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PLX5622 is a CSF-1R inhibitor and microglia-depleting reagent, widely used to investigate
the biology of this central nervous system (CNS)-resident myeloid population, but the
indirect or off-target effects of this agent remain largely unexplored. In a murine model of
severe neuroinflammation induced by West Nile virus encephalitis (WNE), we showed
PLX5622 efficiently depleted both microglia and a sub-population of border-associated
macrophages in the CNS. However, PLX5622 also significantly depleted mature Ly6Chi

monocytes in the bone marrow (BM), inhibiting their proliferation and lethal recruitment
into the infected brain, reducing neuroinflammation and clinical disease scores. Notably, in
addition, BM dendritic cell subsets, plasmacytoid DC and classical DC, were depleted
differentially in infected and uninfected mice. Confirming its protective effect in WNE,
cessation of PLX5622 treatment exacerbated disease scores and was associated with
robust repopulation of microglia, rebound BM monopoiesis and markedly increased
inflammatory monocyte infiltration into the CNS. Monoclonal anti-CSF-1R antibody
blockade late in WNE also impeded BM monocyte proliferation and recruitment to the
brain, suggesting that the protective effect of PLX5622 is via the inhibition of CSF-1R,
rather than other kinase targets. Importantly, BrdU incorporation in PLX5622-treated
mice, suggest remaining microglia proliferate independently of CSF-1 in WNE. Our study
uncovers significantly broader effects of PLX5622 on the myeloid lineage beyond microglia
depletion, advising caution in the interpretation of PLX5622 data as microglia-specific.
However, this work also strikingly demonstrates the unexpected therapeutic potential of
this molecule in CNS viral infection, as well as other monocyte-mediated diseases.
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1 INTRODUCTION

Monocytes are derived from hematopoietic stem and progenitor
cells in the adult bonemarrow (BM) in the process of monopoiesis
(1). Signaling via the colony-stimulating factor-1 receptor R (CSF-
1R, CD115), a homodimeric glycoprotein, is required for the
survival, differentiation, and proliferation of these cells (2–5).
During “emergency” conditions, classical Ly6Chi monocytes
migrate from the BM via CCL2-CCR2 signaling into inflamed
tissues (6, 7). Acute West Nile virus (WNV) infection of the
central nervous system (CNS) parenchyma results in the lethal
recruitment of BM-derived classical Ly6Chi monocytes into the
CNS (6, 8–12). These monocyte-derived cells (MCs) often adopt
an immunophenotype similar to microglia, the resident
parenchymal myeloid cells of the CNS, confounding clear
discrimination between these cells during infection, making it
difficult to accurately ascribe disease response functions to each
(12–14).

In the United States, WNV is the third leading cause of all
virus-induced hospitalized encephalitis (15). Since its
introduction into the United States in 1999 in a lethal
outbreak, it has spread throughout the American continent to
occupy the largest world-wide distribution among Flaviviridae
(16–18). Neuroinvasion, the most debilitating feature of WNV,
occurs in approximately 1% of cases, resulting in meningitis,
encephalitis and/or acute flaccid paralysis, with 8-10% fatality
(15, 17, 19–21). This neurotropism (18) and the tendency to
cause immunopathology (22–24), along with its expanding
distribution and propensity to cause epidemics (25) that are
unpredictable in location and magnitude, make WNV a
continuing global threat (15). While an effective vaccine
remains a key goal for disease control, understanding the
pathogenesis of disease caused by infection remains crucial to
the development of targeted therapeutic approaches to
ameliorate viral immunopathology.

Tools to study the contribution of resident and infiltrating
myeloid cells to the pathogenesis of CNS virus infection have,
until recently, been limited. Prior to the commercial availability
of microglia-specific reagents, few studies examined the role of
microglia in vivo, instead utilising in vitro or ex vivo slice culture
models (26–28). However, our growing understanding of the
inextricable importance of the brain microenvironment in
instructing myeloid phenotype and function, has driven an
increasing emphasis on work in vivo (29, 30). In vivo
investigation of these cells has been substantively aided by the
small molecule inhibitor of CSF-1R tyrosine kinase activity,
PLX5622, typically formulated into a standard rodent chow to
enable oral administration. This drug readily penetrates the
blood brain barrier (BBB) and can deplete > 90% of microglia
in as little as three days (31–33). Removal of PLX5622 causes
rapid microglia replenishment via the proliferation of surviving
microglia (34). PLX5622 has a 20-fold higher selectivity for CSF-
1R over other similar receptor tyrosine kinases, including KIT
and fms-like tyrosine kinase 3 (FLT3), as well as an increased
BBB penetration, making it more efficacious and specific than
previously developed CSF-1R inhibitors (33). The availability of
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PLX5622 has thus stimulated a surge of experiments examining
the role of microglia in viral encephalitis. In murine models of
viral encephalitis caused by WNV, Japanese encephalitis virus,
Theiler’s encephalomyelitis virus (TMEV), pseudorabies virus
(PRV), Herpes Simplex virus, the neurotropic JHM strain of
mouse hepatitis virus (JHMV) and Murine Hepatitis Virus
(MHV), PLX5622-mediated microglia depletion resulted in
increased mortality, with increased viral loads in the CNS,
implying a protective role for microglia in viral infection (31,
35–42).

PLX5622 has largely been assumed to be microglia-specific,
with few studies considering indirect or off-target effects
produced by this molecule in the interpretation of
experimental findings. However, other cells besides microglia
express CSF-1R (43) and rely on its signaling for survival and
proliferation (2–5). Not surprisingly, studies have demonstrated
effects on peripheral myeloid and lymphoid cells post-treatment
with PLX5622 (44). Non-parenchymal brain-resident border-
associated macrophages (BAMs) are also likely affected by CSF-
1R inhibition. Thus, identifying the role of microglia may be
impossible using this molecule alone, with off-target effects
potentially contributing to the disease phenotype (14).

In contrast to previously published work using PLX5622 to
investigate microglial responses in WNV encephalitis (WNE),
we used a 100% lethal dose (LD100) of WNV, inoculated
intranasally to study the response of the brain independently
of the systemic immune response (6). Inoculated intranasally,
WNV directly infects the CNS via the olfactory nerve without
disrupting the BBB (6). In this model, the recruitment of
peripherally-derived MCs into the CNS ultimately drives
immunopathology and mortality, since inhibiting their
recruitment to the brain can ameliorate disease and increase
survival (6, 8, 10, 11). Thus, here we investigated the impact of
PLX5622-induced microglia depletion on a monocyte-mediated
inflammatory disease.

