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Abstract 

Background:  Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death medi-
ated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-
related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomark-
ers in IS and explored their roles in immune infiltration.

Results:  In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. 
Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 
lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed 
gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was 
proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the 
diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT 
algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less 
in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells 
and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025).

Conclusions:  Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic 
biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-
miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, 
providing an innovative insight for IS therapeutic target.
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Background
According to the latest global burden of neurological 
disorders statistics, stroke ranks second in the leading 
cause of death and is the major contributor to long-term 

disability in adults [1]. Ischemic stroke (IS), making 
up more than 80% of stroke cases [2], causes by a sud-
den cessation of local blood flow in a supplying artery to 
the brain. Following IS attack, ischemic brain tissue suf-
fers from a series of harmful cascade events, including 
the accumulation of reactive oxygen species, infiltration 
of immune cells, breakdown of the blood-brain bar-
rier (BBB) as well as irreversible necrosis of neurons [3]. 
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Despite recombinant tissue plasminogen activator (rtPA) 
has been a mainstay to salvage the ischemic tissue, only 
a few IS victims can actually benefit from it due to the 
limitations of narrow therapeutic window, high economic 
expenditure, and hemorrhage-related complications [4]. 
Thus, uncovering the potential molecular mechanism 
and exploring the innovative therapeutic target for IS 
have been top priorities.

Ferroptosis is a newly recognized type of regulated 
cell death involved with the intracellular iron-mediated 
toxic accumulation of lipid peroxidation [5]. Unlike the 
mitochondrial morphology of other types of cell death, 
the shrunken mitochondria, increased membrane den-
sities, reduced or disappeared mitochondria crista along 
with intact nucleus can be observed in ferroptosis under 
transmission electron microscopy [6–8]. The possible 
molecular mechanisms of ferroptosis involve abnormal 
iron metabolism, lipid peroxidation, and some critical 
enzymes (like  GPX4) [9]. Although ferroptosis is first 
formally put forward in tumors [10], a growing body of 
work has demonstrated that it is also related to ischemic 
events, such as in intestinal, lung, and renal [11–13]. In 
neurology, ferroptosis has been confirmed to partici-
pate in intracerebral hemorrhage, subarachnoid hemor-
rhage, Alzheimer’s disease, amyotrophic lateral sclerosis, 
and Parkinson’s disease [14–18]. Preliminary evidence 
reveals that ferroptosis deteriorates ischemia-induced 
brain damage, while the administration of ferrosta-
tin-1 (an inhibitor of ferroptosis) can effectively reverse 
induced damage [19, 20]. Recently, increasing studies 
have focused on finding biomarkers of ferroptosis in mul-
tiple levels, including morphology, biochemistry, protein, 
and gene [21]. For example, Guozhong Chen et  al. [22] 
reported that MAP1LC3B, PTGS2, and TLR4 could be 
potential ferroptosis-related biomarkers for IS via bio-
informatics, and further explored potential therapeu-
tic compounds, such as Zinc11679756 (Eltrombopag). 
However, exploring the reliable predictive gene pair bio-
markers and specific regulatory details pertaining to fer-
roptosis in IS still be enormous challenges.

The ENCODE project changes the perception of 
noncoding RNAs from junks to essential regulators of 
cellular homeostasis and disruption [23, 24]. In eukary-
otes, noncoding RNAs exert their biological effects in 
the forms of small (transcripts < 200 nucleotides) RNAs 
(eg, microRNAs [miRNAs]) and long (transcripts > 200 
nucleotides) RNAs (eg, long noncoding RNAs [lncR-
NAs]) [25]. With the continuous improvement and matu-
rity of RNA sequencing technology and bioinformatics 
method, a bulk of lncRNAs have been demonstrated to 
cross-regulate the stability of mRNA at the post-tran-
scriptional level by serving as competing endogenous 
RNAs (ceRNAs) for shared  miRNAs [26]. It is reported 

that ischemic nerve cells appear more sensitive to the 
aberrant expression of noncoding RNAs, which affect 
apoptosis, inflammation, proliferation, autophagy, and 
angiogenesis [27]. Therefore, further in-depth under-
standing of these genes may provide a novel perspective 
for identifiable biomarkers and therapeutic frontier in IS.

As we know, multiple immune cells infiltrate into the 
ischemic parenchyma from peripheral circulation via 
broken BBB after IS, triggering innate and adaptive 
immune responses [28]. Actually, the exact functional 
roles of activated and infiltrated immune cells depend on 
the ischemic microenvironment at different phases of IS. 
For example, neutrophils, dendritic cells, and monocytes 
appear in the stroked brain, exacerbating neuroinflam-
matory response by releasing complements, cytokines, 
cytolysis, as well as interacting with other cells at an early 
stage after IS. T and B cells infiltrate into the injured 
brain at chronic stages of IS, facilitating neuron repair 
and prompting functional recovery [29]. Up to now, 
few studies have used the CIBERSORT tool to analyze 
immune infiltration in IS. Hence, evaluating the land-
scapes of immune infiltration during IS process is of vital 
significance for advanced targeted therapeutics.

In this study, we firstly identified the differently 
expressed ferroptosis-related genes (DEFRGs) between 
IS and control samples from the metadata cohort and 
ferroptosis-related dataset. According to four independ-
ent databases, a ceRNA network was constructed. Then, 
we used relative expression values of DEFRGs to establish 
gene pairs. After integrated analysis among least absolute 
shrinkage and selection operator (LASSO) regression, 
support vector machine (SVM), ceRNA, and gene pair, 
we incorporated the key gene-pair biomarker to plot the 
receiver operating characteristic (ROC) curve and com-
pared their diagnostic capability for IS between gene pair 
and single gene. Importantly, we further explored the 
potential regulatory mechanisms of this new biomarker 
from the perspectives of ceRNA and immune infiltration 
in IS.

Methods
Dataset acquisition and data preprocessing
We searched the Gene Expression Omnibus (GEO) 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo) on 10 
September 2020 using the following retrieval condi-
tions: “ischemic stroke” AND “Homo sapiens” AND 
“gse” AND “Expression profiling by array”. We included 
the gene expression profiling of whole blood or periph-
eral blood of IS patients or control samples. Profiles 
with incomplete data, related to cell lines, and asso-
ciated with other diseases were excluded. Then, two 
mRNA-sequence datasets (GSE22255 and GSE16561) 
of 103 patients were retrieved and collected for 

https://www.ncbi.nlm.nih.gov/geo
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analysis. Besides, we also downloaded the GSE140275 
profile for construction of ceRNA network, which 
included lncRNA and mRNA expression values of IS. 
GSE140275 consisted of 3 control and 3 IS samples 
[30], while GSE22255 was made up of 20 control and 
20 IS samples [31]. GSE140275 and GSE22255 datasets 
served as a discovery cohort. GSE16561 included 24 
control and 39 IS samples [32–34], serving as a vali-
dation cohort. More detailed information about the 
three datasets was shown in Table  1. Additionally, a 
259 ferroptosis-related genes dataset was fetched from 
FerrDb [35], including 108 drivers, 69 suppressors, 
and 111 markers (29 were overlapped genes among 
them) (More details were shown in Supplemental 
Table  1). The raw data were preprocessed by the fol-
lowing means: 1) merging GSE140275 and GSE22255 
into a metadata cohort to enlarge sample size; 2) car-
rying out batch normalization to offset the deviations 
between two datasets using R’s “sva (v3.34.0)” package. 
Because all datasets were publicly accessible from the 
GEO database or FerrDb database, and the ethics com-
mittee approval of the Second Affiliated Hospital of 
Xi’an Jiaotong University was not required to conduct 
the current study. Thus, all data were freely available. 
The workflow and data preprocessing were illustrated 
in Fig. 1.

