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Abstract

We designed a novel imaging technique based on frustrated total internal reflection (FTIR) to obtain high resolution and
high contrast movies. This FTIR-based Imaging Method (FIM) is suitable for a wide range of biological applications and a
wide range of organisms. It operates at all wavelengths permitting the in vivo detection of fluorescent proteins. To
demonstrate the benefits of FIM, we analyzed large groups of crawling Drosophila larvae. The number of analyzable
locomotion tracks was increased by implementing a new software module capable of preserving larval identity during most
collision events. This module is integrated in our new tracking program named FIMTrack which subsequently extracts a
number of features required for the analysis of complex locomotion phenotypes. FIM enables high throughput screening
for even subtle behavioral phenotypes. We tested this newly developed setup by analyzing locomotion deficits caused by
the glial knockdown of several genes. Suppression of kinesin heavy chain (khc) or rab30 function led to contraction pattern
or head sweeping defects, which escaped in previous analysis. Thus, FIM permits forward genetic screens aimed to unravel
the neural basis of behavior.

Citation: Risse B, Thomas S, Otto N, Löpmeier T, Valkov D, et al. (2013) FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis. PLoS
ONE 8(1): e53963. doi:10.1371/journal.pone.0053963

Editor: Giorgio F. Gilestro, Imperial College London, United Kingdom

Received October 19, 2012; Accepted December 4, 2012; Published January 21, 2013

Copyright: � 2013 Risse et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: ST acknowledges a predoctoral fellowship of the Boehringer Ingelheim Fonds. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: klaembt@uni-muenster.de

. These authors contributed equally to this work.

Introduction

Most animals have the ability to move and during evolution

increasingly complex nervous systems allowed sophisticated

locomotion control. Neural computing is put into operation by

the interplay of a large number of neurons with numerous and

specific interconnections and the non-neuronal cells of the nervous

system, the glial cells. To decipher the role of individual genes in

controlling neural network function, model organisms such as

Drosophila provide the advantage of easy cell specific manipula-

tions [1]. However, a thorough understanding of behavior also

requires the ability to quantitatively asses different locomotion

patterns.

In Drosophila, locomotion of both, adults and larvae is guided

by environmental cues and is pivotal for finding mating partners,

pupariation spots or food [2]. However, tracking of freely flying

Drosophila is a tantalizing task [3–6]. In contrast, larval crawling

occurs in two dimensions at relatively low speed and crawling

patterns of single larvae have been analyzed using elaborated

microscope setups [7–9]. In principle, larval movement can also be

documented by a simpler camera setup. However, recording of

crawling larvae requires high contrast images, which can be

obtained following sophisticated illumination protocols or dye

applications [10–13]. For conventional, relatively low resolution

tracking of larval locomotion, larvae are illuminated by incident or

transmitted light and monitored by cameras with appropriate

filters. This is technically challenging due to the semi-translucent

body of these small animals. In addition, the observation of larvae

is complicated by light reflections caused by the tracking surface.

Thus, illumination problems aggravate faithful recordings of larval

crawling paths and the poor signal to noise ratio hinders

subsequent computer-based analysis.

In addition, the existing tracking programs generally loose

trajectories of colliding or pausing larvae (e.g. EthoVision tracker

[14], Multi-Worm-Tracker [15], MAGAT [10], Image Pro

Analyzer [MediaCybernetics], Actual Track [Actual Analytics]).

The often used Multi-Worm-Tracker works online. Several

custom-made tracking software modules have been adjusted for

specific experimental questions, usually focussing on single larval

movements [16] requiring extensive user input [8]. A program has

been reported to solve collision events, however, in this case only

the midpoint of the animal is taken into account [17].

To improve tracking of Drosophila larvae and to implement the

simultaneous analysis of multiple animals we have developed a

novel 2D-monitoring system based on Frustrated Total Internal

Reflection using infrared light (FTIR). This new imaging approach

named FIM (FTIR-based Imaging Method), provides an unprec-

edented high contrast view on crawling animals and even allows to

image internal organs. Experimental and control Drosophila

larvae can be recorded at the same time and the respective

genotypes can be distinguished by GFP expression. Furthermore,

FIM-imaging is the basis for computer based head recognition and

enables the preservation of larval identity during collision events,

which is implemented in a new tracking program FIMTrack. In
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summary, FIM together with the optimized tracking software

facilitates analysis of larval locomotion and will simplify genetic

screening procedures.

Results

FIM-imaging of larvae
To analyze moving Drosophila larvae, both, incident and

transmitted light can be used during recording and thus, the

camera captures either light reflection or light absorption. The

subsequent computer aided tracking of motion paths includes the

extraction of circumferences and locomotion features over time.

The quality of the tracking is strongly dependent on the quality of

the acquired images, and therefore, lighting conditions need to be

carefully adjusted to obtain high contrast images [11]. In a

conventional illumination and recording setup, we used a 4 MP

camera to image Drosophila third instar larvae in a resolution of

about 40 pixel per larval length in a 25 cm625 cm test arena

(Fig. 1A). Frequently, the relatively low contrast in these movies as

well as random light reflections at the crawling surface generate

problems in automatic image tracking.