In contrast to other models of viral encephalitis, we found
that PLX5622 treatment prior to WNV-infection was protective.
PLX5622 reduced the number and proliferative capacity of
mature monocytes in the BM, resulting in a substantial
decrease in the immigration of inflammatory macrophages into
the CNS, as well as a corresponding reduction in cytokine
expression. Strikingly, cessation of PLX5622 treatment reversed
this protective effect, resulting in rebound monopoiesis and
enhanced CNS infiltration, revealing CSF1-R as a potential
therapeutic target. Consistent with this, monoclonal anti-CSF-
1R antibody blockade late in disease reduced BM monocyte
production and infiltration of these cells into the inflamed CNS,
suggesting that the protective effect of PLX5622 is via the
inhibition of CSF-1R, rather than other kinase targets. Thus,
while advising caution in the interpretation of experiments in
which PLX5622 has been assumed to be microglia-specific, this
study demonstrates for the first time the protective effect of
PLX5622 in CNS viral infection, as well as other monocyte-
mediated diseases, providing new insight into the importance of
CSF-1-CSF-1R signaling in monopoiesis and the recruitment of
inflammatory monocytes into inflamed tissues.
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2 MATERIALS AND METHODS

2.1 Mice
Female 9-10-week-old C57BL/6 mice from the Animal Resource
Centre (ARC) (Western Australia, Australia) were kept in
individually ventilated cages under specific pathogen-free
conditions with access to food and water ad libitum. All
experiments were performed in accordance with National
Health and Medical Research Council’s ethical guidelines with
the animal ethics approval number 2019/1696 approved by the
University of Sydney Animal Ethics Committee.

2.2 WNV Infection
Mice were anesthetised with isoflurane prior to being infected
intranasally with WNV (Sarafend, a lineage II strain of WNV)
delivered in 10 mL of sterile PBS [as previously described (6, 45)].
Mice were infected with 1.2 x 105 plaque forming units (PFU) or
7 x 103 PFU of WNV, doses that are lethal in 100% and 50% of
mice, respectively. Mice were sacrificed no later than days post
infection (dpi) 7. Diseases scores were recorded based on the
criteria shown in Supplementary Table 1.

2.3 PLX5622-Mediated Microglia Depletion
Plexxikon Inc. (USA) provided the PLX5622 which was
formulated in AIN-76A standard chow by Research diets
(USA) (1200 ppm). All mice were feed PLX5622 or control
chow (AIN-76A) for 21 days prior to infection. Mice were fed
either PLX5622 or AIN-76A for no longer than an additional 7
days post infection.

2.4 Modulating Entry of Monocytes Into
the CNS
2.4.1 Intravenous Delivery of Clodronate Liposomes
Clodronate liposomes (Liposoma, AMS) were vortexed and
delivered intravenously via the lateral tail vein at dpi 5 at a
dose of 200 mL.

2.4.2 Intraperitoneal Delivery of Blocking Antibodies
Monoclonal blocking antibodies, anti-Ly6C (BE0203) and anti-
CSF-1R (CD115, AFS98) and their isotype control (2A3)
(BioXcell, USA) were injected interperitoneally at either 1) dpi
5 and 6 (anti-Ly6C and anti-CSF-1R) or 2) dpi 0, 2, 4 and 6 (anti-
CSF-1R) at a dose of 200 mg prepared in 200 ml of sterile PBS.

2.5 Tracking Recently Infiltrating Cells in
the CNS Using PKH67
As per the manufacturer’s instructions, PKH26 cell-linker was
mixed with diluent C (Sigma-Aldrich, USA) prior to use. PKH26
cell-linker was used at a 10-fold higher concentration than
recommended and injected intravenously via the lateral tail
vein 2 hrs prior to tissue collection.

2.6 Detection and Quantification of
Proliferating Cells With BrdU
Mice were injected intraperitoneally with 1mg of bromodeoxyuridine
(BrdU) (Sigma-Aldrich, USA) in 200 µL sterile PBS 3 hrs
before sacrifice.
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2.7 Plaque Assay to Determine Viral Titer
in the CNS
A virus plaque assay was performed as previously described (6)
using virally susceptible BHK cells. Brain tissue was dissociated
with a power homogenizer (TissueLyser, Qiagen) before being
clarified by centrifugation. Tenfold dilutions of tissue
homogenates were used to infect BHK cells. The inoculum was
removed after a 1 hr incubation and replaced with an Agarose
plug. Cells were incubated for a further 3 days before being fixed
with 10% formalin (Sigma-Aldrich, USA). A 3% crystal violet
(Sigma-Aldrich, USA) dye solution in 20% methanol (Fronine)
was used to stain fixed cells. The PFU per gram was determined
by factoring the number of plaques, the inoculum volume, and
the dilution.

2.8 RNA Extraction and Real-Time
Quantitative Polymerase Chain Reaction
For RNA extraction, brain tissue was dissociated with TRI
Reagent (Sigma Aldrich, USA) using a tissue homogenizer
(TissueLyser, Qiagen, DE). The High-Capacity cDNA Reverse
Transcription Kit (ThermoFisher Scientific, USA) was used to
generate cDNA and the Power SYBR™ Green PCR Master Mix
(ThermoFisher Scientific, USA) was used to conduct qPCR using
primers all purchased from Sigma Aldrich, USA (See
Supplementary Table 2), on the LightCycle® 480 Instrument
II (Roche, CH). Gene expression values were normalized
to Rpl13a.

2.9 Flow Cytometry
Prior to collection of spleen, brain and femurs, mice were
anaesthetised and transcardially perfused with ice cold sterile
PBS. Femurs were flushed with cold PBS using a 30-gauge needle,
while spleens were gently mashed through a 70 mM nylon mesh
sieve using a syringe plunger. RBC lysis buffer (Invitrogen, USA)
was used to lyse erythrocytes in single cell suspensions of BM
cells and splenocytes. Brains were processed into single cell
suspensions in PBS and DNase I (DN25, 0.05 mg/mL) and
collagenase (5 mg/mL) (Sigma-Aldrich, USA) using the
gentleMACS dissociator (Miltenyi Biotec, DE). Subsequently, a
30%/80%Percoll gradient was used to isolate the cells from brain
homogenates. After tissue processing, live cells were counted
with trypan blue (0.4%) on a haemocytometer. Single cell
suspensions were incubated with purified anti-CD16/32
(Biolegend, USA) and UV-excitable LIVE/DEAD Blue (UVLD)
(Invitrogen, USA) or Zombie UV Fixable Viability kit
(Biolegend, USA) and subsequently stained with a cocktail of
fluorescently-labelled antibodies (See Supplementary Table 3).
Cells were washed two times and fixed in fixation buffer
(Biolegend). Intracellular antibodies were stained after surface
staining, fixation and incubation with Cytofix/Cytoperm (BD
Biosciences, USA). Anti-BrdU (3D4 or Bu20a, Biolegend, USA)
was stained intranuclearly, as previously described (46). Briefly,
after cell surface staining and fixation, cells were incubated in
Cytofix/Cytoperm (BD Biosciences, USA), Cytoperm
Permeabilization Buffer Plus (BD Biosciences, USA) and
DNase (DN25, 30 U/sample) (Sigma-Aldrich, USA), prior to
being stained with anti-BrdU.
March 2022 | Volume 13 | Article 851556
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Fluorescently-tagged antibodies were measured on the 5-laser
Aurora, Spectral cytometer (Cytek Biosciences, USA). Acquired
data was analysed in FlowJo (v10.8, BD Biosciences, USA).
Quality control gating including time, single cells, non-debris/
cells and Live/Dead staining was applied to exclude debris,
doublets and dead cells. Cell numbers were quantified using
cell proportions exported from FlowJo and total live cell counts.

