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Diabetic nephropathy (DN) is a common complication of diabetes and an important cause

of end-stage renal disease. Increasing evidence suggests that microRNAs (miRNAs)

regulate the development of DN. In a preliminary study, high levels of miR-150-5p were

detected in the serum and urine of patients with DN. Consequently, we investigated

the effect and mechanism of action of miR-150-5p in DN in vitro and in vivo. Our results

showed that inhibition of miR-150-5p reversed high glucose-induced podocyte injury and

Streptozocin (STZ)-induced diabetic nephropathy in mice. Further analysis revealed that

miR-150-5p targeted the 3′ untranslated region (UTR) of sirtuin 1 (SIRT1), consequently

decreasing SIRT1 levels in podocytes. Importantly, we found that the silencing of

miR-150-5p promoted the interaction between SIRT1 and p53, causing the suppression

of p53 acetylation in podocytes and kidney tissue. This resulted in the stimulation of

AMP-activated protein kinase (AMPK)-dependent autophagy. In conclusion, our study

demonstrated that the silencing of miR-150-5p played a reno-protective role in DN mice

through targeting SIRT1.
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INTRODUCTION

Diabetes is characterized by alteration in glucose metabolism, involving complex pathogenic
mechanisms, leading to multiple complications. Diabetic nephropathy is one of the most serious
complications of diabetes, which can lead to various microvascular diseases, causing glomerular
sclerosis, and end-stage renal disease (ESRD) (Gross et al., 2005; Dronavalli et al., 2008). DN is the
main cause of chronic kidney disease. Up to 50% of diabetic patients develop DN and eventually
ESRD 20 years after onset of diabetes (Packham et al., 2012). It is estimated that 40–45% of type 1
diabetes patients and 30% of type 2 diabetes patients have diabetic nephropathy (Oltean et al., 2017).
Strict control of blood pressure, administration of angiotensin-converting enzyme inhibitors, and
inhibition of the renin–angiotensin system can alleviate the symptoms of DN. However, there
are no effective drugs to prevent and treat DN. Therefore, it is important to understand the
pathogenesis of DN in order to identify new drug targets (de Zeeuw, 2011).

Recently, there has been increasing studies showing that microRNAs (miRNAs) play an
important role in the posttranscriptional regulation of genes in organisms that are closely associated
with growth and development as well as pathogenesis of several diseases (Kim, 2005). There
have been several studies showing that miRNAs play an important role in the pathogenesis of
diabetic nephropathy (Chung, 2015; Assmann et al., 2018). For instance, Francesca et al. found that
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miRNA-27b-3p andmiRNA-1228-3p in the urine were associated
with the progression of renal fibrosis in diabetic kidney disease
(DKD) (Conserva et al., 2019). In addition, inhibition of miR-
21 ameliorated STZ-induced diabetic kidney disease in mice by
targeting CDK6/CDC25 (Kolling et al., 2017). Xie et al. carried
out microRNA sequencing on the exomes obtained from human
urine and found that the miR-150-5p levels in DKD patients were
significantly increased compared to the non-DKD patients (fold
change, 3.477725) (Xie et al., 2017).

Based on previous studies, our aim was to investigate the role
of miR-150-5p in high glucose-induced podocytes injury and
STZ-induced diabetic kidneys mice.

MATERIALS AND METHODS

Clinical Samples
A total of 60 patients with diabetes mellitus (DM) who had been
admitted to the hospital between 2016 and 2018 were enrolled
into this study. Serum and urine samples were collected within
24 h of onset of symptoms and immediately frozen in liquid
nitrogen for further analysis. Patients were classified into two
groups based on the degree of albuminuria: non-DN group
(urinary albumin-to-creatinine ratio (UACR) < 2.5 mg/mmol
and urinary albumin excretion rate (UAER) < 30 mg/24 h,
n = 30) and DN group (UACR > 25 mg/mmol or UAER =

300–800 mg/24 h, n = 30). Ethical approval (permit number:
2015-092-1) for this work was given by the Independent Ethics
Committee of Shanghai TCM-Integrated Hospital. Informed and
written consent was obtained from all patients or their guardians
according to the Ethics Committee guidelines.