We therefore developed a new image acquisition technique to

obtain high contrast images with no constrains by external lighting

conditions (Fig. 1B). Instead of directly illuminating crawling

larvae, we use frustrated total internal reflection (FTIR) to

determine the contact surface between the animal and the

substrate (Fig. 1C–E). In the FIM setup, an acrylic glass plate is

flooded with infrared light. Due to the differences in the refractive

indices of acrylic glass and air, it is completely reflected at the

glass/air boundary (Fig. 1C). To provide a moist crawling

environment we add a thin agar layer. According to Snell’s law,

the light enters the agar layer since its refractive index (n2) is higher

than the refractive index of the acrylic glass (n1, Fig. 1C). The

larvae have an even higher optical density resulting in a higher

refractive index (n3), and thus, reflection is frustrated at the agar/

larva interface and light enters the larval body. Here, light is

reflected and since the reflection angle is smaller than the critical

angle, the light passes through the different layers and can be

detected by a camera equipped with an infrared filter (Fig. 1D,

1E). This setup is easy to assemble and does not require cost

intensive equipment. Without any background subtraction it

generates constant image quality superior to previous setups

(Movie S1, S2, and S3).

FIM provides high contrast data sets
In black and white images, contrast makes objects distinguish-

able from the background. Contrast is the ratio of luminance

difference between foreground (m1, i.e. larvae) and background (m0)

normalized by the average luminance. Assuming a bimodal gray

value distribution, where one Gaussian describes foreground and

the other Gaussian describes the background, Otsu’s method can

be used to determine the best possible threshold and, thus, m1 and

m0 can be calculated as the mean values of these two Gaussians

(Fig. 1F). Tracking multiple small animals on a wide surface leads

to an unequal distribution of foreground and background pixels.

Due to the large uniform background the average luminance is

approximately equal to the background luminance (Weber

contrast, Wc).

Wc~
m1{m0

m0

Whereas conventional imaging does not generate divisible grey

value distributions, FIM provides a higher Wc and results in a clear

separation of fore- and background (Fig. 1F).

In the current FIM setup, only the intensity of the 4624

infrared light emitting diodes (IR- LEDs), which are integrated

into a 32 cm632 cm acrylic glass plate need to be adjusted. To

determine the optimal illumination intensity, the LEDs are

regulated by a micro controller connected to the circuit (Materials

and Methods). The power of the LEDs is controlled via pulse-

width modulation (PWM) and even under full power no heating of

the test arena is observed. Plotting Wc against the PWM values

results in a curve with a broad contrast maximum between 80 and

140 (Fig. 1G–J), demonstrating that FIM yields very high contrast

images almost independent of illumination intensity. A similar

calculation of the image contrast quality was obtained using Otsu’s

quality measure (data not shown). Since the camera is placed

below the tracking table, additional stimuli can be easily

incorporated into the setup (Fig. S1). In conclusion, FIM-imaging

eliminates or reduces many of the previously encountered

illumination problems on the physical level rather than using time

consuming contrast enhancement techniques.

FIM generates high resolution images
Since the IR light sources are integrated into the tracking plate,

there is no need for further filter and light adjustments once the IR

intensity is set. Importantly, the system performs a self-calibration

to guarantee the best possible foreground/background segmenta-

tion based on the bimodal grey value distribution of the images

(Materials and Methods). The overall brightness in the FIM setup

is much smaller compared to incident or transmitted light

situations. Therefore, the sensitivity of FIM allows an unprece-

dented detection of internal structures.

To determine the best imaging conditions, we used a 4 MP

camera with an infrared filter (Materials and Methods) and

recorded crawling larvae at different spatial resolutions with a

constant frame rate of 10 fps. Best results were obtained on 2 mm

thick 0.8% agar. When resolution is set to represent each third

instar larval length in 25 pixels, the image field is

42.5 cm642.5 cm, however, no internal structures can be

recognized (Fig. 2A). When resolution is set to 40 pixels per larval

length, internal organs become visible. The head is defined as the

largest dark spot at one end of the animal. It is identified in about

60% of the frames (verified manually by tracking 60 larvae over

550 frames, Fig. 2B). In the remaining frames the position of the

head can be calculated based on the movement vector. The size of

the tracking arena is now 25 cm625 cm. When resolution is set to

75 pixels (arena size: 13 cm613 cm), automated head recognition

works in 98% of all frames (Fig. 2C). When resolution is set to 170

pixels per larval length (arena size: 6 cm66 cm), many internal

organs become visible and head recognition is further improved

(Fig. 2D, 2E, 2F).

Moreover, the physical principles underlying FIM are working

with different wavelengths and the use of UV-light easily allows

the detection of GFP-expressing animals (Fig. 2G). In combination

with specific chromosomes directing GFP-expression, FIM-imag-

ing allows to identify a particular larva which makes it possible to

simultaneously monitor control and mutant animals.