2.10 tSNE Analysis
The FCS files were compensated and gated in FlowJo prior to
exporting channel values (CSV). T-distributed stochastic
neighbour embedding (tSNE) was applied to CSV files, in
RStudio (1.1.453 or 1.4.1717) using CAPX (46) (package
publicly available: https://github.com/sydneycytometry/CAPX)
or Spectre (47) (package publicly available: https://github.com/
ImmuneDynamics/Spectreusing default settings) using default
settings i.e., perplexity = 30, theta = 0.5 and iterations = 1000.

2.11 Heatmaps
The FCS files were compensated and gated in FlowJo prior to
exporting median fluorescent intensity (MFI) signals from
populations of interest. Heatmaps were applied to MFI’s in
RStudio (1.2.1335) using the R package, pheatmaps (48).

2.12 Statistical Analysis
Non-parametric statistical tests were applied to data in GraphPad
Prism 8.4.3 (GraphPad Software, La Jolla, CA). Comparison of two
groups was conducted using Mann–Whitney test, and three or
more groups were compared using a Kruskal–Wallis test with a
Dunn’s multiple comparison test. When two independent variables
and three or more groups were being compared a Two-way
ANOVA and a Šıd́ák’s or Tukey’s multiple comparisons test was
used. Error bars are shown as standard error of the mean (SEM).
3 RESULTS

3.1 PLX5622-Mediated Microglia Depletion
Is Protective in WNE and Reversed Upon
Cessation of Treatment
The depletion of microglia using PLX5622 provides a non-invasive
approach to study the in vivo functions of microglia during disease.
Previously published studies show that microglia depletion
exacerbates clinical scores and mortality in murine models of viral
CNS infection (31, 36–40). To investigate this in more detail, we set
up 3 principal groups, as follows. In the experimental group (PLX),
we fed mice PLX5622-formulated chow for 21 days prior to
infection and following this, for 5 or 7 dpi, to induce and
maintain maximal microglia depletion. In the second group
(PLX-Ctrl), after 21 days we replaced PLX5622-formulated chow
with control chow (AIN-76A) from dpi 0 (the day of infection)
onwards, to enable the replenishment of microglial numbers via
proliferation of surviving microglia (34). In the master control
group (Ctrl), we fed mice only control chow (AIN-76A)
throughout the period until sacrifice at dpi 5 or 7 (Figure 1A).
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In the mock-infected PLX group, 90% of microglia were
depleted (Figures 1B, C). We also observed a significant
decrease in the number of CD45+, Ly6G-, CD3e-, NK1.1-,
Ly6C-, CD11b+, CD68+, MHC-II+ cells, a phenotype consistent
with a subpopulation of border-associated macrophages (BAMs)
(Supplementary Figure 1). Further, in the brains of this group,
we saw an unexpected increase in the number of neutrophils, T
cells and NK cells, possibly recruited in response to dead
microglia in the CNS (Supplementary Figure 1). In PLX mice,
a mean depletion of 85% microglia was evident in WNV-infected
mice at dpi 5. Depletion remained at 85% on dpi 7, despite
reduced chow consumption by infected animals on dpi 6 and 7
(Figures 1B–D). Strikingly, however, the WNV-infected PLX
group showed a significantly lower clinical disease score at dpi 7
than the Ctrl group (Figure 1F). In contrast, in the PLX-Ctrl
group, substitution of PLX5622 chow with control chow on dpi 0
of infection was associated with restoration of microglial
numbers and a significant increase in disease score by dpi 7
(Figures 1B, F). Despite differences in disease score, all infected
groups showed a similar degree of weight loss from dpi 5
onwards, losing >5% of their initial weight by dpi 7 (Figure 1E).

Since microglia are putatively protective during viral encephalitis
(31, 36–40), we investigated whether the decrease in disease score in
the PLX group resulted from microglial repopulation, with the
decreased chow consumed by mice late in infection. The number
and percent of proliferating microglia in the PLX group, measured
using BrdU incorporation in vivo, was not significantly different
from Ctrl or PLX-Ctrl groups at dpi 7 (Figures 1G, H). Thus, it is
unlikely that the amelioration of disease scores conferred by
PLX5622 was due to microglial proliferation, especially as disease
scores in the Ctrl group were re-capitulated, if not exceeded, in the
microglia-repopulated PLX-Ctrl group. Intriguingly, however, in
both mock-infected and infected PLX5622-treated mice, microglia
were still evidently proliferating (Figures 1G, H). At dpi 5, when
peak microglia proliferation occurs in WNE (12), PLX5622 did not
inhibit the proliferative capacity of remaining microglia, as the
frequency of BrdU+ microglia (~9%) was no different from the Ctrl
group (Figure 1G). Overall, these data suggest that PLX5622 is
protective during lethal viral infection and that a CSF-1-
independent mechanism of microglial proliferation during CSF1-
R blockade becomes more conspicuous in WNE.

3.2 Correlation of Viral Load and Microglia
Number in WNV-Infection in Microglia-
Depleted Brains
To investigate the protective effect of PLX5622 during WNV-
infection, we assessed viral loads in the brain at dpi 5 and 7 using
a viral plaque assay and q-PCR (Figures 2A–E). Compared to Ctrl
mice, plaque assays on homogenized brains from PLXmice showed
no change at dpi 5 and slight increase in PFU at dpi 7 (Figures 2B,
C). Using q-PCR, we observed no significant differences at either
timepoint (Figures 2D, E). However, there was an increase in viral
RNA at dpi 7 (albeit non-significant) and a significant inverse
correlation between viral RNA and numbers of microglia in the
brain in PLX mice at dpi 7 (Figures 2E, F), supporting the
association of microglia with viral clearance (31, 35, 36, 38).
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Interestingly, microglial restoration in PLX-Ctrl mice showed no
difference in viral load via qPCR, compared to microglia-depleted
PLXmice (Figure 2E). While a plaque assay was not performed on
this group to confirm these findings, this could suggest that
repopulated microglia are less capable of clearing virus.
Supporting this, P2RY12, a nominal microglia-enriched (29)
purinergic receptor was reduced by more than 50% on
repopulating microglia in the PLX-Ctrl group and remaining
microglia in the PLX group at dpi 7, relative to the Ctrl group
(Supplementary Figure 2). This molecule is associated with an
enhanced microglial migratory capacity and ability to phagocytose
infected neurons for viral clearance (35), thus a reduction in
Frontiers in Immunology | www.frontiersin.org 5
P2RY12 may have inhibited viral clearance by repopulated
microglia. Nonetheless, the increased viral titres in the PLX group
do not explain the protective effect of PLX5622 in WNV-infection.
3.3 Treatment With PLX5622 Reduces
Leukocyte Influx and the
Neuroinflammatory Response to Lethal
Encephalitis
Mice in the PLX group had reduced disease scores at dpi 7
despite higher brain viral titres (Figures 1 and 2), while
repopulation of microglia in the PLX-Ctrl group abrogated this
A B