Animal
Male eNOS homozygous knockout (eNOS−/−) mice with
C57BL/6J background were purchased from Caygen Biosciences
Inc. (Guangzhou, China) and housed under specific pathogen-
free conditions. This study was carried out in strict accordance
with the Guide for the Care and Use of Laboratory Animals
(Eighth Edition, 2011, published by The National Academies
Press, 2101 Constitution Ave. NW, Washington, DC 20055,
USA). The protocol was reviewed and approved by the Animal
Care Committee of Shanghai TCM-Integrated Hospital (permit
number PZSHUTCM201204008). Diabetes was induced in 8-
week-old mice using intraperitoneal (I.P.) administration of
STZ (Sigma, S0130, dissolved in 0.1M citrate buffer, pH 4.5)
at 50 mg/kg after 4–6 h of food deprivation each day for
5 consecutive days. Non-diabetic controls were injected with
citrate buffer. Ten weeks after induction of diabetes, mice were
given anti-miR-150-5p lentivirus, which was purchased from
HanBio (Shanghai, China). The lentivirus cocktail was purified
using filtration, and then, intravenous injections of 100 µl (1
× 105 IU/µl) were administered weekly for 8 weeks. Mice that
were administered 5% dimethyl sulfoxide (DMSO) served as
controls for the lentivirus treatments. Mice were sacrificed 18
weeks after the onset of diabetes and the kidneys harvested
for subsequent experiments. The surgery were performed under
sodium pentobarbital anesthesia, and all efforts were made to
minimize suffering.

TABLE 1 | Baseline characteristics of patients with DM (n = 30).

Characteristics Non-DN (n = 30) DN (n = 30) p

Age, mean ± SD, years 56.3 ± 18.2 65.9 ± 19.1 >0.05

Gender, n >0.05

Men 17 15 >0.05

Women 13 15 >0.05

Smoking, n 13 11 >0.05

Hypertension, n 16 17 >0.05

Cardiovascular disease, n 5 4 >0.05

BMI, kg/m2 28.5 ± 6.5 29.1 ± 7.3 >0.05

UACR, mg/mmol 0.68 ± 0.21 49.3 ± 15.2 <0.05

UAER, mg/24 h 12.5 ± 9.3 527.3 ± 162.3 <0.05

Urine Albumin Assessment
Urine albumin was detected using an ELISA kit (Nanjing
Jiancheng Bioengineering Institute) according to the
manufacturer’s protocols.

Cell Culture
Conditionally immortalized mouse podocytes were obtained
from the Cell Bank at the Chinese Academy of Sciences
(Shanghai, China) and cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal calf serum.

Statistical Analysis
All data were expressed as themean± standard error of themean
(SEM). Significant differences in mean were evaluated using one-
way ANOVA in various groups accompanied by least significant
difference (LSD) post hoc tests for mean separation. Two groups
analysis was performed t test (two tailed). The significance level
was set at P < 0.05.

Detailed information on materials and methods is shown in
Supplementary Methods.

RESULTS

Silencing of miR-150-5p Inhibits High
Glucose-Induced Podocyte Injury
Previous studies have shown abnormal levels of miR-150-5p
in the urine samples of DN patients (Xie et al., 2017). In our
study, we enrolled 60 DM patients that had been admitted in the
hospital between 2016 and 2018 and divide these patients into
DN (n = 30) and non-DN (n = 30) groups according to UACR
and UAER (UACR > 25 mg/mmol or UAER= 300–800 mg/24 h
for DN group and UACR < 2.5mg and UAER < 30 mg/24 h for
non-DN group). The clinical characteristics of the patients can be
found in Table 1. To determine if there was any difference in the
expression of miR-150-5p between DN and non-DN patients, we
used qRT-PCR to evaluate the expression levels of miR-150-5p in
the urine and serum samples of the patients. The results shown
in Figures 1A,B revealed that there was a significant increase in
the levels of miR-150-5p in the urine and serum samples of the
DN patients.
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FIGURE 1 | High glucose increased the level of miR-150-5p in the serum and urine of patients with diabetic nephropathy as well as in podocytes. (A,B) The level of

miR-150-5p in the serum and urine of diabetic nephropathy (DN) patients was determined using quantitative real-time PCR (qRT-PCR). (C) The level of miR-150-5p in

podocytes cultured in different concentrations of glucose was determined using qRT-PCR (n = 3). Data are expressed as mean ± SEM (**p < 0.01, ***p < 0.001).