Definition of tracking features
FIM allows high-quality recordings of larval movements. In a

next step we established a program, FIMTrack, to extract and

compute information from the movies. We delineate the

circumference of the animal by a contour detection algorithm,

calculate the spine and identify the head as the darkest blob at one

end (Figs. 2, 3, Materials and Methods). Seven equidistant

FIM, a New FTIR-Based Imaging Method
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Figure 1. The FIM setup. (A) Image of 10 larvae (arrow) imaged in a conventional setup. The asterisks denote scratches and reflections in the
tracking surface. (B) Image of 10 larvae (arrow) imaged in the FIM setup. Note the high contrast. (C) The principle of frustrated total internal reflection.
n1 to n3 indicate different refractory indices, an acrylic glass plate is flooded with infrared light (indicated by red lines). The camera is mounted below
the tracking table. (D) Schematic drawing of the setup. (E) Image of the tracking table. (F) Histogram of the image shown in (b). (G) Comparison of
Weber contrast (Wc) obtained in the conventional and the FIM setup. The pulse-width modulation (PWM) is plotted against the Weber contrast. (H–J)
Histogram taken at different PWM values as indicated.
doi:10.1371/journal.pone.0053963.g001
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landmarks are defined on the spine (0 to 6). Landmark 1 serves as

head position, landmark 3 is the center of the animal and

landmark 5 defines the tail (Fig. 3A).

The parameters allow to extract several features. The landmark

3 is used to calculate distance traveled and velocity. Landmarks

1,3,5 are used to extract the bending angle Q (Fig. 3A), which can

be used to extract the bending rates of the larvae (verified by

manually tracking 10 larvae over 2100 frames, see Materials and

Methods). Larval head bending is also referred to as head

sweeping [7,8], head swinging [18] or head casting [19]. The

contour defines the area occupied by the animal. A change of area

is for example expected during peristaltic contraction movements

[8,20]. Indeed, this can be observed from a 40 pixel per larval

length resolution onwards, highlighting the excellent resolution of

FIM (Figs. 4C, 4D, 3I, 3J). It easily allows to detect the contraction

wave which propagates from posterior to anterior through the

larval body (Fig. 3I, 3J, Movie S2).

Screening for larval locomotion phenotypes
In Drosophila, genetic tools allow the dissection of even

complex phenotypic traits [1]. This, however, requires the analysis

of many animals. An increase in the number of larvae crawling on

the tracking arena is expected to result in a higher number of

collision events. In general, the identity of the animals is lost

during collisions and trajectories are fragmented.

To increase the number of analyzable paths, we aimed for a

software module integrated in FIMTrack capable of keeping

identities of colliding animals. In our current version, animals can

be separated and identities are kept when larvae touch for less than

70% of their body length (Fig. 3C–H, Movie S4). However, during

intense collisions the shape of the larvae can be distorted (Fig. 3F–

H, Movie S5). When larvae crawl over each other or stay together

for extended time periods, no separation can be calculated and the

corresponding tracks are disrupted (Movie S6). By now, FIMTrack

cannot resolve collisions involving more than two animals. In

conclusion, these procedures allow to analyze a large number of

tracks that cover the entire experimental time. If desired,

fragmented tracks can be retrieved and also be used for

calculation.

To determine the optimal population density of larvae, we set

the imaging resolution to 40 pixel per larval length. Animals,

reared in constant conditions, were placed in the middle of the

arena and movement was monitored without any external stimulus

for three minutes at 10 fps (see Materials and Methods). 80% of

the animals that were tracked in groups of five could be followed

from start to end (Fig. 3B). In contrast, only 41% of the animals

that were tracked in groups of 50 could be followed from start to

end due to more collisions (Fig. 3B). Intermediate values were

determined for group sizes of 10, 15, 20 and 30 animals. In

summary, the collision frequency shows an almost linear relation

with the group size (Fig. 3B). For practical reasons we selected 15

larvae as the standard for screening purposes.

Analysis of genes controlling larval locomotion
Animal locomotion is essential for finding optimal growth and

survival conditions or finding mating partners [2]. It is guided by

numerous external cues which are processed and integrated in still

unknown neural networks. To decipher the molecular bases of

complex behavioral tasks, a computational analysis of locomotion

paths is essential. To demonstrate the feasibility of FIM in this

respect, we selected 10 genes for further analysis. These genes were

previously identified in a screen for genes required in glial cells to

allow normal adult locomotion [21]. In addition, we analyzed the

gene Odorant receptor co-receptor (Orco) as a negative control, since to

Figure 2. Recognition of inner structures. (A–D) Comparison of
spatial resolution at different tracking arena sizes. The image shows the
output of the tracker in true resolution. The green dot demarcates the
moving tip of the animal. In the inlay the larvae are magnified to
comparable sizes to show the spatial resolution. (A) Arena of
42.5 cm642.5 cm; the size of a third instar larvae is 25 pixel per larval
length. No automatic head recognition is possible. (B) Arena of
25 cm625 cm; the size of a third instar larvae is 40 pixel. In about 60%
of all frames the head can be identified. (C) Arena of 13 cm613 cm; the
size of a third instar larvae is 75 pixel. In 98% of all frames the head can
be recognized. (d) Arena of 6 cm66 cm; the size of a third instar larvae
is 170 pixel. (E,F) Two 170 pixel images demonstrating the high
resolution of FIM. Several inner structures are indicated. (G) Screen shot
of a movie taken with illumination by 470 nm LEDs, seven larvae are
shown, two of which express daGal4 driven GFP.
doi:10.1371/journal.pone.0053963.g002
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our knowledge, Orco is not required in glial cells and Orco

knockdown animals behave like w1118 animals (data not shown).