D E

F G H

C

FIGURE 1 | PLX5622-mediated microglia depletion is protective in WNE and reversed upon cessation of treatment. (A) Schematic of experimental design. Mice
were fed control chow (AIN-76A, Ctrl) or PLX5622-formulated chow until sacrifice at dpi 5 (or day 26) or dpi 7 (or day 28) (PLX) or fed PLX5622-formulated chow
until dpi 0 (or day 21) and then fed control chow (AIN-76A) until dpi 7 (PLX-Ctrl). (B) Number of microglia in the brain of mock-infected and infected Ctrl and PLX
mice at dpi 5 and 7 and infected PLX-Ctrl mice at dpi 7. (C) Percent of microglia depleted in PLX5622-treated and mock-infected or infected mice at dpi 5 and 7.
(D, E) Weight (g) of chow consumed (D) and percent of weight lost (E) by mock-infected and infected mice culled at dpi 5 or 7. (F) Disease score of Ctrl, PLX-Ctrl
and PLX mice at WNV dpi 7. (G, H) Number and percent of BrdU+ microglia in mock-infected and infected Ctrl and PLX mice at dpi 5 and 7 and infected PLX-Ctrl
mice at dpi 7. Data is presented as mean ± SEM from two independent experiments with at least three mice per group.
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protective effect (Figure 1). To further investigate the
ameliorative effect of PLX5622-treatment during infection, we
examined single cell brain suspensions by spectral cytometry for
changes in immune-cell infiltrates (Figure 3). In the PLX group
at dpi 5 (Figures 3A–D) and 7 (Figures 3E–H) there was a 68%
reduction in cell numbers infiltrating into infected brains
compared to the Ctrl group. This corresponded to statistically
significant decreases of 68-73% in Ly6Chi macrophages and 51-
60% in NK cells at dpi 5 and 7 (Figures 3C, D, G, H). Reduced
CNS infiltration in the PLX group also corresponded with
reduced pro-inflammatory cytokine and chemokine expression
in the CNS, compared to the Ctrl group (Figures 4A, B). In
contrast, in the PLX-Ctrl group, there was a rebound increase in
the number of immune cells infiltrating into the brain and a
commensurate increase in the quantity of pro-inflammatory
mediators, compared to the PLX group (Figures 3F–H, 4B).
Since the number of microglia and proliferating microglia were
similar to the Ctrl group (Figures 1B, G, H), the increased
disease score in PLX-Ctrl mice (Figure 1F) is likely explained by
the increase in CNS infiltration in this group.

Since the depletion of microglia reduced disease score, this data
could suggest thatmicroglia are pathogenic in ourmodel.Whilemore
studies are required to confirm this, this seems unlikely considering
several previously published articles investigating microglia during
Frontiers in Immunology | www.frontiersin.org 6
viral infection including WNE, have demonstrated the
neuroprotective effect of microglia (31, 35–42). Moreover, we have
previously shown that MCs are central to WNV immunopathology,
with their reduction in the CNS improving disease phenotype and
enhancing survival (6, 10). Thus, these data more likely suggest that
the protective effect of PLX5622 in WNE is due to the substantial
reduction in infiltratingMCs into the CNS. The reduction in NK cells
is unlikely to have contributed to a decrease in disease score, as
depleting these cells had no effect on this (data not shown). Reduced
NK cell infiltration in PLX mice may be due to the reduced
infiltration of MCs and reduced expression of CCL2, CCL3, CCL5
and CXCL16 in the CNS, which recruit NK cells (49). Irrespective,
considering both resident and infiltrating myeloid cell populations
were significantly reduced with PLX5622 treatment, it is unclear from
these data which cell type principally recruits immune cells into the
brain and produces these chemoattractants and pro-
inflammatory mediators.

Notably, infiltrating MCs in the brains of the PLX group
showed reduced CD11c expression and increased Ly6C
expression, compared to the Ctrl group (Supplementary
Figure 3). While this implied monocyte immaturity, which
could be due to the absence of microglia or an off-target effect
of PLX5622, as previous studies have argued (31, 38, 40), it is also
possible that monocytes in the PLX group merely represent
A B

D E F

C

FIGURE 2 | Increasing numbers of microglia are required to reduce viral load late in WNV-infection. (A) Table showing experimental groups. (B, C) PFU of WNV in brains
of PLX and Ctrl mice at dpi 5 (B) and 7 (C). (D, E) Expression of Wnv as determined by qPCR in brains of infected Ctrl and PLX mice at dpi 5 (D) and 7 (E) and PLX-Ctrl
at dpi 7 (E). Wnv was normalized to the housekeeping gene, Rpl13a. (F) Correlation analysis between the expression of Wnv and the number of microglia in PLX mice at
dpi 7. Data is presented as mean ± SEM from one (plaque assay) or two (qPCR data) independent experiments with at least three mice per group.
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recently-arrived cells that have spent less time undergoing
macrophage differentiation in the brain. Examining marker
expression in the BM, blood and brain in the Ctrl group shows
that on entry into the brain these cells normally upregulate
Frontiers in Immunology | www.frontiersin.org 7
CD11c and MHC-II, as well as CD11b, CX3CR1, CD64, CD68
and CD86, and downregulate Ly6C (Supplementary Figure 4).
In mice treated with other monocyte-modulatory treatments that
improve clinical outcomes and/or reduce MC infiltration into the
A B