Differential expression analysis
Using R’s “limma (v3.42.2)” package to identify differen-
tial expressed mRNAs (DEmRNAs) and lncRNAs (DEl-
ncRNAs) between IS and control samples. The P < 0.05, 
|log2fold change (FC)| > 0.58 or |FC| > 1.5 were selected 
as the cut-off thresholds, in accordance with previously 
reported methods [36, 37]. Among DEmRNAs, we took 
the DEmRNAs that were overlapped with the ferropto-
sis-related genes as the differentially expressed ferropto-
sis-related genes (DEFRGs). At the same time, the cluster 
heatmaps and volcano plots were executed to visualize 
the difference by R’s “pheatmap (v1.0.12)” and “ggplot2 
(v3.3.0)” packages, respectively.

Construction of ceRNA network
To explore the potential regulatory mechanisms of 
DEFRGs, we constructed an intricate ceRNA network. 
Both lncRNA-miRNA and miRNA-mRNA interactions 
were obtained through four independent online data-
bases prediction. First, target miRNAs of the above DEl-
ncRNAs were predicted by the miRcode database (v11, 
http://​www.​mirco​de.​org/). Next, target mRNAs of the 
obtained miRNAs were predicted by three independent 
online databases: miRTarBase (v8.0, http://​mirta​rbase.​
mbc.​nctu.​edu.​tw/​php/​index.​php), miRDB (v6.0, http://​
mirdb.​org/), and TargetScan (v7.2, http://​www.​targe​
tscan.​org/​vert_​72/). The upset venn diagram was drawn 
to search for common predictive target mRNAs shared 
by any two or three databases. Finally, the overlapped 
genes between filtrated target mRNAs and DEFRGs were 
retained as the core of the ceRNA network, which was 
visualized by Cytoscape software (v3.8.0) [38].

Functional enrichment analysis
Gene Ontology (GO) terms (consisting of molecu-
lar function [MF], biological process [BP], and cellu-
lar component [CC]) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway (v97.0) [39–41] were 
used to make a comprehensive investigation for the 
above DEFRGs based on R’s “clusterProfiler (v3.14.3)”, 
“enrichplot (v1.6.1)”, “org.Hs.eg.db (v3.10.0)” and “ggplot2 
(v3.3.0)” packages. The false discovery rate (FDR) 
adjusted. P < 0.05 was set as significant filtering criteria.

Establishment of gene pair
On the basis of DEFRGs, we established differentially 
expressed ferroptosis-related gene pairs (DEFRGPs). This 
method could overcome the technical noise and het-
erogeneity between different datasets, which has been 
proven to be effective and reliable [42]. Briefly, each gene 
pair was calculated by pairwise comparison of the expres-
sion value for a given sample. Once the expression value 
of DEFRG-1 was higher than that of the DEFRG-2 in a 
specific DEFRGP, the output was defined as 1; otherwise, 
the output was defined as 0. DEFRG-1 and DEFRG-2 rep-
resented any two different DEFRGs. Therefore, 0’s and 1’s 
formed a ferroptosis-related gene pair. Only the mutual 

Table 1  Detailed information of the studied gene expression profiles

IS Ischemic stroke

Dataset Platform Control IS Author Country Submission Samples Application

GSE140275 GPL16791 3 3 Shenghua Li [30] China 2019 Circulating blood Identification for DEmRNAs 
and DElncRNAs

GSE22255 GPL 570 20 20 Sofia A Oliveira [31] Portugal 2010 Peripheral blood mononuclear 
cells

Identification for DEmRNAs

GSE16561 GPL6883 24 39 Taura L Barr [32–34] USA 2009 Peripheral whole blood RNA Validation for key biomarkers

http://www.mircode.org/
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://mirdb.org/
http://mirdb.org/
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
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gene pairs in both GSE140275 and GSE22255 were 
selected as the meaningful DEFRGPs for the subsequent 
analysis.

Screening of key DEFRGP biomarker
As a state-of-the-art machine learning algorithm for 
binary classification, SVM classifies data points by find-
ing a decision boundary to predict labels based on one or 
more variable vectors [43]. This decision boundary, also 
called the hyperplane, keeps the margin between classes 
as far apart as possible [44]. In this study, we addressed 
the diagnosis prediction of IS as a classification prob-
lem (i.e., whether a sample was identified as IS or con-
trol). To improve the accuracy of predicting IS outcome, 
the LASSO regression algorithm was also used to reduce 
genes dimensionality via seeking for the optimal pen-
alty parameter—λ, which was determined by minimal 

binomial deviance. To avoid our data suffering from 
overfitting and find more stable SVM and LASSO regres-
sion models, we also performed five-fold cross-validation 
in these two processes. There were three steps: step 1, 
divided the data into five equal piles; step 2, selected one 
pile as testing and the other four piles as training to fit 
the model; step 3, repeated step 2 five folds in total with 
different testing selected each time until testing was per-
formed on all five piles. All DEFRGs were subjected to 
SVM and LASSO regression using R’s “caret (v6.0-88)”, 
“glmnet (v4.1-2)” packages, respectively. The random seed 
was set to 3 in all SVM progress, and 214 in all LASSO 
regression progress. Besides, a venn diagram visualized 
the key DEFRGP biomarker from the results of LASSO 
regression, SVM, ceRNA, and gene pair.

Ferroptosis-related
genes (N=259) merge+normalization

DEmRNAs (N=63) 
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Fig. 1  The workflow and data preprocessing of the overall study. (DEmRNAs, differentially expressed mRNAs; DElncRNAs, differentially expressed 
lncRNAs; DEFRGs, differentially expressed ferroptosis-related genes; DEFRGP, differentially expressed ferroptosis-related gene pair)
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Diagnostic performance of key DEFRGP biomarker in IS
We accessed the diagnostic performance of the key 
DEFRGP biomarker in the discovery dataset (GSE140275 
and GSE22255) using GraphPad Prism software (v8.0.1, 
GraphPad, Inc., La Jolla, CA, USA). The expression val-
ues of gene pair joint diagnosis were obtained via logis-
tic regression. Herein, we compared the discriminative 
power of single gene and gene pair in terms of the area 
under the ROC  curve (AUCROC), 95% confidence 
interval (CI), specificity along with sensitivity. Then, we 
verified the diagnostic performance of key biomarker to 
distinguish patients with IS from controls in the external 
validation cohort (GSE16561).

Immune infiltration analyses
Meanwhile, we quantified the relative percentages of 
immune cells in each sample using mRNA expression 
values by CIBERSORT, a classic deconvolution approach 
based on linear support vector regression [45]. Herein, 
we performed “CIBERSORT (http://​ciber​sort.​stanf​
ord.​edu, accessed on 03 February 2016)” and “paral-
lel”, “e1071 (v1.7-8)”, “preprocessCore (v1.48.0)” packages 
in R to analyze. The relative percentages of 22 immune 
cell subpopulations in each individual were visualized 
by a bar plot. R’s “corrplot (v0.90)” package was applied 
to visualize the association of all cell subpopulations in 
the form of a correlation heatmap, while the “ggplot2 
(v3.3.0)” package was utilized to reflect the infiltrating 
difference between IS and control samples via violin dia-
gram. P < 0.05 was accepted as a cut-off value.