Diabetic nephropathy is characterized by the loss of or
damage to podocytes, which may be due to high glucose
(HG) levels that are known to cause apoptosis of podocytes
(Susztak et al., 2006). To investigate the role of miR-150-5p in
podocytes, we cultured the podocytes in different concentrations
of glucose for 48 h. As can be seen in Figure 1C, high levels
of glucose induced the expression of miR-150-5p in a dose-
dependent manner.

Next, we constructed an miR-150-5p knockdown vector

(anti-miR-150-5p) and used it to transfect podocytes for
48 h. A comparison of miR-150-5p levels between transfected
and non-transfected cells using quantitative real-time PCR
(qRT-PCR) verified the efficacy of miR-150-5p knockdown
(Figure 2A). The cells were then cultured in HG (30mM)
and transfected with anti-miR-150-5p vector. Results of qRT-

PCR analysis showed that HG increased the expression of
miR-150-5p compared to the control group (5.5mM glucose),

while transfection with anti-miR-150-5p decreased the HG-
induced expression of miR-150-5p (Figure 2B). Flow cytometric
analysis demonstrated that downregulation of miR-150-5p
ameliorated high glucose-induced cell apoptosis in podocytes
(Figures 2C,D). In diabetic nephropathy, podocytes undergo
phenotypic switching. Podocytes can differentiate from epithelial
cells to mesenchymal cells, which in turn causes the podocytes
to lose their epithelial specificity and function (Thomas and
Paul, 1996; Reidy and Susztak, 2009). The occurrence of
epithelial–mesenchymal transition (EMT) in podocytes can be
demonstrated by the negative regulation of the expression of
biomarkers such as zonula occludens-1 (ZO-1), P-cadherin,
and nephrin (Ying and Wu, 2017). Therefore, we evaluated the
mRNA and protein levels of ZO-1, P-cadherin, and nephrin in
the podocytes. As shown in Figures 2E,F, there was a significant
decrease in the mRNA and protein levels of ZO-1, P-cadherin,
and nephrin in the podocytes cultured in HG compared to
the control group, which indicated that HG accelerated the
EMT process in podocytes. As we had anticipated, anti-miR-
150-5p reversed this HG-induced suppression, indicating that
silencing of miR-150-5p ameliorates HG-induced function loss
in podocytes.

miR-150-5p Binds Directly to the 3′-UTR of
SIRT1 and Inhibits Its Expression
To further explore the mechanisms of action for miR-150-
5p, miRNA target gene prediction software, miRanda and
TargetScan, were used to predict the miRNA target genes.
The prediction results showed that SIRT1, VEGFA, Notch3,
and MMP14 have a potential binding site for miR-150-5p.
However, only SIRT1 expression was altered after miR-150-5p
knockdown in podocytes. To elucidate whether SIRT1 is a target
of miR-150-5p, we constructed wild-type (wt) and mutant (mut)
SIRT1 reporter plasmids. Co-expression of miR-150-5p and
wild-type reporter plasmids significantly reduced the luciferase
activity, while co-expression of miR-150-5p and mutated SIRT1
reporter significantly affected the luciferase activity in podocytes.
These results showed that miR-150-5p directly targets SIRT1
(Figures 3A,B). Thereafter, the results of qRT-PCR and Western
blot analysis revealed that silencing of miR-150-5p promoted the
mRNA and protein levels of SIRT1, while on the other hand,
overexpression of miR-150-5p (miR-150-5p mimic) suppressed
the levels of SIRT1 (Figures 3C,D). In addition, there was a
significant decrease in the mRNA and protein levels of SIRT1
when the podocytes were cultured in HG compared to the
control, whereas the SIRT1 levels increased in the podocytes
transfected with anti-miR-150-5p (Figures 3E,F).