D

E F

G H

C

FIGURE 3 | PLX5622 reduces leukocyte influx into WNV-infected brains. (A) tSNE plot clustered on CD45+ brain cells from dpi 5 PLX and Ctrl mice. (B) Stacked
bar graph showing the number of brain cells in PLX and Ctrl mice at dpi 5. (C, D) Number of myeloid (C) or lymphoid (D) cells in brains of mice culled at dpi 5.
(E) tSNE plot clustered on CD45+ brain cells from PLX and Ctrl mice at dpi 7. (F) Stacked bar graph showing the number of brain cells at dpi 7. (G, H) Number of
myeloid (G) or lymphoid (H) cells at dpi 7 in brains of PLX, PLX-Ctrl and Ctrl mice. Data is presented as mean ± SEM from one (dpi 5 data) or two (dpi 7 data)
independent experiments with at least three mice per group.
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WNV-infected CNS (6, 11), including clodronate liposomes
injected intravenously at dpi 5 or anti-Ly6C antibody blockade
injected intraperitoneally at dpi 5 and 6, Ly6Chi macrophages
also show increased Ly6C expression (Supplementary Figure 5),
suggesting this altered phenotype is not specific to PLX5622
treatment. Thus, this MC phenotype could also represent an
immature monocyte phenotype arising from the BM as it
attempts to increase the output of cells during infection.
3.4 PLX5622 Inhibits Monocyte Production
in the Bone Marrow, Thereby Reducing
Their Lethal Infiltration Into the CNS
To determine whether the protective effect of PLX5622 was due
to depletion of microglia or an off-target effect, we reduced
PLX5622 to a dose which was insufficient to reduce microglia
numbers (50, 51) by combining approximately one-sixth of the
depleting dose of PLX5622 chow with control chow. Using the
same feeding regimen as shown in Figure 1A, low-dose PLX5622
(PLXlo group) did not reduce microglia numbers, but reduced the
number of infiltrating Ly6Chi macrophages in the brain at dpi 7
by 20%, compared to the Ctrl group (Figures 5A, B). Similar to
high-dose PLX5622 chow, removal of low-dose chow prior to
infection at dpi 0 in the PLXlo-Ctrl group resulted in a substantial
rebound effect, with a statistically significant increase in Ly6Chi

macrophage numbers infiltrating into the CNS, compared to the
Ctrl group (Figure 5A). The low-dose chow, however, did not
alter disease scores. This is likely due to the substantial number of
MCs still infiltrating the CNS. Thus, since 1) microglial cell
numbers in the PLXlo group remained at Ctrl group levels, 2)
there was a reduction in CNS infiltration in the PLXlo group and
3) there was a rebound CNS Ly6Chi macrophage infiltration in
the PLXlo-Ctrl group (Figure 5B), the reduction in infiltrating
cells in the brain associated with high-dose PLX5622 shown in
Frontiers in Immunology | www.frontiersin.org 8
Figure 1F and the corresponding decrease in disease score
cannot simply be explained by the absence of microglia.

The number of Ly6Chi macrophages in WNV-infected brains in
the Ctrl group at dpi 7 correlates with both the number and
proliferative status of mature Ly6Chi monocytes (i.e. CD45+, Lin-,
CD11clo, CD117-, Sca1int/hi, CD48+, CD11b+, CD115+, Ly6Chi cells)
in the BM (Figures 5C, D). Therefore, we examined BM frommice
fed the full dose of PLX5622 chow, showing the same level of
microglial depletion depicted in Figure 1, to determine whether this
produced detectable off-target effects during microglial depletion
(Figures 5E–L). The gating strategy and phenotypic markers used
to identify the various developmental stages of the myeloid lineage
in the BM are shown in Supplementary Figure 6 and
Supplementary Table 4. Monopoiesis in the BM is substantially
increased with WNV-infection, presumably to enhance the supply
of “emergency” monocytes to the CNS (Figures 5E, J). Strikingly,
CSF-1R inhibition by PLX5622 reduced the number of mature
Ly6Chi monocytes in the BM of both mock-infected and infected
mice by ~40% (Figures 5F, G and Supplementary Figures 7, 8).
This reduction in BM monocytes was also accompanied by a
reduction in CSF-1R/CD115 expression (Figure 5I, dpi 7 BM and
Supplementary Figure 9, mock-infected BM), as well as a reduction
in the number (Figures 5I, K, L) and frequency (out of live cells)
(Supplementary Figures 10, 11) of proliferating mature monocytes
in the BM of PLX5622-treated mice. Interestingly, expression of
CSF-1R/CD115 on mature Ly6Chi monocytes correlated with
number and proliferative status of these cells in the BM of PLX
mice (Supplementary Figure 9), potentially providing a measure of
PLX5622 efficacy in individual mice. Replacing PLX5622 with Ctrl-
chow at dpi 0 in PLX-Ctrl mice reversed this effect, with increased
CD115 expression on significantly increased numbers of BrdU+

mature BM monocytes at dpi 7 (Figures 5G, I, L). This rebound in
BM monopoiesis on removal of PLX5622 likely explains the
increased number of infiltrating monocytes in the brain of PLX-
A

B

FIGURE 4 | PLX5622 reduces cytokine production and the neuroinflammatory response to WNV infection. (A, B) Expression of select cytokines in brains of Ctrl and
PLX mice at dpi 5 (A) and Ctrl, PLX-Ctrl and PLX mice at dpi 7 (B), as determined by qPCR. Gene expression was normalized to the housekeeping gene, Rpl13a.
Data is presented as mean ± SEM from one (dpi 5 data) or two (dpi 7 data) independent experiments with at least three mice per group.
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Ctrl mice. This also shows that exposure to PLX5622 does not
permanently diminish the central recruitment of monocytes from
the periphery, and that the migratory response of rebounding
Ly6Chi BM monocytes is not substantially altered.
Frontiers in Immunology | www.frontiersin.org 9
Interestingly, despite the reduction in numbers of mature BM
monocytes caused by PLX5622 in mock-infected and infected mice,
the frequency of proliferating mature cells did not decrease,
compared to the Ctrl group (Figures 5K, L and Supplementary
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C

FIGURE 5 | PLX5622 inhibits BM monocyte production. (A, B) Number of infiltrating brain cells (A) and microglia (B) at dpi 7 in mouse groups fed low-dose
PLX5622: Ctrl, PLXlo-Ctrl and PLXlo. (C) Correlation between the frequency of BrdU+ mature BM monocytes out of CD45+ BM cells and the number of CNS
infiltrating Ly6Chi macrophages at dpi 7. (D) Correlation between the number of mature BM monocytes and the number of CNS infiltrating Ly6Chi macrophages at
dpi 7. (E–G) Number of myeloid cells in the BM of mock- and WNV-infected mice (E), mock-infected PLX and Ctrl mice (F) and infected PLX, PLX-Ctrl and Ctrl mice
(G). (H) tSNE plot clustered on BM cells from PLX, PLX-Ctrl or Ctrl mice at dpi 7. (I) tSNE plots showing the expression of BrdU and CD115 in/on BM cells from
PLX, PLX-Ctrl or Ctrl mice at dpi 7. (J–L) Number and frequency of BrdU+ mature BM monocytes in mock and infected mice (J), mock-infected PLX and Ctrl mice
(K) and infected PLX, PLX-Ctrl and Ctrl mice (L). Data is presented as mean ± SEM from one (A, B, F, K) or three (E, G, H–J, L) independent experiment with at
least three mice per group.
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Figures 10, 11). This suggests that a proportion of mature Ly6Chi

monocytes in the PLX group are deleted and/or not replaced. It
indicates that a quorum of cells in these mice, innately resistant to
PLX5622, or that become resistant to inhibition, retains the capacity
to proliferate and differentiate into mature Ly6Chi monocytes.