Correlation analysis between immune cell subpopulations 
and key DEFRGP biomarker
The relationship between the key diagnostic biomarker 
and immune cell subpopulations in IS was evaluated 
by Spearman correlation analysis using R’s “ggstatsplot 
(v0.9.0)”, “limma (v3.42.2)” packages. And R’s “ggsci 
(v2.9)”, “ggplot2 (v3.3.0)”, and “tidyverse (v1.3.1)” packages 
were conducted to visualize the results. P < 0.05 was con-
sidered significant.

Statistical analyses
All statistical analyses and graphical work were processed 
by R software (version 3.6.2, Vienna, Austria). Venn dia-
grams were conducted using an online tool (http://​bioin​
forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/). The ROC 
analysis was visualized using GraphPad Prism software 
(v8.0.1, GraphPad, Inc., La Jolla, CA, USA). Continuous 
variables were expressed as mean ± SD, and differences 
between two groups were compared using Student’s t-test 
for normally distributed variables and Mann–Whitney 
U test for abnormally distributed variables. Differen-
tial expression analysis was performed with the cut-off 

thresholds of P < 0.05 and |log2FC| > 0.58 or |FC| > 1.5, 
which was consistent with previously reported methods 
[36, 37]. For each study, P < 0.05 was considered as a sig-
nificant difference.

Results
Identification of 6 DEFRGs
A total of 46 patients (23 control and 23 IS samples) were 
included in this study. When P < 0.05 and |log2FC| > 0.58 
were used as cut-off thresholds, 63 DEmRNAs in the 
metadata cohort and 482 DElncRNAs in GSE140275 
were directly identified (Fig.  2a, b). The volcano plot 
illustrated there were 91% (n  = 58) up-regulated and 
9% (n  = 6) down-regulated genes among DEmRNAs 
(Fig.  2c). And 51% (n  = 245) up-regulated and 49% 
(n  = 237) down-regulated genes among DElncRNAs 
(Fig. 2d). After interacting with ferroptosis-related genes, 
we focused on 6 consistent DEFRGs (CDKN1A, CXCL2, 
DDIT4, JUN, SLC7A5, and ZFP36) for further analysis, 
and all of them were up-regulated in IS. More informa-
tion about them was shown in Table 2.

Functional enrichment analysis of 6 DEFRGs
KEGG enrichment uncovered the above 6 DEFRGs 
principally participated in renal cell carcinoma, colo-
rectal cancer, rheumatoid arthritis, breast cancer, IL-17 
signaling pathway, endocrine resistance, TNF signaling 
pathway, oxytocin signaling pathway, mTOR signaling 
pathway, hepatitis B, NOD-like receptor signaling path-
way (Fig.  3a and Supplemental Table  2). BP was mainly 
enriched in the response to glucocorticoid, response 
to starvation, intrinsic apoptotic signaling pathway 
in response to DNA damage by p53 class mediator, 
response to lipopolysaccharide, positive regulation of 
fibroblast proliferation, and response to steroid hor-
mone. CC showed that 6 DEFRGs were related to nuclear 
euchromatin, euchromatin, cyclin-dependent protein 
kinase holoenzyme complex, transcriptional repressor 
complex, and serine/threonine protein kinase complex. 
In MF, 6 DEFRGs were mainly associated with ubiquitin 
protein ligase binding, cAMP response element bind-
ing, HMG box domain binding, R-SMAD binding, cyclin 
binding, and neutral amino acid transmembrane trans-
porter activity (Fig. 3c and Supplemental Table 3).

Construction of ceRNA network
The miRcode database prediction displayed 19 DElncR-
NAs had binding sites with 202 miRNAs among identi-
fied 482 DElncRNAs. And the combined prediction of 
miRDB, miRTarBase, and TargetScan databases dem-
onstrated that 54 obtained miRNAs could bind to 8605 
target mRNAs among the aforesaid 202 miRNAs (Figs. 1 
and 3b). We merged these 8605 predictive mRNAs with 

http://cibersort.stanford.edu
http://cibersort.stanford.edu
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 2  Differential expression analysis. a Cluster heatmap for DEmRNAs in metadata cohort. b Cluster heatmap for DElncRNAs in GSE140275 
dataset. c Volcano plot for DEmRNAs in metadata cohort. d Volcano plot for DElncRNAs in GSE140275 dataset. Dots in red and blue represent 
up-regulated and down-regulated differentially expressed genes between ischemic stroke and control samples, respectively. Dots in black 
represent no differentially expressed genes
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6 DEFRGs, retaining 4 overlapped DEFRGs (CDKN1A, 
DDIT4, JUN, and SLC7A5) as the core of the ceRNA 
network. Eventually, a ceRNA network was constructed 
via 34 nodes and 94 edges. Specifically, there were 17 
lncRNA nodes, their 13 corresponding miRNA nodes 
as well as 4 DEFRG nodes. The 94 edges represented 78 
lncRNA-miRNA and 16 miRNA-mRNA interactions 
(Fig. 3d).

Screening for key DEFRGP biomarker
In the metadata cohort, we totally established 2 meaning-
ful DEFRGPs: CDKN1A/JUN, JUN/SLC7A5. SVM cre-
ated a hyperplane for 2 DEFRGs (CDKN1A, JUN) at the 
seed of 3 (Fig. 4a). While LASSO regression obtained the 
minimum binomial deviance at the seed of 214 (Fig. 4b, 
c), keeping 6 DEFRGs perfectly. The venn diagram dis-
played that CDKN1A/JUN was screened as the key 

Table 2  Information on the 6 differentially expressed ferroptosis-related genes

FC Fold change

Gene Full name Protein coded Role logFC P value

CDKN1A Cyclin dependent kinase inhibitor 1A Cyclin-dependent kinase inhibitor 1 Suppressor 0.679374 0.006

CXCL2 C-X-C motif chemokine ligand 2 C-X-C motif chemokine 2 Marker 0.860480 0.038

DDIT4 DNA damage inducible transcript 4 DNA damage-inducible transcript 4 protein Marker 0.586529 0.035

JUN Jun proto-oncogene, AP-1 transcription 
factor subunit

Transcription factor AP-1 Suppressor 1.194526 < 0.001

SLC7A5 Solute carrier family 7 member 5 Large neutral amino acids transporter small subunit 1 Marker 0.789610 0.028

ZFP36 ZFP36 ring finger protein mRNA decay activator protein ZFP36 Suppressor 0.810834 0.019

Fig. 3  Functional enrichment results and ceRNA network for DEFRGs. a Significant enriched KEGG pathways for 6 DEFRGs. b Upset venn diagram 
for filtrating target mRNAs of miRNAs. Three online databases: miRTarBase, miRDB and TargetScan are used to predict target mRNAs of miRNAs, 
and the screening condition of target mRNAs is that they must be interacted by any two or three databases. c Significant enriched GO terms for 
6 DEFRGs. (CC, cellular component; BP, biological process; MF, molecular function). d A ceRNA network is constructed via 17 lncRNAs (cyanine 
rectangle), their 13 corresponding miRNAs (purple hexagon) as well as 4 DEFRGs (purple pink rectangle), and lines represented their interactions



Page 8 of 15Fan et al. BMC Genomics           (2022) 23:59 

DEFRGP biomarker among the results of LASSO regres-
sion, SVM, gene pair, and ceRNA (Fig. 5a).

