibrexafungerp appears to be effective
against clinical isolates that are resistant to echinocandins [260,261]. The dynamic nature of the cell
wall has a major role in the development of antifungal resistance [262,263]. In both C. albicans and
A. fumigatus, changes in the structural composition of the cell wall have been noted in strains showing
antifungal resistance [210,213,214].

Genes 2020, 11, x FOR PEER REVIEW 16 of 31 

 

has been linked to numerous point mutations in the CYP51A gene [268,270,281]. It has been 
demonstrated that the Mucorales have an intrinsic resistance to azole antifungals, specifically to the 
short-tailed azoles, i.e., fluconazole and voriconazole [270,281–284]. It was found that this intrinsic 
resistance may be caused by an amino acid substitution in the cytochrome P51 or CYP51 F5 (Erg11) 
enzyme; changing a Tryosine (Y) to Phenylalanine (F) at position 129 i.e., Y129F [270]. Interestingly, 
the CYP51 enzyme was shown to be highly regulated by iron in A. fumigatus [268,279].  

 
Figure 5. Azoles and echinocandin antifungal drugs and their mechanism of actions: An illustration 
of two main classes of antifungal drugs used clinically and how they affect the fungal cell of C. albicans. 
(A) Echinocandins, e.g., caspofungin, inhibit β-(1-3)-D-glucan synthase in the cell membrane, which 
leads to disruption in cell wall integrity. (B) Azoles, e.g., fluconazole, inhibit Erg11/CYP51 F5, which 
blocks the production of ergosterol, leading to the accumulation of toxic sterol intermediates. Δ 
indicates where iron starvation or depletion may contribute to increased susceptibility to azole 
antifungals. 

7. Conclusions 

Iron is an absolute requirement for most organisms and biological processes. The information 
discussed above highlights the complexity of iron assimilation, iron regulation, and homeostasis in 
fungi. Considering the importance iron has in growth, survival, and virulence, it is not surprising 
that these intricate mechanisms and pathways also play a role in the development of resistance to 
antifungal drug therapies. The convolute relationship between iron availability, transport proteins in 
the fungal cell wall, and membrane components suggest numerous possibilities for new strategies in 
the treatment of opportunistic fungal pathogens. However, much is yet to be elucidated about the 
cell wall composition and the iron acquisition pathways in the basal fungal lineage order, Mucorales, 
with their known resistance to antifungals drug therapies. Given the central role of iron in 
pathogenesis, combined treatment of antifungals with compounds targeting iron assimilation is a 
promising approach to combat opportunistic fungal infections, particularly mucormycosis.  

Author Contributions: Conceptualization, K.V.; resources, K.V.; writing—original draft preparation, F.A.S.; 
writing—review and editing, F.A.S. and K.V.; visualization, F.A.S.; supervision, K.V.; project administration, 
K.V.; funding acquisition, K.V. All authors listed in this paper made substantial intellectual contributions to the 
work. All authors have read and agreed to the published version of the manuscript. 

Funding: This publication was supported by the DAAD: German Academic Exchange Services (DAAD) to FAS, 
the Jena School for Microbial Communication (JSMC Project #119/2016) and by the German Research Foundation 

Figure 5. Azoles and echinocandin antifungal drugs and their mechanism of actions: An illustration of
two main classes of antifungal drugs used clinically and how they affect the fungal cell of C. albicans.
(A) Echinocandins, e.g., caspofungin, inhibitβ-(1-3)-D-glucan synthase in the cell membrane, which leads
to disruption in cell wall integrity. (B) Azoles, e.g., fluconazole, inhibit Erg11/CYP51 F5, which blocks
the production of ergosterol, leading to the accumulation of toxic sterol intermediates. ∆ indicates where
iron starvation or depletion may contribute to increased susceptibility to azole antifungals.