The reduction in these mature monocytes in mock-infectedmice
may also be explained by the reduced proliferative status of
precursor cells. Indeed, in PLX5622-treated mock-infected mice,
we observed a reduction in the frequency of proliferating monocyte
lineage cells that we identified as early immature monocyte 1
(CD45+, Lin-, CD11clo, CD117+, Sca1-, CD48+, CD11b-, CD115hi,
Ly6Chi cells) and late immature monocyte 2 (CD45+, Lin-, CD11clo,
CD117-, Sca1-, CD48+, CD11b-, CD115+, Ly6C+ cells)
(Supplementary Figure 10). These are the presumptive
precursors of mature Ly6Chi monocytes in the BM. However, the
proliferative status of these monocyte precursors in the infected BM
at dpi 7 was not significantly reduced (Supplementary Figure 11),
suggesting that infection can to some extent overcome the
PLX5622-induced reduction in proliferation status seen in mock-
infected animals. Thus, the data suggest that the reduction in
mature Ly6Chi monocytes in infected, PLX5622-treated mice is
due to their deletion, while in mock-infected mice, the reduction of
mature monocytes may be due to a combination of deletion and/or
direct inhibition of their renewal from precursor cells.

Importantly, the number and proliferative status of classical
dendritic cells (cDCs) in the BM were also reduced in mock-
infected, PLX5622-treated mice (Supplementary Figures 7, 10).
This is not surprising, since these cells also express CSF-1R (43).
However, notably, these cells were unaffected by PLX5622 during
Frontiers in Immunology | www.frontiersin.org 10
infection. There was also some reduction in plasmacytoid DC
numbers (pDCs) in the BM in infected PLX5622-treated mice,
but this did not translate into reduced proliferation. Strikingly,
however, in stark contrast to the rebound increase in monocyte
proliferation and numbers seen in the BM of the PLX-Ctrl group,
pDCs underwent a significant reduction in proliferation after
removal of PLX5622 in this group, a response that was also
observed in MHC-IIlo B cells. Other cell types in the spleen and
BM were not reduced with PLX5622 treatment (Supplementary
Figures 7, 12). Taken together, PLX5622 has non-microglial effects
on proliferation and renewal of various immune subsets.
Importantly, the effect on the myeloid lineage evidently results in
the reduction of monocyte immigration into the CNS, ameliorating
the severe inflammation associated with infection.

3.5 Antibody Blockade of CSF-1R, Like
PLX5622, Reduces the Inflammatory
Recruitment of MCs Into the
WNV-Infected Brain by Impacting
BM Monopoiesis
Given PLX5622 targets CSF-1R, we used monoclonal anti-CSF-
1R antibody blockade to determine if this approach could be
used therapeutically. Since monoclonal antibodies (mAb) do not
cross the intact BBB, this would protect microglia from
adventitious effects of CSF-1R inhibition. Treatment of mice
with anti-CSF-1R mAb at dpi 0, 4, 5 and 6 or at dpi 5 and 6
resulted in a striking ~50% reduction in the number of Ly6Chi

macrophages infiltrating the WNV-infected CNS without
affecting numbers of microglia (Figures 6A, B). However,
A
B

D EC

FIGURE 6 | Treatment with anti-CSF-1R, like PLX5622, reduces CNS infiltration and BM monocyte production. (A) Schematic of experimental workflow. Mice were
infected with WNV and treated with an isotype control monoclonal blocking antibody or anti-CSF-1R at either 1) dpi 0, 2, 4 and 6 or 2) dpi 5 and 6.
(B) Number of myeloid cells in brains of mice treated with an isotype control or anti-CSF-1R at WNV dpi 7. (C) Number of myeloid cells in infected (dpi 7) BMs from
mice treated with an isotype control or anti-CSF-1R. (D, E) Number (D) and percent (E) of BrdU+ myeloid cells in infected (dpi 7) BMs from mice treated with an
isotype control or anti-CSF-1R. Data is presented as mean ± SEM from two independent experiment with at least six mice per group.
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unlike PLX5622, the anti-CSF-1R mAb did not cause a reduction
in disease score, nor increase survival in experiments using a 50%
lethal dose of WNV (data not shown). Thus PLX5622 may be a
more potent inhibitor of CSF-1R than the anti-CSF-1RmAb and,
as a small molecule, better able to inhibit autocrine actions of
endogenous CSF-1, which may not be amenable to mAb
blockade (52).

Treating infected mice with anti-CSF-1R antibody not only
significantly reduced CNS infiltration, but also impacted BM
monopoiesis similar to PLX5622 (Figures 6C–E). Interestingly,
treating mice only twice in the later phase of disease had a greater
impact on BM monocytes than treating mice every second day
from dpi 0 (Figures 6C–E). Perhaps, alternate mechanisms came
into play to compensate for CSF-1R inhibition in mice treated for
an extended period with anti-CSF-1R. Nevertheless, considering
anti-CSF-1R had a similar effect on CNS infiltration and BM
monocyte production, this suggests that the effect we saw with
PLX5522 is likely due to inhibition of CSF-1R and not other
tyrosine kinase receptors.

CSF-1R mAb blockade effectively reduced MC infiltration
into the CNS, even when administered in the later phase of
disease (Figure 6B). This suggests that CSF-1R blockade can
rapidly inhibit BM monocyte production. However, considering
previous studies have suggested a role for CSF-1 in monocyte
migration (52–54), this data does not exclude the possibility that
anti-CSF-1R modulates monocyte migration into the brain. To
investigate this, infected mice, treated with anti-CSF-1R 14 hours
previously, were injected intravenously with the membrane dye,
PKH26, for 2 h prior to tissue collection (Figure 7A). In 16
hours, anti-CSF-1R had significantly reduced MC numbers in
the brain (Figure 7B). However, the numbers of dye-positive
Ly6Chi macrophages recently infiltrating the brains of anti-CSF-
1R-treated mice were similar to those seen in untreated mice
(Figure 7C), suggesting that anti-CSF-1R blockade does not
impact monocyte trafficking into the brain. Interestingly, the
proportion of dye-positive Ly6Chi macrophages was somewhat
higher in anti-CSF-1R-treated mice (Figure 7D), presumably
because anti-CSF-1R mAb-treated animals had a lower overall
infiltration of MCs into the brain than the isotype control mAb-
treated mice. Notably, we observed no change in the number or
proportion of any BM monocyte subsets (Figures 7E, F). In this
short period, however, the proportions of mature Ly6Chi

monocytes incorporating BrdU were reduced, albeit this was
not statistically significant (Figures 7G, H). This indicates that
CSF-1R blockade does not inhibit immigration of these cells into
the brain and suggests that the reduced CNS recruitment of MCs
in WNV-infected mice during CSF-1R inhibition is due to
reduced monopoiesis and/or deletion.
4 DISCUSSION