Diagnostic performance of CDKN1A/JUN in IS
The diagnostic performances of the key gene pair 
(CDKN1A/JUN) and genes (CDKN1A and JUN) to dis-
tinguish patients with IS and controls were appraised 
via ROC analysis in the discovery and validation 
cohorts. The AUCROC was 0.592 (95%CI = 0.437-0.734, 
sensitivity = 86.96%, specificity = 47.83%) for CDKN1A, 

0.681 (95%CI = 0.527-0.810, sensitivity = 82.61%, speci-
ficity = 52.17%) for JUN, and 0.722 (95%CI = 0.570-
0.844, sensitivity = 91.30%, specificity = 47.83%) when 
these two genes combined into gene pair in the 
GSE140275 and GSE22255 datasets (Fig.  5b-d). And 
the AUCROC was 0.624 (95%CI = 0.476-0.772, sensitiv-
ity = 69.23%, specificity = 65.38%) for CDKN1A, 0.599 
(95%CI = 0.479-0.740, sensitivity = 33.33%, specific-
ity = 87.5%) for JUN, and 0.645 (95%CI = 0.506-0.785, 
sensitivity = 74.36%, specificity = 54.17%) when these 

Fig. 4  Screening for key DEFRGs using machine learning algorithms. a Screening for key DEFRGs by SVM. b, c Screening for key DEFRGs by LASSO 
regression. b Binomial deviance profiles of DEFRGs in metadata cohort. c The LASSO coefficient is plotted against log lambda in metadata cohort

Fig. 5  Integration scheme and diagnostic performance of CDKN1A/JUN in predicting ischemic stroke. a A 4 set venn diagram shows the integration 
strategy among ceRNA, SVM, LASSO regression, and gene pair. The purple pink circle represents for DEFRGs of ceRNA network, the yellow circle 
represents for DEFRGs screened by SVM, the peach pink circle represents for DEFRGs screened by LASSO regression, the green circle represents for 
meaningful DEFRGPs in both GSE140275 and GSE22255. As shown, CDKN1A/JUN is the key gene pair. b-d Comparison of ROC analysis between 
gene pair and single gene in the discovery cohort. b ROCs for CDKN1A. c ROCs for JUN. d ROCs for CDKN1A/JUN gene pair. e-g Comparison of ROC 
analysis between gene pair and single gene in the validation cohort. e ROCs for CDKN1A. f ROCs for JUN. g ROCs for CDKN1A/JUN gene pair
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two genes combined into gene pair in the GSE16561 
dataset (Fig. 5e-g). Compared to CDKN1A and JUN, the 
CDKN1A/JUN gene pair exhibited superior discrimina-
tive effectiveness in predicting IS. And the results for 
the external validation dataset also witnessed the effec-
tiveness and robustness of CDKN1A/JUN gene pair.

Immune infiltration landscapes
To understand the roles of CDKN1A/JUN in the brain 
microenvironment during IS process, we investigated 
immune cells landscapes and their relationship with 
CDKN1A/JUN. The bar plot clearly showed that the 
contents of varied subpopulations in each individual 
(Fig. 6a). Correlation heatmap between 22 immune cell 
subpopulations in IS revealed that M1 macrophages 
were positively correlated with resting dendritic cells. 
Regulatory T cells displayed distinct associations with 
M0 macrophages, memory B cells, and neutrophils. 
M0 macrophages were positively correlated with mem-
ory B cells and neutrophils, and the latter two also 
showed a significantly positive correlation (Fig.  6b). 
The violin diagram showed that compared with con-
trol samples, plasma cells, resting NK cells, and resting 

mast cells were all presented with lower infiltrates in 
IS samples (Fig. 6c).

Intriguingly, we found a substantial relationship 
between CDKN1A/JUN and plasma cells among the 
three infiltrating cell subpopulations. Specifically, 
CDKN1A had a negative correlation with plasma 
cells (r = − 0.503, P < 0.001) (Fig.  7a and Supplemen-
tal Table 4), while JUN was not only negatively corre-
lated with plasma cells (r = − 0.330, P = 0.025) but also 
with resting NK cells (r = − 0.318, P = 0.031) (Fig.  7b 
and Supplemental Table  5). However, CDKN1A 
had no correlation with resting NK cells (Fig.  7a). 
Besides, the resting mast cell was not associated with 
either CDKN1A or JUN. These results suggested that 
CDKN1A/JUN could partly reflect the condition of the 
brain microenvironment in IS.

Exploration of potential regulatory axes for CDKN1A/JUN
After screening out the robust CDKN1A/JUN biomarker 
to identifying patients with IS, we further explored their 
regulatory axes according to the ceRNA network. Given 
that a miRNA could bind to multiple lncRNAs and 14 
lncRNAs were too many to accurately mine the potential 

Fig. 6  Immune infiltration landscapes in metadata cohort. a Bar plot shows the relative percent of 22 immune cell subpopulations in each 
individual. b Correlation heatmap of 22 immune cell subpopulations. Red and blue represent positive and negative correlation, respectively. 
The circle with a deeper color and larger fill area has a stronger correlation index. c Violin diagram displays different fractions of 22 immune cell 
subpopulations in IS and control samples. The red marks represent significant infiltrating difference of subpopulations
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Fig. 7  Visualization of Spearman correlation between immune cell subpopulations and CDKN1A/JUN. a Correlation analysis between immune cell 
subpopulations and CDKN1A. b Correlation analysis between immune subpopulations and JUN. The dot with a larger size has a stronger correlation 
coefficient. The p value is presented by different color, the dot with a more purple color has a smaller p value, while the dot with a yellower color 
has a larger p value

Fig. 8  Refining for core lncRNA using SVM and ceRNA regulatory axes for CDKN1A/JUN. a Refining for core lncRNA by SVM. b-c The ceRNA 
regulatory axes for CDKN1A/JUN biomarker. b Sankey plot displays the interacted miRNAs for CDKN1A and JUN. c Sankey plot displays the interacted 
lncRNAs for the above miRNA
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ceRNA axes for CDKN1A/JUN biomarker. Accordingly, 
SVM was utilized again to refine the upstream regulated 
lncRNAs, refining 3 core lncRNAs (C9orf106, C9orf139, 
GAS5) at the seed of 9999 (Fig. 8a). In terms of CDKN1A, 
only miR-22-3p had a binding site for it, while C9orf106 
and C9orf139 could co-regulate miR-22-3p; for JUN, 
miR-139-5p and miR-429 could co-bind to it, while both 
of them were regulated by GAS5 (Fig. 8b, c).

Discussion
Despite the great improvement that has been made in 
IS treatment over decades, the thrombolytic therapy is 
nevertheless not satisfactory, and a number of patients 
still suffer from long-term disabilities. Along with the 
development of sequencing technology, an expectation 
increasingly grows that exploring the biological effects 
of noncoding RNAs in the non-oncology field, especially 
in stroke. Ferroptosis has been confirmed to be involved 
in the occurrence and development of IS. However, very 
few studies have focused on ferroptosis-related genes 
and potential regulatory details as well as the immune 
infiltration landscapes, which has profound significance 
for IS patients. In the current study, totally 6 DEFRGs 
were identified in the metadata cohort. The integration 
scheme among LASSO regression, SVM, ceRNA, and 
gene pair revealed that CDKN1A/JUN was the key fer-
roptosis-related gene pair. In addition, CIBERSORT was 
applied to analyze immune infiltration in IS.