The function of all genes was suppressed by RNA interference

using the panglial Gal4 driver repoGal4. From 100 to 120 complete

larval trajectories (three minutes each), the following parameters

were determined by FIMTrack: area of the animal, bending angle

and total distance traveled (Table 1).

Surprisingly, glial knockdown of kinesin heavy chain (khc) led to a

larger average surface size (Table 1). Indeed, multi dimensional

scaling (MDS) analysis of the area distribution demonstrated a

significant difference (Fig. 4A, Materials and Methods). This

indicates that either the khc knockdown larvae are larger and/or

their contraction ability is impaired. We then plotted all individual

area sizes of khc and Orco knockdown animals and noted that khc

knockdown resulted in larger larvae (Fig. 4B). To address, whether

this size difference is caused by less contraction in khc knockdown

animals or native larval length we generated maximally relaxed

larvae by submersing them in ethanol for 30 minutes. Subse-

quently, we determined the length, surface area and the weight. In

all parameters khc knockdown larvae were about 12% larger (data

not shown).

The oscillation frequency of the area size revealed a 10%

decrease upon panglial knockdown of khc (Fig. 4C, 4D; median

frequency of 110 or 115 animals imaged over 3 minutes:

repo&OrcodsRNA 0.64 seconds per contraction, repo&khcdsRNA

0.72 seconds per contraction). In addition, the contraction

intensity is altered. The contraction intensity is reflected by the

mean difference between the maximal surface area and the

minimal surface area normalized by the median surface area of

140 dead larvae for each genotype. Plotting the discretized

contraction intensities clearly indicates that khc silencing results in

less intensive body contractions (Fig. 4E). This contraction

phenotype may explain why khc knockdown larvae also travel

20% less in total distance (Table 1).

A similar reduction in crawling speed was noted upon rab30

knockdown, which is mis-distributed in glial cells upon khc

suppression (Table 1, [21]). The area size of rab30 depleted

animals appears only slightly increased. Thus, the reduction in

crawling speed must be explained by additional means. An

Figure 3. FIM-imaging allows extraction of several features. (A) Two larvae are shown in the 170 pixel per larval length resolution. The
different features extracted are indicated. The spine is indicated by a white line. On the spine seven landmarks are positioned. The head (green dot),
the center (red dot) and the tail (blue dot) are indicated. The contour line (yellow) and the bending angle Q are shown. (B) Plot of different group
sizes against the percentage of completely tracked paths. The number of larvae tracked (n) is indicated. Recording for 3 minutes at 10 fps and 40
pixel larval length resolution. (C–H) Examples of larval collisions. (C–E) Moderately touching larvae can be separated. (F–H) In case of more intensive
collision, the separation of larval contours is not perfect. (I) Stills of a movie showing a larval contraction wave. The numbers indicate the frames
shown in (J). (J) The area covered by a larvae changes during contraction. Asterisks indicate the positions of the images shown in (I).
doi:10.1371/journal.pone.0053963.g003
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increased standard deviation in the bending angle Q and MDS

analysis shows a clear separation of rab30 knockdown and control

animals (Fig. 5A). To further study bending intensity we plotted

the bending rate (Q larger then 40u [8]) towards the left and the

right side (Fig. 5B). This shows that rab30 knockdown animals

bend more often with a slight preference towards the right side.

Figure 4. Glial suppression of khc reduces contractibility. (A) MDS analysis of area sizes (area1800 to area2) of individual larvae expressing khc
dsRNA (green circles) or Orco dsRNA (blue circles) in all glial cells. (B) Discretized distribution of mean area sizes. The panglial knockdown of khc leads
to bigger larvae. (C,D) Plot of area changes over time. (C) Panglial knockdown of Orco. (D) Panglial knockdown of khc. (E) Discretized contraction
intensity intervals plotted against the mean contraction intensity. Upon khc knockdown reduced contraction intensity is observed.
doi:10.1371/journal.pone.0053963.g004

Table 1. Summary of a small RNAi based screen.

silenced gene area (pxl) bending angle (degree) total distance (mm)

Orco (n = 110) 261.75611.89 0.1265.22 296.84628.87

khc (n = 115) 305.5613.44 0.2164.97 235.37631.07

rab30 (n = 112) 280.25617.9 0.2168.72 230.26634.18

rab21 (n = 121) 26968.25 0.2765.0 273.35634.16

rab9 (n = 117) 267.569.51 0.2564.4 290.9628.82

fas2 (n = 113) 264615.11 0.0664.2 270.18628.81

fray (n = 98) 255.75610.26 0.264.35 277.18631.07

mGluRA (n = 119) 266.5611.8 0.1964.03 279.9634.43

ppk12 (n = 113) 266.5610.96 0.063.99 277.84636.43

cac (n = 104) 266.5613.77 0.2364.51 295.75629.87

The activity of 10 genes was silenced specifically in all Drosophila glial cells using the repoGal4 driver element. 10 times 15 animals were tracked for 3 minutes at 10 fps.
The total number of complete tracks is indicated. We determined the median values for area size in pixel, bending angle Q in degree and the total crawling distance in
mm. The standard deviation is indicated in each case. Values that differ significantly from the control (Orco) are printed in bold.
doi:10.1371/journal.pone.0053963.t001
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Interestingly, we noted that almost all genotypes show a preferred

bending towards the right side (Table 1). In addition, we plotted

the normalized overall number of bendings against increasing

angle thresholds from 20u to 90u demonstrating a particular

increase in the number of small head bends (Fig. 5C, 5D), which

might explain the reduced migratory distance.