The precise temporal functions of microglia in the acute phase of
viral infection are ill-defined. Historically, the limited tools to
identify microglia accurately in the inflamed brain have made it
challenging to study microglia-specific responses to CNS
Frontiers in Immunology | www.frontiersin.org 11
perturbation. The development of the microglia-depleting
agent, PLX5622, has facilitated exploration of microglial
functions in disease. However, many studies are predicated on
this agent being microglia-specific, while few have examined its
possible indirect or off-target effects. Here we show that as well as
depleting both microglia and a sub-population of BAMs in the
CNS, PLX5622 also inhibited mature BM monocyte
proliferation, reducing their lethal recruitment into the virus-
infected CNS, thereby reducing severe neuroinflammation in
WNV infection and the associated disease phenotype.
Monoclonal antibody blockade targeting CSF-1R late in disease
also reduced BM monocyte production and infiltration of these
cells into the inflamed CNS, suggesting that the effect of PLX5622
is via inhibition of CSF-1R and not other kinase targets.
Antibody blockade however, did not alter disease scores,
suggesting higher potency and therapeutic potential of
PLX5622 over anti-CSF-1R in monocyte-mediated diseases.

We showed that PLX5622 inhibits the production of mature
BM monocytes, reducing the number of “emergency” cells that
can be recruited to the inflamed brain (55). Previous studies
failed to demonstrate any impact on peripheral myeloid cells
even after 7 months of treatment with PLX5622 (33), although
these studies were focused on circulating blood leukocytes and
the phenotypic markers used to examine the BM compartment
were insufficient to identify the various BM populations detailed
here (31, 33, 35, 38). While some studies have reported effects on
peripheral populations in the spleen and blood, this is
inconsistent across publications. One study demonstrated a
reduction in CSF-1R+ monocytes in the blood of PLX5622-
treated mice (37), but this was not observed in others (33, 35,
38). Furthermore, none of these studies investigated cell
proliferation to determine the potential impact of PLX5622 on
monopoiesis. Recently, this agent was shown to suppress the
proliferat ive capacity of CX3CR1+ BM and splenic
‘macrophages’ (44). However, cells were isolated from mice 3
weeks after PLX5622 cessation and stimulated ex vivo for 5 days,
which is unlikely to reflect the acute in vivo context.

We demonstrated the impact of PLX5622-mediated CSF-1R
inhibition on the proliferation of Ly6Chi mature monocytes in
vivo in the BM of infected and mock-infected mice and in cDCs
in the BM of mock-infected animals. Early work showed that
BM-derived macrophages require CSF-1 throughout G1 to enter
S phase (4), while at low CSF-1 concentrations they enter G0/G1
to become quiescent. Our data are consistent with the expression
of CSF-1R by progenitors, monocytes, macrophages, and cDCs
(43), and the reliance of monocytes on CSF-1R signaling for
survival, differentiation and proliferation (2–5, 56). Interestingly,
there was no reduction in numbers of Ly6Clo mature BM
monocytes in PLX5622-treated BM, presumably because these
cells can be derived independently of Ly6Chi monocytes in the
BM, unlike in the blood (7). Importantly, also, PLX5622 had no
impact on numbers and proliferative status of neutrophils and
lymphocytes in the BM, nor on monocytes or macrophages in
the spleen, which are evidently maintained independently of
CSF-1R signaling. Alternatively, in the CNS, the same proportion
of microglia remaining in PLX-mice continued to proliferate at
March 2022 | Volume 13 | Article 851556
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dpi 5. This suggests that microglia populations may be
differentially dependent on CSF-1R signaling or perhaps an
alternate CSF-1R ligand, IL-34 can act on a different, currently
undefined receptor (52).
Frontiers in Immunology | www.frontiersin.org 12
In our model, PLX5622 was 20% more effective than the anti-
CSF-1R mAb at reducing the number of infiltrating Ly6Chi

monocytes into the WNV-infected brain. This may explain
why PLX5622 reduced disease scores, while the anti-CSF-1R
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FIGURE 7 | Anti-CSF-1R does not affect monocyte trafficking into the CNS. (A) Schematic of experimental workflow. Mice were infected and treated with an isotype
control monoclonal blocking antibody or anti-CSF-1R. Two hours prior to tissue collection animals were injected with an intravenous dye.
(B) Number of myeloid and lymphoid populations in brains of mice infected with WNV and treated with an isotype control antibody or anti-CSF-1R.
(C) Number of PKH26+ Ly6Chi macrophages infiltrating the WNV-infected brain per minute at dpi 7. (D) Percent of PKH26+ Ly6Chi macrophages in WNV-infected
brains at dpi 7. (E, F) Number (E) and percent (F) of myeloid cells in infected (dpi 7) BMs from mice treated with an isotype control or anti-CSF-1R. (G, H) Number
(G) and percent (H) of BrdU+ myeloid cells in infected (dpi 7) BMs from mice treated with an isotype control or anti-CSF-1R. Data is presented as mean ± SEM from
one independent experiment with at least three mice per group.
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mAb did not. The effectiveness of PLX5622 may rely on its ability
to block autocrine actions of endogenous CSF-1, further
inhibiting monocyte production for recruitment into the CNS
(52, 57), whereas endogenous CSF-1 is inaccessible to mAb.
While future investigations are required to confirm this, the
depletion of microglia which occurs in PLX5622-treated mice
and not mAb-treated mice is unlikely to explain the protective
effect of PLX5622, as multiple studies have shown that microglia
are neuroprotective during viral infection (31, 36–40). The
enhanced effectiveness of PLX5622 also cannot be explained by
the extended period of time in which mice were treated with
PLX5622, compared to anti-CSF-1R mAb. Mice treated for two
days with anti-CSF-1R reduced monocyte production in the BM
and MC immigration into the CNS just as effectively as mice
treated for a week with anti-CSF-1R. It was suggested that non-
specific targeting of KIT and FLT3 by PLX5622 may explain the
reduced proliferation of ‘macrophages’ from PLX5622-treated
mice (58). However, in our experiments, anti-CSF-1R mAb and
PLX5622 had a similar effect on the BM, suggesting that the
inhibitory effect of PLX5622 is likely via the CSF-1R.