Compared to prior studies [46], a merge of datasets 
and integration scheme were two dominant advantages 
in this study. On the one hand, merging datasets allowed 
for a larger sample size to incorporate more DEFRGs, 
which was conducive to subsequent machine learning 
analysis. On the other hand, the ROC analysis results 
showed that the superior discriminative effectiveness of 
CDKN1A/JUN gene pair than single gene (CDKN1A and 
JUN) both in the discovery and validation cohorts, imply-
ing that the integration scheme was feasible and reliable. 
Cyclin-dependent kinase inhibitor 1A (CDKN1A), also 
known as p21WAF1/Cip1, interacts with cyclin-dependent 
kinases to exert its activity [47]. Accumulating evidence 
implied that up-regulated expression of CDKN1A led to 
the block of cell cycle at the G1 phase in a p53-dependent 
or p53-independent manner, and then induced apop-
tosis [48–50]. Apart from apoptosis, CDKN1A was also 
reported to induce autophagy via ursolic acid [51]. One 
previous clinical research indicated that CDKN1A par-
ticipated in the proliferation of mesenchymal stem cells 
in humans with IS serum [52]. Besides, CDKN1A could 
impact peroxide metabolism, such as glutathione, making 
it an ideal candidate for detecting ferroptosis [53]. Con-
sidering that CDKN1A always involved in cell death, it 
was reasonable to speculate that it played a pivotal role in 

ferroptosis via regulating the cell cycle process in IS. The 
c-JUN protein encoded by JUN, acting as a transcription 
factor, dimerizes with Maf/Nrl families or Fos families 
to regulate gene transcription [54]. In mammals, c-JUN 
takes part in diverse cell activities and pathophysiologic 
processes, including proliferation, differentiation, senes-
cence, apoptosis, neuronal development, inflammations, 
tumorigenesis as well as cellular transformation [55, 56]. 
Li Y et  al. confirmed that the expression of c-JUN was 
up-regulated, which aggravated cerebral ischemia/rep-
erfusion (I/R) induced injury [57]. As the downstream 
effector of the JNK pathway, c-JUN was found to regulate 
inflammation and cell death in the ischemic brain. More-
over, c-JUN was also implicated to regulate cell pyrop-
tosis and activate the NLRP3 inflammasome [58]. Thus, 
we reckoned that JUN played a momentous part in the 
progression of IS. Known evidence from prior researches 
together with our findings suggested that the functions 
and effects of CDKN1A and JUN in IS should be the 
center of investigations in the near future.

A plethora of data has indicated the participation of 
ferroptosis in immunity [5, 59]. Ferroptotic cells can acti-
vate innate immunity and release pro-inflammatory fac-
tors in various diseases (including myocardial I/R injury, 
and glioma), recruiting lots of immune cells [60]. When 
IS occurs, the breakdown of BBB allows immune cells to 
flood into the central nervous system. For instance, Meng 
H et al. found that double-negative T cells were gradually 
increased in a time-dependent manner, amplifying pro-
inflammatory microglia and prompting brain injury in IS 
patients or MCAO mice [61]. Our findings suggested that 
plasma cells, resting NK cells, and resting mast cells infil-
trated less in IS samples compared to controls. Remark-
ably, only plasma cells were linked to CDKN1A/JUN 
biomarker simultaneously. Kong Y et  al. [62] reported 
that the number of NK cells reduced in IS patients, keep-
ing in accordance with our findings. Mast cells played a 
detrimental role in IS by accelerating BBB disruption and 
magnifying neuroinflammation via releasing cytokines 
[63]. Another in  vivo model confirmed that the inflam-
mation in infarcts, especially mediated by increased B 
cells or plasma cells, contributed to post-stroke cogni-
tive impairment by secreting antibodies or complements 
[64], which was contrary to our findings. One plausible 
explanation was that our gene expression data came 
from the serum, not the brain tissue, plasma cells would 
migrate from circulation to ischemic brain tissue to pro-
tect neurons from inflammatory damage after IS. Further 
research is warranted to address this contradictory issue.

The potential regulatory mechanisms through which 
CDKN1A/JUN carried out are also noteworthy. Based 
on the ceRNA network and screen of core lncRNAs via 
SVM, our results showed potential regulatory axes for 
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CDKN1A and JUN. Both C9orf106 and C9orf139 could 
act as sponges of miR-22-3P, competing bind to up-reg-
ulated CDKN1A. Through promoting the polarization 
of macrophages, miR-22-3p inhibited inflammation and 
lessened the spinal cord I/R injury [65]. Nevertheless, 
there were few works about C9orf106 and C9orf139. 
Both miR-139-5p and miR-429 had binding sites for 
JUN, while GAS5 abolished this effect via spong-
ing miR-139-5p or miR-429. Several lines of evidence 
showed that GAS5 was extensively related to neuronal 
apoptosis and differentiation [66]. And a previous 
study implicated that the miR-139-5p/c-JUN-initiated 
pathway regulated the function of diabetic endothelial 
cells, providing an experimental basis for our findings 
[67]. Another evidence revealed that miR-429 inhib-
ited hepatocyte proliferation via negatively regulat-
ing c-JUN [68]. Unfortunately, the expression profile 
for miRNAs was rare in the GEO database. Hence, it 
is undeniable that more work is needed to explore and 
confirm our findings.

According to KEGG enrichment analysis, these 6 
DEFRGs principally participated in TNF signaling path-
way, mTOR signaling pathway, NOD-like receptor sign-
aling pathway. Existing evidence lent support to the 
idea that these pathways affected the initiation and pro-
gression of IS. For example, TNF and IL-1β accelerated 
inflammatory lesions in IS via NOD-like receptor sign-
aling pathway [69]. GO enrichment analysis revealed 
that these genes mainly enriched in intrinsic apoptotic 
signaling pathway in response to DNA damage by p53 
class mediator in BP, correlating with cyclin-dependent 
protein kinase holoenzyme complex. Previous research 
supported our findings, indicating that DNA damage-
signaling pathway responses aggravated brain I/R injury 
and this process could be attenuated by chloroquine 
[70]. Cyclin-dependent protein kinase holoenzyme com-
plex was a crucial regulator in the cell cycle involved in 
many processes, including apoptosis, senescence, and 
autophagy. Additionally, they were mainly associated 
with cAMP response element binding in MF, whose 
phosphorylation was indispensable for the decrease in 
oxygen–glucose deprivation and reoxygenation-induced 
apoptosis of astrocytes [71].

Despite we merged two different datasets to enlarge the 
sample size, there were several limitations that should be 
acknowledged. First, it was a retrospective analysis, bring-
ing about an inherent bias. Second, the profiles of our 
datasets were from the blood samples instead of the brain 
tissue, their reliability should be verified henceforth. Third, 
the CDKN1A/JUN biomarker was constructed on RNA 
sequences, their reproducibility and wide applicability need 
to be validated using experimental or clinical samples.