6.2.2. Azoles

Azole antifungals have been in clinical use for more than 20 years [264]. The azoles are separated
into two distinctive classes, i.e., the triazoles and the imidazoles. Triazoles used in the clinical
setting include fluconazole, itraconazole, voriconazole and posaconazole [265]. Common imidazoles
used are clotrimazole, ketoconazole and miconazole [265,266]. Cytochrome P450 (CYP450) is an
enzyme that converts lanosterol to ergosterol, which is the major sterol in the fungal plasma
membrane. Azoles inhibit the CYP450 enzymes which causes increase permeability of the fungal plasma
membrane (Figure 5.) [265–267]. Azoles also affect other efflux transporters, including major facilitator
superfamily (MFS) transporters and ATP-binding cassette (ABC) transporters [268]. Susceptibility
to azole antifungals is seen in Candida spp., C. neoformans, Aspergillus spp., and the Mucorales,
to name a few. However, resistance has also been well characterised among this class of antifungal
therapy [239,268–271]. The direct target of fluconazole is Erg11 (homologous to the yeast CYP51 F5),
an enzyme involved in the ergosterol biosynthesis pathway [97,240,272,273].

In C. albicans, it was shown that intracellular iron depletion leads to increased fluidity of the plasma
membrane as there is reduced ergosterol [240,274]. Gene expression of ERG11, which encodes for
lanosterol 14-α demethylase as well as the ERG3 gene, which encodes for the ∆5,6-desaturase is affected
by intracellular iron availability (Figure 5.). Erg3 catalyses the addition of a carbon-carbon double bond
to the substrate molecules in the finals steps of the ergosterol biosynthesis pathway [39,240,271,275].
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The strains lacking the high-affinity iron permease Ftr1 (∆FTR1), null mutants (lacking both: ∆FTR1 and
∆FTR2) as well as ∆CCC2 mutants (copper transporter) were all shown to be more susceptible to
fluconazole [240]. An important note is that the Ccc2 copper transporter is responsible for the copper
acquisition, as copper is a key component of the multicopper oxidase (Fet3) protein in the reductive
pathway [240,258]. Iron deprivation results in the downregulation of ERG11 [240,271]. As such,
the increased membrane fluidity due to lower ergosterol content seen in the iron uptake mutants
(∆FTR1, ∆FTR2, ∆FTR1 ∆FTR2, and ∆CCC2) leads to higher passive diffusion of azole antifungals,
thus increased susceptibility [271,276]. This is compounded by the upregulation of ERG3, which in
an azole-inhibited pathway, allows for the accumulation of toxic intermediates [39,271]. Therefore,
Erg3 acts synergistically with azoles increasing susceptibility [239,240,271]. On the other hand,
mutations or deletions of the ERG3 gene, as well as upregulation of ERG11, confers azole resistance in
C. albicans (Figure 5.) [271,275,277]. Similarly, the reductive iron uptake system in C. neoformans has an
important role in resistance to azoles [97,138,278]. Mutants lacking both the multicopper ferroxidase
(CFO1) and the iron permease (CFT1) had reduced intracellular iron levels, which significantly increase
azole drug susceptibility, i.e., to fluconazole [97,279]. Interestingly, overexpression of ERG11 in
CFO1 mutants exhibited reduced susceptibility to fluconazole [97,272,277,280]. Innate and acquired
reduced susceptibility and resistance to azole in A. fumigatus has been linked to numerous point
mutations in the CYP51A gene [268,270,281]. It has been demonstrated that the Mucorales have an
intrinsic resistance to azole antifungals, specifically to the short-tailed azoles, i.e., fluconazole and
voriconazole [270,281–284]. It was found that this intrinsic resistance may be caused by an amino
acid substitution in the cytochrome P51 or CYP51 F5 (Erg11) enzyme; changing a Tryosine (Y) to
Phenylalanine (F) at position 129 i.e., Y129F [270]. Interestingly, the CYP51 enzyme was shown to be
highly regulated by iron in A. fumigatus [268,279].

7. Conclusions

Iron is an absolute requirement for most organisms and biological processes. The information
discussed above highlights the complexity of iron assimilation, iron regulation, and homeostasis in
fungi. Considering the importance iron has in growth, survival, and virulence, it is not surprising
that these intricate mechanisms and pathways also play a role in the development of resistance to
antifungal drug therapies. The convolute relationship between iron availability, transport proteins in
the fungal cell wall, and membrane components suggest numerous possibilities for new strategies in
the treatment of opportunistic fungal pathogens. However, much is yet to be elucidated about the
cell wall composition and the iron acquisition pathways in the basal fungal lineage order, Mucorales,
with their known resistance to antifungals drug therapies. Given the central role of iron in pathogenesis,
combined treatment of antifungals with compounds targeting iron assimilation is a promising approach
to combat opportunistic fungal infections, particularly mucormycosis.
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