In conclusion, FIM allows to easily detect even subtle

phenotypic variants. Thus, it is well suited for high throughput

approaches required for forward genetics.

Discussion

To decipher complex animal behavior, large numbers of

individuals must be observed at high resolution and automated

procedures have to be available for statistical analysis. Previously,

insufficient image quality made computer aided image analysis

difficult. To solve this challenge and to obtain images at high

contrast and resolution, we have introduced FIM to monitor

Drosophila third instar larvae. In addition, we established

FIMTrack to extract many features used to mathematically dissect

complex animal behavior.

FIM is a simple, robust and reliable methodology, which

provides an image quality comparable to an automated micro-

scope setup [7,8]. Without further adjustments it can be used to

monitor all larval stages, foot prints of adult Drosophila, C. elegans,

planarian flatworms or the growth of Arabidopsis thaliana seedlings

(Fig. S2). Moreover, it allows the simultaneous analysis of a large

number of animals in a wide tracking arena. Here we demonstrate

that for screening purposes, an arena size of 25 cm625 cm is

suitable with a 4 MP camera. Since one side of the FIM setup is

completely accessible and the tracking arena is translucent,

additional equipment and external stimuli such as a temperature

gradient, olfactory stimuli or light patterns can be easily applied

(Fig. S1). Moreover, the physical principles underlying FIM are

working with different wavelengths. The use of UV-light allows the

detection of GFP-expressing animals. Since the tracking software

recognizes a particular larval identity, only rare UV-pulses are

sufficient to identify GFP-expressing animals. Using GFP-tagged

chromosomes, experimental larvae and their control siblings can

be monitored at the same time (Fig. 2G). In addition, the

expression of GFP (or infrared fluorescent proteins [22]) in defined

tissues could aid the analysis of more complex behavioral traits in

the future.

The wealth in high contrast images allows to extract several

features from the moving animals. The identification of the head

helps to determine the orientation of the animals.

To obtain the largest number of trackable trajectories in

minimal time, we tested different group sizes of larvae. The

Figure 5. Glial suppression of rab30 increases head bending intensity and frequency. (A) MDS analysis of bending angles (angle1800 to
angle2) of individual larvae expressing rab30 dsRNA (red circles) or Orco dsRNA (blue circles) in all glial cells. (B) Plot of mean bending rate (left vs.
right) for every animal. A turning tendency to the right can be seen. (C) Plot of bending angle threshold against mean bending rate per genotype. (D)
Trajectories of larvae upon glial suppression of Orco (blue) and rab30 (red).
doi:10.1371/journal.pone.0053963.g005
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number of larval collisions increases almost linear with the number

of tracked animals. This suggests that no community effects alter

the collision frequency and thus, measurements in larger animal

groups can be conducted (data not shown).

Here we have exemplarily extracted larval size, bending angle

and traveled distance and performed several statistical analyses to

identify significant data sets. Further features such as stop and go

phases, types of head casts or body curvature can be calculated

from the existing values and will aid further dissection of animal

behavior. A demonstration of the visualization of stop and go

phases and the bending directionality is shown in Movie S7.

Using a conventional tracking setup, we have previously shown

that glial knockdown of khc renders the animals slower but no

further characterization of the phenotype was possible [21].

Applying electrophysiology, we had demonstrated a reduced

conductance velocity in peripheral nerves, but had not seen any

change in the contraction patterns [21]. Using FIM at a relatively

low resolution of only 40 pixels per larvae we could now extract a

number of features explaining the reduced crawling distance by

alterations in the contraction pattern. khc encodes a motor protein

that carries vesicular compartments along microtubules. Some of

these vesicles are marked by Rab30 [21] and indeed FIM detects

alterations in larval locomotion upon glial specific knockdown of

rab30. Interestingly, in these animals the reduction of crawling

speed is achieved by an increase of head bending intensity and a

slight change in contraction intensity. This demonstrates that rab30

also functions independently of khc. Thus, FIM is well suited to

screen complex behavioral traits.

In this study the average duration for a contraction cycle is

about 0.7 seconds compared to duration lengths between 1 and

2.4 seconds found by others [20,23–25]. Interestingly, we deter-

mined an average contraction duration of 1.4 seconds per

contraction in a different wild type background [26] (data not

shown), highlighting the need for carefully chosen controls and

solid statistical analyses. We expect that the analysis of complex

animal movement patterns will greatly benefit from the straight-

forward design of the FIM setup and the further implementation

of software modules such as a feature selection tool. Thus, FIM

facilitates high throughput analyses of complex behavioral traits.