Conclusions
Taken together, our findings indicated that the CDKN1A/
JUN was a robust and promising diagnostic biomarker 
for identifying the patients with IS, which might regulate 
ferroptosis during the progression of IS via C9orf106/
C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/
miR-429-JUN axes. Meanwhile, plasma cells might 
exert a vital interplay in the new gene pair biomarker’s 
diagnostic ability, providing an innovative insight for IS 
therapeutic target. Further biological experiments in 
combination with larger prospective clinical samples are 
warranted to verify the functions and effects of this new 
gene pair biomarker in IS.

Abbreviations
IS: Ischemic stroke; DEFRG: Differentially expressed ferroptosis-related 
gene; DEFRGP: Differentially expressed ferroptosis-related gene pair; 
ceRNA: Competitive endogenous RNA; LASSO: Least absolute shrinkage 
and selection operator; SVM: Support vector machine; GO: Gene Ontology; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; MF: Molecular function; 
BP: Biological process; CC: Cellular component; ROC: Receiver operat-
ing characteristic; AUCROC: The area under ROC curve; BBB: Blood-brain 
barrier; GEO: Gene Expression Omnibus; lncRNAs: Long noncoding RNAs; 
miRNAs: microRNAs.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08295-0.

Additional file 1: Supplemental Table 1. The 259 ferroptosis-related 
genes. Supplemental Table 2. Significant KEGG pathways for 6 dif-
ferentially expressed ferroptosis-related genes. Supplemental Table 3. 
Significant GO terms for 6 differentially expressed ferroptosis-related 
genes. Supplemental Table 4. Spearman correlation between immune 
cell subpopulations and CDKN1A. Supplemental Table 5. Spearman cor-
relation between immune cell subpopulations and JUN.

Acknowledgements
We thank Shenghua Li, Sofia A Oliveira, Taura L Barr as well as Nan Zhou for 
sharing the dataset resources.

Authors’ contributions
JXF and SQZ designed the study concept. JXF and MYC not only analyzed and 
interpreted the data but also drafted and revised the manuscript. SC guided 
the operation of R software and the installation of the packages. QLY, and XDZ 
performed the Cytoscape software. SD, HYQ, and YXC performed the Graph-
Pad Prism software. SYM and MJZ plotted venn diagrams. YZH, NZ, and KLS 
downloaded the datasets from the public database. SQZ supervised the study 
process, participated in reviewing, and provided funding. All authors read and 
approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
[No. 81070999]; the Foundation of Shaanxi social development and technol-
ogy research project [No. 2016SF-020]; the Foundation of Xi’an Science and 
technology plan project [No. 2019114613YX001SF039(2)]; the new medical 
technology of the Second Affiliated Hospital of Xi’an Jiaotong University 
[Nos. 2019-32, 2018-16, 2010-22]; the Fundamental Research Funds for the 
Central Universities [Xi’an Jiaotong University], Nos. xjj2014153, 2009-95] and 
the Foundation of Second Affiliated Hospital of Xi’an Jiaotong University [No. 
RC(GG)201109].

https://doi.org/10.1186/s12864-022-08295-0
https://doi.org/10.1186/s12864-022-08295-0


Page 13 of 15Fan et al. BMC Genomics           (2022) 23:59 	

Availability of data and materials
The datasets that support the findings of the current study are available in 
the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo) and FerrDb database. 
And they are also available from the corresponding author, upon reasonable 
request. Details about GSE140275, GSE22255, and GSE16561 are shown in 
Table 1, details pertaining to ferroptosis-related genes are shown in Sup-
plemental Table 1.

Declarations

Ethics approval and consent to participate
Since datasets were free from the public database, ethics committee approval 
and patient consent were not required to conduct this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Neurology, The Second Affiliated Hospital of Xi’an Jiao-
tong University, No. 157 West Five Road, Xi’an 710004, China. 2 Department 
of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University,  No. 
157 West Five Road, Xi’an  710004, China. 

Received: 16 September 2021   Accepted: 29 December 2021

References
	1.	 Feigin VL, Vos T, Alahdab F, Amit AML, Bärnighausen TW, Beghi E, et al. 

Burden of neurological disorders across the US from 1990-2017: a global 
burden of disease study. JAMA Neurol. 2021;78(2):165–76. https://​doi.​org/​
10.​1001/​jaman​eurol.​2020.​4152.

	2.	 Correction to: Heart disease and stroke statistics-2018 update: a report 
from the American Heart Association. Circulation. 2018;137(12):e493. 
https://​doi.​org/​10.​1161/​cir.​00000​00000​000573.

	3.	 Zhang GL, Zhu ZH, Wang YZ. Neural stem cell transplantation therapy 
for brain ischemic stroke: review and perspectives. World J Stem Cells. 
2019;11(10):817–30. https://​doi.​org/​10.​4252/​wjsc.​v11.​i10.​817.

	4.	 Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies 
for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv. 
2021;28(1):357–71. https://​doi.​org/​10.​1080/​10717​544.​2021.​18793​15.

	5.	 Stockwell BR, Jiang X. A physiological function for Ferroptosis in tumor 
suppression by the immune system. Cell Metab. 2019;30(1):14–5. https://​
doi.​org/​10.​1016/j.​cmet.​2019.​06.​012.

	6.	 Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, et al. Ferroptosis: mechanisms 
and links with diseases. Signal Transduct Target Ther. 2021;6(1):49. https://​
doi.​org/​10.​1038/​s41392-​020-​00428-9.

	7.	 Li J, Cao F, Yin H-l, Huang Z-j, Lin Z-t, Mao N, et al. Ferroptosis: past, 
present and future. Cell Death Dis. 2020;11(2). https://​doi.​org/​10.​1038/​
s41419-​020-​2298-2.

	8.	 Wang H, Liu C, Zhao Y, Gao G. Mitochondria regulation in ferroptosis. Eur J 
Cell Biol. 2020;99(1). https://​doi.​org/​10.​1016/j.​ejcb.​2019.​151058.

	9.	 Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng JC, et al. Emerging role of Ferrop-
tosis in the pathogenesis of ischemic stroke: a new therapeutic target? 
ASN Neurol. 2021;13:17590914211037505. https://​doi.​org/​10.​1177/​17590​
91421​10375​05.

	10.	 Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, 
et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. 
Cell. 2012;149(5):1060–72. https://​doi.​org/​10.​1016/j.​cell.​2012.​03.​042.

	11.	 Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T, et al. Involvement of GPX4 in irisin’s 
protection against ischemia reperfusion-induced acute kidney injury. J 
Cell Physiol. 2020;236(2):931–45. https://​doi.​org/​10.​1002/​jcp.​29903.

	12.	 Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, et al. Ischemia-induced ACSL4 
activation contributes to ferroptosis-mediated tissue injury in intestinal 
ischemia/reperfusion. Cell Death Differ. 2019;26(11):2284–99. https://​doi.​
org/​10.​1038/​s41418-​019-​0299-4.

	13.	 Xu Y, Li X, Cheng Y, Yang M, Wang R. Inhibition of ACSL4 attenuates 
ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J. 
2020;34(12):16262–75. https://​doi.​org/​10.​1096/​fj.​20200​1758R.

	14.	 Mohammed Thangameeran SI, Tsai ST, Hung HY, Hu WF, Pang CY, Chen 
SY, et al. A role for endoplasmic reticulum stress in intracerebral hemor-
rhage. Cells. 2020;9(3). https://​doi.​org/​10.​3390/​cells​90307​50.