SIRT1 Mediates the Acetylation of p53 and
Promotes Autophagy in Podocytes
The functions of miR-150-5p were explored further through
the knockdown of SIRT1 in podocytes. First, the podocytes
were transfected with small interfering RNA against SIRT1 (si-
SIRT1) and negative control (si-control). The results of qRT-
PCR and Western blot analysis showed a remarkable decrease in
the mRNA and protein levels of SIRT1 in podocyte transfected
and non-transfected with anti-miR-150-5p in combination with
si-SIRT1 (Figures 4A–D). Next, flow cytometry assays showed
that the inhibitory effect of anti-miR-150-5p against HG-induced
apoptosis in podocytes was reversed by si-SIRT1 (Figures 4E,F).
Similarly, as shown in Figures 4G,H, si-SIRT1 suppressed the
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FIGURE 2 | Silencing of miR-150-5p inhibited high glucose-induced podocytes injury. (A) The levels of miR-150-5p in podocytes were determined using quantitative

real-time PCR (qRT-PCR) after transfection with anti-miR-150-5p for 48 h. (B) The levels of miR-150-5p in podocytes were determined using qRT-PCR after

transfection with anti-miR-150-5p and culture in high glucose for 48 h. (C,D) Quantification and analysis of apoptosis rates using flow cytometry in podocytes after

transfection with anti-miR-150-5p and culture in high glucose for 48 h. (E,F) The levels of P-cadherin and zonula occludens-1 (ZO-1) in podocytes were determined

using qRT-PCR and Western blot after transfection with anti-miR-150-5p and culture in high glucose for 48 h. Data are expressed as mean ± SEM (n = 3; **p < 0.01,

***p < 0.001).

mRNA and protein levels of ZO-1, P-cadherin, and nephrin,
which indicates that the inhibition of SIRT1 promotes the loss
of podocyte function.

SIRT1 is one of the most common histone deacetylases
(Jesko et al., 2017). Several lines of evidence suggest that SIRT1
deacetylates p53 and promotes cell autophagy (De et al., 2018;
Zhao et al., 2020); however, its role in podocytes remains
unknown. In this study, we found that culturing of podocytes
in high glucose media led to the acetylation of p53. However,
anti-miR-150-5p decreased the HG-induced p53 acetylation, an
effect that was reversed by si-SIRT1 (Figure 5A). Next, the

extracts of podocytes were subjected to immunoprecipitation
(IP)/Western blot assays with anti-SIRT1 as probes in p53-
precipitated samples. As shown in Figure 5B, HG suppressed
the interaction between SIRT1 and p53, whereas anti-miR-
150-5p remarkably restored the interaction between them.
Since previous studies have reported that p53 regulates the
phosphorylation of AMPK and autophagy (Drakos et al., 2009;
Jing et al., 2011), we investigated the involvement of AMPK in
podocytes. Western blot analysis revealed that the silencing of
miR-150-5p enhanced the phosphorylation of AMPK, thereby
increasing the levels of LC3-II and decreasing the levels of
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FIGURE 3 | miR-150-5p bound directly to the 3′ untranslated region (UTR) of sirtuin 1 (SIRT1) and suppressed SIRT1 expression. (A) The predicted binding sites of

miR-150-5p in the 3′ UTR of SIRT1. The mutated version of the SIRT1 3′ UTR is also shown. (B) The relative luciferase activity was determined in podocytes 48 h after

transfection with the miR-150-5p mimic/control or the 3′ UTR of SIRT1 wt/mut constructs. (C) The levels of miR-150-5p and SIRT1 in podocytes were determined

using qRT-PCR after transfection with anti-miR-150-5p or miR-150-5p mimic for 48 h. (D) The protein levels of SIRT1 in podocytes were determined using Western

blot after transfection with anti-miR-150-5p or miR-150-5p mimic for 48 h. (E) The levels of SIRT1 in podocytes were determined using qRT-PCR and Western blot

after transfection with anti-miR-150-5p and culture in high glucose for 48 h. (F) The protein levels of miR-150-5p and SIRT1 in podocytes were determined using

Western blot after transfection with anti-miR-150-5p and culture in high glucose for 48 h. Data are expressed as mean ± SEM (n = 3; **p < 0.01, ***p < 0.001).