Materials and Methods

Drosophila genetics
The experimental animals were kept at 25uC at 65% humidity.

For all knockdown experiments 45 virgins were crossed to 7–10

males of the desired genotype and transferred to fresh food every

two days. Third instar larvae were always selected five days after

egg laying in the wandering third instar stage.

Hardware
The tracking stage is a table with an acrylic glass table plate

(Figure 1). IR LEDs (Hewlet Packard HSDL 4230) are plunged

into the edges of the plate and connected to a custom made circuit.

Even under full power, the LEDs do not warm up the tracking

arena (after 2 hours of full power no temperature change was

detected on the entire tracking surface using a TROTEC BP20

laser thermometer and a VOLTCRAFT VC150 digital multi-

meter). Depending on the size and the associated weight of the

model organism, the used intensity of IR light can be limited on a

hardware level by using a higher or lower amperage. To precisely

adjust the intensity of the LEDs an Arduino Mega 2560 micro

controller (MC) is connected to the circuit. The adjustment can be

both, turning several LEDs on and off and controlling the power of

the LEDs by setting the pulse-width modulation (PWM) to a value

between {0,255}, where 0 indicates no power and 255 indicates

full power. A tool written in C++ controls illumination. Once the

illumination intensity is set, there is no need for further light

intensity adjustments and the controller will supply the circuit with

the correct settings even if it is not plugged to the computer (i.e. the

illumination setting program is stored in the program memory of

the MC). Especially no diffusors or other filters are used to

produce uniform and homogeneous lightning conditions. Further

details of the setup are available upon request.

We evaluated our setup with three different cameras (a Point

Grey Dragonfly 2 (DR2-13S2M/C-CS) camera with a Tamron

3.0–8 mm (13VM308AS) lens; a QImaging 1394 firewire (01-

QIC-F-M-12 MONO 12 Bit) camera with a depth of 8 bit and a

resolution of 139261040 pixels and a Tamron T-23FM16SP

16 mm lens and a Basler ace (acA2040-180 km) with a Kowa

16 mm (LM16HC-SW lens) to demonstrate that FIM is indepen-

dent from the general image acquisition. All cameras were

equipped with an appropriate IR filter (Schneider IR Pass Filter

IF 093 with 825 nm cut-on wave-length). All images used in this

study were acquired using the Basler camera.

The firewire cameras and the micro controller are connected to

a conventional computer (Apple iMac 270, 4 GB RAM, 2.7 GHz

Quad-Core Intel i5, AMD Radeon HD 6770M 512 MB

GDDR5). To gather high resolution images from the Basler

camera we used a Fujitsu Celsius W510 Power Workstation with

an Intel Xeon E-1275 3.4 GHz CPU, 16 GB DDR3-1333 RAM,

a NVIDIA Quadro 4000 2 GB graphics card and a Matrox Solios

eV (MDR) SOL 2M EV CLF L framegrabber.

Image quality evaluation techniques and parameters
To measure the contrast we used grey-level histogram based

variance analysis. Especially Otsu’s thresholding will be examined

since its terminology and parameters are most established in

Computer Vision. Assuming bimodal gray-level distribution, the

foreground (i.e. the objects of interest) and background can be

assumed as two distinguishable Gaussians with its respective

maxima representing the mean foreground and background

intensity. Each pixel belongs to either the background C0 or the

foreground C1. The central statistics to evaluate the quality of the

contrast is the background and object variance given by:

s2
0~

Xk

i~1

(i{m0)2:pi

v0

and

s2
1~

XL

i~kz1

(i{m1)2:pi

v1

using L discrete gray values and class mean values

m0~
1

v0

Xk

i~1

i:pi

and

m1~
1

v1

XL

i~kz1

i:pi

class occurrences
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v0~
Xk

i~1

pi

and

v1~
XL

i~kz1

pi

and normalized histograms pi. The value kM{1, 2, …, L} is the

threshold indicating that all pixel values x#k belong to the

background and all values x$k+1 belong to the objects of interest

(or vice versa). Then the within-class variance is defined as

s2
W ~v0

:s2
0zv1

:s2
1

and the between-class variance is defined as

s2
B~v0

:(m0{mT )2zv1
:(m1{mT )2

with

mT~
XL

i~1

i:pi

Following Otsu a measure of separability is given by

g~
s2

B

s2
T

using

s2
T~s2

W zs2
B

Maximizing g is the central criterion for automatic threshold

computation and is equivalent to minimizing the within-class

variance. Since many image quality measures for automatic target

recognition relay on an explicit distinction between targets (i.e.

foreground) and background, we will use Otsu’s threshold

estimation to distinguish between C0 and C1 in the following

analysis methods.

In black and white images contrast is the difference in

luminance, which makes objects distinguishable. The frequent

definitions of contrast are based on ratios like:

luminance difference

average luminance

Tracking multiple small animals on a wide surface leads to an

unequal distribution of foreground and background pixels.