	15.	 Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, et al. Inhibition of ferroptosis allevi-
ates early brain injury after subarachnoid hemorrhage in vitro and in vivo 
via reduction of lipid peroxidation. Cell Mol Neurobiol. 2020. https://​doi.​
org/​10.​1007/​s10571-​020-​00850-1.

	16.	 Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, et al. Loss of fer-
roportin induces memory impairment by promoting ferroptosis in 
Alzheimer’s disease. Cell Death Differ. 2021. https://​doi.​org/​10.​1038/​
s41418-​020-​00685-9.

	17.	 Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, et al. Fer-
roptosis, a newly characterized form of cell death in Parkinson’s disease 
that is regulated by PKC. Neurobiol Dis. 2016;94:169–78. https://​doi.​org/​
10.​1016/j.​nbd.​2016.​05.​011.

	18.	 Devos D, Moreau C, Kyheng M, Garcon G, Rolland AS, Blasco H, et al. 
A ferroptosis-based panel of prognostic biomarkers for amyotrophic 
lateral sclerosis. Sci Rep. 2019;9(1):2918. https://​doi.​org/​10.​1038/​
s41598-​019-​39739-5.

	19.	 She X, Lan B, Tian H, Tang B. Cross talk between ferroptosis and cerebral 
ischemia. Front Neurosci. 2020;14:776. https://​doi.​org/​10.​3389/​fnins.​2020.​
00776.

	20.	 Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-me-
diated TFR1 and p53. Life Sci. 2020;260:118305. https://​doi.​org/​10.​1016/j.​
lfs.​2020.​118305.

	21.	 Chen X, Comish PB, Tang D, Kang R. Characteristics and biomarkers of fer-
roptosis. Front Cell Dev Biol. 2021;9:637162. https://​doi.​org/​10.​3389/​fcell.​
2021.​637162.

	22.	 Chen G, Li L, Tao H. Bioinformatics identification of ferroptosis-related 
biomarkers and therapeutic compounds in ischemic stroke. Front Neurol. 
2021;12:745240. https://​doi.​org/​10.​3389/​fneur.​2021.​745240.

	23.	 An integrated encyclopedia of DNA elements in the human genome. 
Nature. 2012;489(7414):57–74. https://​doi.​org/​10.​1038/​natur​e11247.

	24.	 Jaé N, Dimmeler S. Noncoding RNAs in vascular diseases. Circ Res. 
2020;126(9):1127–45. https://​doi.​org/​10.​1161/​circr​esaha.​119.​315938.

	25.	 Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. 
RNA maps reveal new RNA classes and a possible function for pervasive 
transcription. Science. 2007;316(5830):1484–8. https://​doi.​org/​10.​1126/​
scien​ce.​11383​41.

	26.	 Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of 
long noncoding RNA function. Genome Biol. 2017;18(1):206. https://​doi.​
org/​10.​1186/​s13059-​017-​1348-2.

	27.	 Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding 
RNAs in ischemic stroke. Cell Death Dis. 2018;9(3):281. https://​doi.​org/​10.​
1038/​s41419-​018-​0282-x.

	28.	 Chavda V, Madhwani K, Chaurasia B. Stroke and immunotherapy: 
potential mechanisms and its implications as immune-therapeutics. Eur J 
Neurosci. 2021. https://​doi.​org/​10.​1111/​ejn.​15224.

	29.	 Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain 
immunology and immune checkpoint blockade in brain metastases. 
Brain. 2021;144(4):1046–66. https://​doi.​org/​10.​1093/​brain/​awab0​12.

	30.	 Li S, Chen L, Xu C, Qu X, Qin Z, Gao J, et al. Expression profile and bioin-
formatics analysis of circular RNAs in acute ischemic stroke in a South 
Chinese Han population. Sci Rep. 2020;10(1):10138. https://​doi.​org/​10.​
1038/​s41598-​020-​66990-y.

	31.	 Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari S, Fernan-
dez-Cadenas I, et al. TTC7B emerges as a novel risk factor for ischemic 
stroke through the convergence of several genome-wide approaches. J 
Cereb Blood Flow Metab. 2012;32(6):1061–72. https://​doi.​org/​10.​1038/​
jcbfm.​2012.​24.

https://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.1001/jamaneurol.2020.4152
https://doi.org/10.1001/jamaneurol.2020.4152
https://doi.org/10.1161/cir.0000000000000573
https://doi.org/10.4252/wjsc.v11.i10.817
https://doi.org/10.1080/10717544.2021.1879315
https://doi.org/10.1016/j.cmet.2019.06.012
https://doi.org/10.1016/j.cmet.2019.06.012
https://doi.org/10.1038/s41392-020-00428-9
https://doi.org/10.1038/s41392-020-00428-9
https://doi.org/10.1038/s41419-020-2298-2
https://doi.org/10.1038/s41419-020-2298-2
https://doi.org/10.1016/j.ejcb.2019.151058
https://doi.org/10.1177/17590914211037505
https://doi.org/10.1177/17590914211037505
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1002/jcp.29903
https://doi.org/10.1038/s41418-019-0299-4
https://doi.org/10.1038/s41418-019-0299-4
https://doi.org/10.1096/fj.202001758R
https://doi.org/10.3390/cells9030750
https://doi.org/10.1007/s10571-020-00850-1
https://doi.org/10.1007/s10571-020-00850-1
https://doi.org/10.1038/s41418-020-00685-9
https://doi.org/10.1038/s41418-020-00685-9
https://doi.org/10.1016/j.nbd.2016.05.011
https://doi.org/10.1016/j.nbd.2016.05.011
https://doi.org/10.1038/s41598-019-39739-5
https://doi.org/10.1038/s41598-019-39739-5
https://doi.org/10.3389/fnins.2020.00776
https://doi.org/10.3389/fnins.2020.00776
https://doi.org/10.1016/j.lfs.2020.118305
https://doi.org/10.1016/j.lfs.2020.118305
https://doi.org/10.3389/fcell.2021.637162
https://doi.org/10.3389/fcell.2021.637162
https://doi.org/10.3389/fneur.2021.745240
https://doi.org/10.1038/nature11247
https://doi.org/10.1161/circresaha.119.315938
https://doi.org/10.1126/science.1138341
https://doi.org/10.1126/science.1138341
https://doi.org/10.1186/s13059-017-1348-2
https://doi.org/10.1186/s13059-017-1348-2
https://doi.org/10.1038/s41419-018-0282-x
https://doi.org/10.1038/s41419-018-0282-x
https://doi.org/10.1111/ejn.15224
https://doi.org/10.1093/brain/awab012
https://doi.org/10.1038/s41598-020-66990-y
https://doi.org/10.1038/s41598-020-66990-y
https://doi.org/10.1038/jcbfm.2012.24
https://doi.org/10.1038/jcbfm.2012.24


Page 14 of 15Fan et al. BMC Genomics           (2022) 23:59 

	32.	 Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A, et al. Genomic 
biomarkers and cellular pathways of ischemic stroke by RNA gene 
expression profiling. Neurology. 2010;75(11):1009–14. https://​doi.​org/​10.​
1212/​WNL.​0b013​e3181​f2b37f.