In apparent contradiction to our report, anti-CSF-1R
blockade was shown to specifically deplete Ly6Clo monocytes
in the blood without affecting populations in the BM, although
this study used a different experimental approach (59). We did
not examine the peripheral blood in our study, however, our use
of high-dimensional cytometry enabled accurate identification of
these BM populations. Since Ly6Clo monocytes are strictly
derived from Ly6Chi monocytes in the blood (7), this
discrepancy could simply be explained by the reduction of
Ly6Chi monocytes in the BM, as shown in this report, which
would in turn lead to the observed reduction in Ly6Clo

monocytes in the blood.
Removal of PLX5622 prior to infection resulted in a rebound

effect where BM monocyte production and CNS infiltration was
enhanced. This may be because Ly6Chi monocytes normally act as a
“sink” for CSF-1 (7), clearing it via receptor-mediated endocytosis
upon binding to CSF-1R (5, 60). The loss of this sink either by
depletion of these cells or by CSF-1R blockade could thus result in
increased CSF-1 levels (7, 59). Following removal of PLX5622, high
CSF-1 levels could prompt rebound monopoiesis via enhanced
CSF-1R signalling, which would enable cells to re-enter the growth
cycle (4). Downregulation of CSF-1R on BMmonocytes and DCs in
the BM of PLX5622-treated mice is consistent with this, as
saturation of the CSF-1R induces internalization and degradation
of the receptor-ligand complex resulting in “downmodulation” (61).
This rapid rebound monopoiesis, demonstrates that PLX5622
reversibly modulates BM monocytes, which may make this drug a
viable therapeutic treatment in diseases in which monocytes play a
detrimental role, especially if used at a lower dose at whichmicroglia
are minimally depleted (50, 51) or the drug were engineered to
reduce its capacity to cross the BBB to protect microglia.

In contrast to other studies investigating viral infection (31, 36–
40), PLX5622-mediated microglia depletion in WNV infection in
our model, ameliorated the disease phenotype. Other groups have
demonstrated enhanced mortality associated with PLX5622-
mediated microglia depletion during WNV infection, as well as a
Frontiers in Immunology | www.frontiersin.org 13
range of other viral infections. This discrepancy is likely due to the
different infection models used, with other groups using alternative
virus strains, doses and inoculation routes which are non-lethal and/
or less inflammatory. The disparate genders, ages and strains of
mice that have been used by other groups may also play a role. For
instance, Seitz et al. (36) inoculated Swiss-Webster 7–10-week-old
female mice with a pathogenic strain of WNV (WNV-NY99) in the
periphery via a footpad inoculation, while Funk and Klein (38) used
three models but primarily investigated C57BL/7 6-week-old males
intracranially inoculated with the attenuated virus, WNV-NS5-
E218A. In contrast, we inoculated the Sarafend stain of WNV (a
lineage II strain of WNV) intranasally, which directly infects the
CNS via the olfactory nerve (6). In this model, blocking the
infiltration of Ly6Chi BM-derived monocytes into the CNS by
various means reduces disease signs and increases survival,
demonstrating the pathogenic contribution of these cells to
disease progression (6, 8, 10, 11). Although a specific microglia
depletion method is required to confirm the role of microglia in our
model of WNE, according to previous findings, including 1) the
contribution of MCs to mortality in WNE (6, 8, 10, 11) and 2) the
neuroprotective role of microglia during viral infection (31, 35–42),
microglia are more likely to play protective role, as previously
demonstrated. Since the infiltration of MCs into the CNS is more
pathogenic in our model than the absence of the supposed
protective microglial functions in WNV-infection, we did not
observe an accelerated mortality or disease score. Thus, the
reduced disease score in PLX5622-treated infected mice is likely
due to the substantial reduction in CNS macrophages. Similarly,
while the increased disease score seen in PLX-Ctrlmice is likely due
to enhanced CNS infiltration of these cells, repopulating microglia
may however, also exacerbate the disease phenotype by playing a
pathogenic role, although this remains to be investigated.

Microglia may play a protective role in our model as
previously suggested (31, 36–40). Indeed, similar to earlier
reports (31, 35, 36, 38), microglia depletion in our model
increases viral load in the CNS, while increasing numbers of
microglia correlate with decreased viral RNA, suggesting a role
for these cells in viral clearance. Although other cells may also
contribute to viral control in our model, since we only observed a
modest increase in viral load with microglia depletion.
Interestingly, both the remaining microglia in PLX mice and
the repopulating microglia in PLX-Ctrl mice expressed lower
levels of the nominal microglia-specific marker, P2RY12. As
P2RY12 is required for phagocytosis of virus-infected neurons in
PRV infection (35), this suggests that non-ablated microglia in
PLX-mice and newly repopulated microglia are poorly-equipped
to control pathogen invasion and might explain the increased
viral loads observed in the brains of these mice.

Similar to other studies investigating viral encephalitis, we
showed that Ly6Chi monocytes infiltrating the WNV-infected
brain adopt an altered phenotype in mice fed PLX5622,
specifically showing higher Ly6C expression. Other studies
have shown a reduced expression of CD86 (38) or MHC-II
(31, 40), as well as increased Ly6C expression (31, 41) on
infiltrating macrophages in WNV, JHMV, MHV and TMEV
infection. This “immature macrophage” phenotype was thought
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to be due to a combination of the absence of microglia and
potential indirect effects caused by PLX5622. We showed that
two other monocyte modulatory treatments in WNE resulted in
an MC phenotype similar to those seen in PLX5622-treated
brains. This rules out the absence of microglia and/or PLX5622
treatment as the specific cause. It seems more likely that
increased expression of Ly6C may represent a shift to
emigration of a less mature monocyte as the BM attempts to
increase the output of these cells in “emergency” conditions.
Increased Ly6C expression has previously been suggested to be a
marker of MC immaturity (62–64), although in IRF8 KO mice in
which monocyte production is inhibited, the predominance of
Ly6Cint cells suggests a more immature monocyte phenotype
(65). The function of Ly6C remains somewhat elusive, although
the ability of anti-Ly6C treatment to reduce MC recruitment into
the CNS, demonstrates a clear role for this marker in
immigration (11). The increased expression of this marker on
MCs in the brain may thus also denote cells that have most
recently traversed the endothelium into the CNS parenchyma, as
this marker is downregulated with time spent in the brain (6, 12),
skin (66) and lung (67).

In summary, off-target effects produced by PLX5622 make it
impossible to completely isolate the role of microglia in CNS
infection. We show that PLX5622 affects a subpopulation of
BAMs in the brain and monocytes and DCs in the BM.
Serendipitously, however, the inhibition of mature BM monocyte
proliferation reduced the recruitment of “emergency” monocytes
into CNS, substantially reducing neuroinflammation and disease
score. Used at doses that minimally deplete microglia or modified to
reduce passage across the BBB, this work highlights for the first
time, the potential therapeutic value of PLX5622 in viral infection,
as well as other monocyte-mediated diseases. Although PLX5622
provides a valuable tool in microglia research, our work suggests
that significant re-evaluation will be necessary to take into account
the non-microglial affects caused by this molecule.
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