FIGURE 4 | The effect of anti-miR-150-5p is mediated by sirtuin 1 (SIRT1) knockdown. (A,B) The levels of SIRT1 in podocytes were determined using qRT-PCR and

Western blot after transfection with si-SIRT1 for 48 h. (C,D) The levels of SIRT1 in podocytes were determined using qRT-PCR and Western Blot after transfection

with si-SIRT1 and culture in high glucose for 48 h. (E,F) Quantification and analysis of apoptosis rates using flow cytometry in podocytes after transfection with

si-SIRT1 and culture in high glucose for 48 h. (G,H) The levels of P-cadherin and zonula occludens-1 (ZO-1) in podocytes were determined using qRT-PCR and

Western blot after transfection with si-SIRT1 and culture in high glucose for 48 h. Data are expressed as mean ± SEM (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001).

p62, suggesting that anti-miR-150-5p promotes autophagy in
podocytes (Figure 5C). Furthermore, the use of the autophagy
biosensor, mRFP-GFP-LC3, revealed that HG suppressed the

formation of autolysosomes (RFP) and autophagosomes (RFP)

in podocytes, an effect that was inhibited by transfecting the

podocytes with anti-miR-150-5p (Figures 5D,E).

Silencing of miR-150-5p Ameliorates
Kidney Injury in Type 1 Diabetic Mice
To explore the function of miR-150-5p in diabetic nephropathy
in vivo, we developed a type 1 diabetic model. In this model,
eNOS−/− mice were injected (i.p.) with STZ 50 mg/kg after
6 h of food deprivation each day for 5 consecutive days to
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FIGURE 5 | Sirtuin 1 (SIRT1) mediated the acetylation of p53 and promoted autophagy in podocytes. (A) p53 acetylation was determined in Flag IP, and total p53

was determined on total extracts as input in podocytes cultured in high glucose for 48 h after transfection with si-SIRT1 or anti-miR-150-5p and expressing Flag-p53.

(B) Acetylation and SIRT1 were determined in p53 IP, and total p53 was determined on total extracts as input in podocytes cultured in high glucose for 48 h after

transfection with si-SIRT1 or anti-miR-150-5p. (C) The levels of p-AMPK, LC-3, and p62 in podocytes were determined using Western blot after transfection with

si-SIRT1 and culture in high glucose for 48 h. (D,E) Typical images of immunofluorescence staining of mRFP-GFP-LC3 in podocytes cells after transfection with

si-SIRT1 and culture in high glucose for 48 h. Typical profiles of autophagosomes (RFP + GFP + dots) and autolysosomes (RFP + GFP-dots) per cell section tested

by confocal microscopy are shown and quantified. Data are expressed as mean ± SEM (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001).

induce diabetes. After 10 weeks, the mice received weekly
intravenous injections of anti-miR-150-5p lentivirus for 8 weeks,
after which the mice were euthanized (Figure 6A). UACR is
a biomarker for diabetic nephropathy(Williams, 2005), and
the results shown in Figures 6B,C reveal that there was
a significant decrease in UACR and blood glucose in the
mice after administration of anti-miR-150-5p. There were
histomorphometry changes detected using H&E, PAS, and
Masson staining in the renal tissue of DN mice (Figure 6D).
These include the enlargement of the glomerular and mesangial
matrix area in the mice administered with STZ, an effect that was
reversed by transfection with anti-miR-150-5p (Figures 6E,F).
Next, qRT-PCR results showed that the levels of miR-150-5p
increased while the levels of SIRT1 decreased in the STZ group.
The administration of anti-miR-150-5p restored the levels of
miR-150-5p and SIRT1 to the control levels in mice kidney
tissue. Similarly, the protein levels of SIRT1 were consistent
with the mRNA levels in mice kidney tissue (Figures 6D,G,H).
Further, the acetylation of p53 was determined using IP
and Western blot. As shown in Figure 6I, STZ promoted
the acetylation of p53 and inhibited the interaction between
SIRT1 and p53, whereas anti-miR-150-5p significantly restored
the interaction of SIRT1 and p53 in mice kidney tissue,
which was consistent with the in vitro results. Next, Western
blot results demonstrated that anti-miR-150-5p enhanced the
phosphorylation of AMPK, which was suppressed by STZ
treatment (Figure 6J).