Assuming a large uniform background the average luminance is

approximately equal to the background luminance. Since Otsu’s

method leads to the optimal threshold in a bimodal distribution,

this threshold can be used to separate the histograms into

foreground and background distributions. Weber contrast measures

the quality of the contrast given an unequal distribution, where

most of the pixels belong to the background:

Wc~
m1{m0

m0

m1 and m0 represent the luminance of the foreground and the

background respectively.

Software
All statistical graphics and calculations are created using a

Matlab programming environment.

LED Controller. The program to control the intensity of the

MC is written in C++. The optimal PWM value calculation uses

Otsu’s quality measure g to quantify best possible illumination

[27]. For every PWM value p between 1 and 255 (with p = 1

indicates a poor illumination and p = 255 a bright illumination) we

acquire an image and calculate both, the optimal gray value

threshold k and the quality measure g:

g(p�,k�)~ max
1ƒpƒ255

max
1ƒkv255

s2
B(p,k)

s2
T (p)

where p�, k� lead to the overall maximum. Therefore g p � ,k�ð Þ
indicates best possible image quality to separate the bimodal

foreground background gray value distribution and p� is the best

possible PWM value (i.e. illumination).

FIMTrack Software. We implemented a custom tracking

program, called FIMTrack, employing the OpenCV (v2.4) library

for image processing and Qt (v4.8) library for the graphical user

interface. FIM provides a constant image quality (i.e. contrast) so

that batch processing is easily possible. The flow of the tracking

software is as follows: The current frame is segmented using simple

thresholding, all remaining pixels belong to the foreground. Then,

the contour is calculated using an established algorithm [28]. An

additional size threshold operation rejects contours without

sufficient sizes. All remaining objects are assumed to be larval

objects and are tracked over time. To assign larvae between

consecutive time steps we compare both, the euclidean distance

between the centers of mass and the size of the overlapping

contours.

For every larva we calculate the following parameters in each

frame: the spine represented by a spline, several (x,y)-landmarks

along the spline (usually seven, including head, middle and tail

landmark), angles between the landmarks and surface area of the

contour. These parameters are used to calculate the following time

variant features for the head middle and tail landmark: the

distance, accumulated distance and distance to origin, the velocity

(analogous to the distance with meaningful units) and acceleration.

We identify the anterior ending (i.e. the head) by detecting the

biggest dark region inside the contour.

The spline is calculated by deploying several random points

inside the eroded contour. Then we calculate the shortest line

between the random and the nearest contour points. The centers

of these lines are sorted and passed to a least square spline fitting

routine [29].

Separation of colliding larval tracks. To increase the

number of analyzable paths, we have developed a collision routine

which is able to resolve slight collisions rather than discarding all

colliding animals or dividing tracks. If the distance between two

individuals gets to small so that the two contours merge to one

bigger blob, a collision handling routine is applied to these larvae:

Assuming the collision occurs in frame t, then the movement

vectors v1 and v2 between (t-2) and (t-1) of the colliding larvae are

used to estimate the hypothetical positions at time step t by moving
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the contours from time step (t-1) in the direction of v1 (for the first

larva) and v2 (for the second larva). All uniquely assignable pixels

covered by these hypothetic contour positions are assigned to the

respective larva. All remaining pixels are assigned via nearest

neighbor to the closest contour in frame t. Since we capture the

images with a relatively high frame rate (10 fps) compared to the

slow movement speed, slight and short collisions can be resolved.

The longer a collision continues, the more of the larval body

lengths merge and the less accurate the collision resolution gets.

Therefore, a collision flag in the output table informs the user

about all collisions during the tracking procedure for each larva

and time step, so that these time steps can be neglected in later

analysis rather than discarding the animals or initialize new larvae

and thereby divide the tracks.

Validation of FIMTrack results. FIMTrack has two

modes: the actual tracking mode and an additional ‘‘view results’’

mode. Here, the output files can be reloaded and projected on the

movie in three independent views: The overall view, the detail

view and the table view. The overall view is an overlay of the

tracking result (i.e. the trajectories) and the movie. In the detail

view, the user is able to select a subset of the larvae and features

which is then drawn directly on the images using full image

resolution. The table view displays all acquired parameters for all

selected larvae in a table. Since all views are accessible by registers,

the user can easily switch between the views.

We validated all calculated features by manually inspecting

movies using the ‘‘view results’’ mode. In addition, we tracked

synthetic data and validated the results in the same manner. In a

next step, we compared tracking results of FIMTrack with the

Image Pro Analyzer. FIMTrack calculated the same momentum

trajectories as the commercially available software tool. To

confirm all features extracted by FIMTrack and its consistency,

we developed an additional validation Matlab tool. This tool plots

an arbitrary subset of features and larvae to find irregularities or

cross-compare influences of several parameters between each

other (e.g. by plotting distance to nearest neighbor and collision

flag simultaneously).