DISCUSSION

Studies have shown that miRNAs are important small non-
coding RNAs that mainly regulate the expression of target
genes at the posttranscriptional level under physiological or
pathological conditions (Kim et al., 2018). Recently, in-depth
studies have identified additional miRNAs that have been
implicated in the occurrence of diabetic nephropathy (Mafi
et al., 2018; Yang et al., 2018b; Martinez and Peplow, 2019).
Therefore, there is a need for further studies to determine the
role of miRNAs in the regulation of diabetic nephropathy with
the hope of discovering new therapies for diabetic nephropathy.
Previous studies revealed that miR-150-5p plays various roles in
the pathophysiology of diabetes. For instance, Che et al. (2020)
found that the suppression of miR-150-5p ameliorated high

glucose-induced myocarditis by targeting the SMAD7 pathway.
In addition, miR-150-5p is also associated with β-cell injury
caused by diabetes (Roat et al., 2019). Our study demonstrated
that anti-miR-150-5p exerts reno-protective effects by targeting
SIRT1 and restoring autophagy.

In a study on the relationship between SIRT1 and kidney
disease, the expression levels of SIRT1 in the kidney tissues
of diabetic rats were found to be significantly downregulated
(Huang et al., 2019b). Shao et al. found that serum SIRT1
expression in diabetic patients decreased and its expression
gradually decreased with the aggravation of proteinuria (Shao
et al., 2017). Peter et al. constructed SIRT1 knockdown mice
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FIGURE 6 | Silencing of miR-150-5p ameliorated kidney injury in type 1 diabetic mice. (A) eNOS−/− mice were injected (i.p.) with STZ 50 mg/kg after 6 h of food

deprivation each day for 5 consecutive days to induce diabetes. After 10 weeks, mice were given weekly intravenous injections of anti-miR-150-5p lentivirus for 8

weeks and then euthanized. (B) The level of urinary albumin-to-creatinine ratio (UACR) in mice. (C) The level of blood glucose in mice. (D) Representative images of

hematoxylin–eosin (HE) (×200), periodic acid–Schiff (PAS) (×200), Masson-stained (×200), and immunohistochemistry of sirtuin 1 (SIRT1) (×400) in kidneys. Scale bar

= 100µm. (E,F) Quantification of the glomerular area and mesangial area fraction in mice kidney tissues. (G) The levels of miR-150-5p and SIRT1 in podocytes were

determined using qRT-PCR in mice kidney tissues. (H) The protein levels of SIRT1 in podocytes were determined using Western blot in mice kidney tissues. (I)

Acetylation and SIRT1 was determined in p53 IP, and total p53 was determined on total extracts as input in mice kidney tissues. (J) The levels of p-AMPK, LC-3, and

p62 in podocytes were determined by Western blot in mice kidney tissues. Data are expressed as mean ± SEM (n = 6; *p < 0.05, **p < 0.01, ***p < 0.001).

that showed severe albuminuria and mitochondrial dysfunction
after Adriamycin-induced nephropathy, compared with wild-
type mice (Chuang et al., 2014). Kazuhiro et al. found SIRT1 in
proximal tubules protects against albuminuria in diabetes and
influences podocyte function (Hasegawa et al., 2013). Previous
research has demonstrated that SIRT1 deficiency in diabetic
leads to hypoxia-inducible factor 1-alpha (HIF1α) activation,
which leads to abnormal angiogenesis and fibrosis in the kidney
(Takiyama and Haneda, 2014; Shao et al., 2016). Besides, SIRT1
prevents diabetic renal fibrosis by inhibiting the transforming
growth factor beta 1 (TGF-β1)/Smad 2/3 pathway mediated
EMT (Li et al., 2010; Yao et al., 2018). Zhang et al. (2018)
reported that paeonol promoted the Nrf2/ARE pathway and
inhibited oxidative stress through SIRT1 and alleviated diabetic
renal injury in STZ-induced diabetic mice. What is more,
silencing SIRT1 leads to the acetylation of FoxO3a, which
aggravates the oxidative stress in HG-induced tubular epithelial
cells (Wang et al., 2017). These results suggest that SIRT1
is closely related to oxidative stress injury and fibrosis in
diabetic nephropathy. Through immunoprecipitation/Western
blot assays, we demonstrated that SIRT1 deacetylates p53 in
podocytes and mouse kidney tissues. However, we did not
identify the specific acetylation sites for SIRT1 on p53. Further
research using techniques such as liquid chromatography tandem
mass spectrometry (LC-MS/MS) analysis will be necessary

to determine the acetylation peptide and study the specific
mechanisms of SIRT1–p53 posttranslational modification. This
will be important for the identification of accurate targets for
DN therapy.

Philippe et al. found that the phosphorylation of AMPK
in the renal glomeruli and tubules of patients with DM was
significantly reduced, suggesting that AMPK inactivation is
involved in the progression of DN (Cammisotto et al., 2008).
AMPK not only activates downstream signals in a SIRT1-
dependent manner, but it is also upregulated by increasing
cellular NAD+ levels due to SIRT1 activity (Wang et al., 2018;
Huang et al., 2019a). This could cause AMPK activation by
restricting glucose uptake and increase the activity of SIRT1
by promoting the transcription of NAD+ biosynthetic enzyme
nicotinamide phosphoribosyltransferase (NAMPT) (Ding et al.,
2010). Hence, in our future studies, we will focus on the
effect of AMPK in regulating SIRT1 activity and investigate
the possibility of forming a positive feedback loop in the high
glucose environment of podocytes. Autophagy is considered to
play an important role in the pathogenesis of various diseases
(Doherty and Baehrecke, 2018). Increasing evidence shows that
autophagy can regulate many key functions of the kidney in
the normal and diseased state (Su et al., 2019; Zhang et al.,
2020). STZ-induced autophagy is inhibited in the proximal and
early tubules of DM rats, which is associated with renal tubular
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hypertrophy. Autophagy inhibition was also observed in distal
tubules and could be reversed by insulin administration or islet
transplantation (Eirin et al., 2017; Yang et al., 2018a). Inhibition
of autophagy in podocytes was observed in STZ-induced DM
mice, showing accumulation of autophagic degradation substrate
p62 (Wang and Choi, 2014). In addition, autophagy is also
involved in the maintenance of podocyte function, as suggested
by the high rates of autophagy in podocytes and the effect of
depletion of autophagy-related proteins on glomerulopathy in
mice (Hartleben et al., 2010). Autophagy ismodulated by nutrient
state, and it changes under diabetic conditions, potentially
exacerbating organelle dysfunction and leading to diabetic
nephropathy (Yamahara et al., 2013). These results reveal that
high glucose-induced changes on autophagy play an important
role in diabetes-associated podocyte injury. However, in diabetic
kidney disease, other than autophagy, other mechanisms, such as
antioxidant and anti-inflammation effects, have been suggested
to offer renal protection (Sun et al., 2019; Wang et al., 2019).
Therefore, there is a need to investigate the involvement of
other mechanisms in regulating the renoprotective function
of miR-150-5p.

In summary, our work revealed that silencing of miR-150-
5p potentially ameliorates high glucose-induced podocytes
injury and STZ-induced mice diabetic nephropathy by
targeting SIRT1, deacetylating p53, and restoring autophagy
(Supplementary Figure 1). This study gives new insights into
the renoprotective mechanisms of miR-150-5p in patients with
diabetic nephropathy.
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