In addition, more complex features like bending angle and stop

and go phases were validated manually. Results generated for

bending angle were confirmed by comparing manually generated

results with the results of FIMTrack (movie of 10 larvae for .2000

frames). The bending angle was categorized in four discrete

classes: no bending (x,,20u), slight bending (,20u,x,,30u),
average bending (,30u,x,,50u) and strong bending (x.,50u).
This ground truth data contained ,460 slight, ,470 average and

,630 strong bending events. All discrete average and strong

bending events could be detected by FIMTrack. Due to the chosen

thresholding parameters not all slight bending events are identified

correctly. Stop and go segmentation (see below) was validated

using a custom Matlab script, plotting ‘stop’, ‘stop:left’, ‘stop:right’

and ‘go’ close to the respective larvae. The ‘left’/‘right’ bending is

only indicated for average or strong bending events. The resulting

movies were validated manually. Depending on the thresholds, the

false positive rate for stop and go varies. No false positive go phases

were detected upon validation applying the below mentioned

parameters. All mentioned validation steps led to satisfiable results.

Stop and Go Segmentation. To separate the tracks into stop

and go phases, we implemented a Matlab tool adding this features

as binary indicator matrix to the overall feature sets. A go is

defined as a phase of movement over tgo time steps with a

movement speed above a velocity v (of the momentum of the

contour) and with a body bending angle below b (tgo, v and b can

be set by the user). We use 10 fps temporal resolution to acquire

smooth features (e.g. area values to calculate the peristaltic). The

noise and the crawled distance between two adjacent frames is

difficult to discriminate at this resolution(1 to 3 pixel given an 40

pixel larval length resolution for both, noise and traveled distance).

We reduce the temporal resolution to distinguish stop and go

phases. Therefore, we recalculate the movement speed for an

increased time span twindow and apply a suitable speed threshold.

For our experiments, a speed window twindow = 15 (1.5 fps

temporal resolution), v = 10 (pixel per 1.5 frames) and bending

angle threshold b= 20u lead to good results (see Movie S7). We

smoothed the go phases by setting all tgo = 7, indicating that at

least 7 frames must belong to an uninterrupted phase. The stop

phase matrix is the logical not of the go phase matrix.

MDS. The tracking result is a table containing all tracked

features. The rows represent time steps and columns represent

animals. N targets tracked over T time steps result in (TxN)

dimensional tables for each feature. Thus, every feature for every

larva is stored in a N-dimensional vector and all animals can be

represented in an N-dimensional feature space. Subsequently, N-

dimensional feature space is projected into two dimensions using

multidimensional scaling (MDS) deploying the Matlab program-

ming environment [21,30].

Supporting Information

Figure S1 Integration of external stimuli. (A) Integration

of a light pattern can be easily achieved by a conventional LCD

projector placed below the FIM setup. (B) When second instar

larvae are enclosed by a light ring, movement is confined to the

dark spot. (C) To generate a temperature gradient we placed a

metal plate with a temperature gradient of 0.8uC/cm 2 mm above

the tracking arena. The tracking arena is equilibrated and the

temperature on the agar is controlled. (D) Typical tracking pattern

of wild type larvae in a temperature gradient (left 18.5uC to 33uC).

(TIFF)

Figure S2 FIM offers a wide range of applications.
Examples of recording of different species. (A) Planarian flatworm.

(B) Third instar Drosophila larva. (C) Second instar Drosophila

larva. (D) First instar Drosophila larva. (E) Adult C. elegans. (F)

Adult Drosophila. Note the bright footprints. All recordings were

done at the same spatial resolution (third instar larva size 170

pixel) with 10 fps except for (F), 30 fps. Every fifth frame is shown.

(G) Arabidopsis seedling.

(TIFF)

Movie S1 FIM-imaging of multiple Drosophila larvae.
Group of crawling third instar larvae at 40 pixel per larval length

with 10 fps recorded for 7.5 seconds.

(AVI)

Movie S2 High resolution FIM. Crawling larva at 170 pixel

per larval length with 20 fps recorded for 2.25 seconds but shown

at 5 fps.

(AVI)

Movie S3 Integration of light stimuli in FIM-imaging.
Group of crawling third instar larvae at 40 pixel per larval length

with 10 fps recorded for 28 seconds shown at 40 fps. Room

illumination (350 lx) is turned on between frame 66 and frame 207.

(AVI)

Movie S4 Larvae engaged in slight collisions. Two

colliding third instar larvae at 40 pixel per larval length with

10 fps. Larval identity and contour are maintained. Movies are

recorded from the FIMtrack reviewing tool. Larval contours are

selectively superimposed just for the colliding animals.

(AVI)
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Movie S5 Larvae engaged in moderate collisions. Two

colliding third instar larvae at 40 pixel per larval length with

10 fps. Larval identity is maintained but contour is distorted.

Movies are recorded from the FIMtrack reviewing tool. Larval

contours are selectively superimposed just for the colliding

animals.

(AVI)

Movie S6 Larvae engaged in intensive collisions. Two

colliding third instar larvae at 40 pixel per larval length with

10 fps. Larval identity and contour are not maintained. Movies

are recorded from the FIMtrack reviewing tool. Larval contours

are selectively superimposed just for the colliding animals.

(AVI)

Movie S7 Extraction of stop and go phases. The movie

shows a video with superimposed stop and go phases and bending

directions used to validate the extraction these features. Param-

eters are set in a way, that no false positive go-phases are indicated.

This, however, produces some false positive stop-phases.

(AVI)
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