	33.	 O’Connell GC, Treadway MB, Petrone AB, Tennant CS, Lucke-Wold N, 
Chantler PD, et al. Peripheral blood AKAP7 expression as an early marker 
for lymphocyte-mediated post-stroke blood brain barrier disruption. Sci 
Rep. 2017;7(1):1172. https://​doi.​org/​10.​1038/​s41598-​017-​01178-5.

	34.	 O’Connell GC, Petrone AB, Treadway MB, Tennant CS, Lucke-Wold N, 
Chantler PD, et al. Machine-learning approach identifies a pattern of 
gene expression in peripheral blood that can accurately detect ischaemic 
stroke. NPJ Genom Med. 2016;1:16038. https://​doi.​org/​10.​1038/​npjge​
nmed.​2016.​38.

	35.	 Zhou N, Bao J. FerrDb: a manually curated resource for regulators and 
markers of ferroptosis and ferroptosis-disease associations. Database 
(Oxford). 2020;2020. https://​doi.​org/​10.​1093/​datab​ase/​baaa0​21.

	36.	 Kim DS, Anantharam P, Padhi P, Thedens DR, Li G, Gilbreath E, et al. 
Transcriptomic profile analysis of brain inferior colliculus following acute 
hydrogen sulfide exposure. Toxicology. 2020;430:152345. https://​doi.​org/​
10.​1016/j.​tox.​2019.​152345.

	37.	 Cao S, Liu H, Fan J, Yang K, Yang B, Wang J, et al. An oxidative stress-
related gene pair (CCNB1/PKD1), competitive endogenous RNAs, and 
immune-infiltration patterns potentially regulate intervertebral disc 
degeneration development. Front Immunol. 2021;12:765382. https://​doi.​
org/​10.​3389/​fimmu.​2021.​765382.

	38.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13(11):2498–504. https://​doi.​
org/​10.​1101/​gr.​12393​03.

	39.	 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30. https://​doi.​org/​10.​1093/​nar/​28.1.​27.

	40.	 Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019;28(11):1947–51. https://​doi.​org/​10.​1002/​pro.​
3715.

	41.	 Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 
KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 
2021;49(D1):D545–d551. https://​doi.​org/​10.​1093/​nar/​gkaa9​70.

	42.	 Zhang Y, Yan Y, Ning N, Shen Z, Ye Y. A signature of 24 agingrelated 
gene pairs predict overall survival in gastric cancer. Biomed Eng Online. 
2021;20(1):35. https://​doi.​org/​10.​1186/​s12938-​021-​00871-x.

	43.	 Jiang Y, Xie J, Huang W, Chen H, Xi S, Han Z, et al. Tumor immune micro-
environment and chemosensitivity signature for predicting response to 
chemotherapy in gastric cancer. Cancer Immunol Res. 2019;7(12):2065–
73. https://​doi.​org/​10.​1158/​2326-​6066.​CIR-​19-​0311.

	44.	 Pan X, Zeng T, Yuan F, Zhang YH, Chen L, Zhu L, et al. Screening of 
methylation signature and gene functions associated with the subtypes 
of isocitrate dehydrogenase-mutation gliomas. Front Bioeng Biotechnol. 
2019;7:339. https://​doi.​org/​10.​3389/​fbioe.​2019.​00339.

	45.	 Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nat Methods. 
2015;12(5):453–7. https://​doi.​org/​10.​1038/​nmeth.​3337.

	46.	 Zhai K, Kong X, Liu B, Lou J. Bioinformatics analysis of gene expression 
profiling for identification of potential key genes among ischemic stroke. 
Medicine (Baltimore). 2017;96(34):e7564. https://​doi.​org/​10.​1097/​MD.​
00000​00000​007564.

	47.	 Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. 
Nat Rev Cancer. 2009;9(6):400–14. https://​doi.​org/​10.​1038/​nrc26​57.

	48.	 Ho CJ, Lin RW, Zhu WH, Wen TK, Hu CJ, Lee YL, et al. Transcription-inde-
pendent and -dependent p53-mediated apoptosis in response to geno-
toxic and non-genotoxic stress. Cell Death Discov. 2019;5:131. https://​doi.​
org/​10.​1038/​s41420-​019-​0211-5.

	49.	 Jeong JH, Kang SS, Park KK, Chang HW, Magae J, Chang YC. p53-inde-
pendent induction of G1 arrest and p21WAF1/CIP1 expression by asco-
furanone, an isoprenoid antibiotic, through downregulation of c-Myc. 
Mol Cancer Ther. 2010;9(7):2102–13. https://​doi.​org/​10.​1158/​1535-​7163.​
Mct-​09-​1159.

	50.	 Kleinsimon S, Longmuss E, Rolff J, Jäger S, Eggert A, Delebinski C, et al. 
GADD45A and CDKN1A are involved in apoptosis and cell cycle modula-
tory effects of viscumTT with further inactivation of the STAT3 pathway. 
Sci Rep. 2018;8(1):5750. https://​doi.​org/​10.​1038/​s41598-​018-​24075-x.

	51.	 Fujiwara K, Daido S, Yamamoto A, Kobayashi R, Yokoyama T, Aoki H, et al. 
Pivotal role of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in 
apoptosis and autophagy. J Biol Chem. 2008;283(1):388–97. https://​doi.​
org/​10.​1074/​jbc.​M6110​43200.

	52.	 Kim EH, Kim DH, Kim HR, Kim SY, Kim HH, Bang OY. Stroke serum priming 
modulates characteristics of mesenchymal stromal cells by controlling 
the expression miRNA-20a. Cell Transplant. 2016;25(8):1489–99. https://​
doi.​org/​10.​3727/​09636​8916x​690430.

	53.	 Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. 
Serine starvation induces stress and p53-dependent metabolic remodel-
ling in cancer cells. Nature. 2013;493(7433):542–6. https://​doi.​org/​10.​
1038/​natur​e11743.

	54.	 Meng Q, Xia Y. c-Jun, at the crossroad of the signaling network. Protein 
Cell. 2011;2(11):889–98. https://​doi.​org/​10.​1007/​s13238-​011-​1113-3.

	55.	 Mechta-Grigoriou F, Gerald D, Yaniv M. The mammalian Jun proteins: 
redundancy and specificity. Oncogene. 2001;20(19):2378–89. https://​doi.​
org/​10.​1038/​sj.​onc.​12043​81.

	56.	 Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 
2002;4(5):E131–6. https://​doi.​org/​10.​1038/​ncb05​02-​e131.

	57.	 Li Y, He D, Zhang X, Liu Z, Zhang X, Dong L, et al. Protective effect of 
celastrol in rat cerebral ischemia model: down-regulating p-JNK, p-c-Jun 
and NF-κB. Brain Res. 2012;1464:8–13. https://​doi.​org/​10.​1016/j.​brain​res.​
2012.​04.​054.

	58.	 Wang QS, Luo XY, Fu H, Luo Q, Wang MQ, Zou DY. MiR-139 protects 
against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced 
nerve injury through targeting c-Jun to inhibit NLRP3 inflammasome 
activation. J Stroke Cerebrovasc Dis. 2020;29(9):105037. https://​doi.​org/​
10.​1016/j.​jstro​kecer​ebrov​asdis.​2020.​105037.

	59.	 Xu X, Lin D, Tu S, Gao S, Shao A, Sheng J. Is Ferroptosis a future direction 
in exploring cryptococcal meningitis? Front Immunol. 2021;12:598601. 
https://​doi.​org/​10.​3389/​fimmu.​2021.​598601.

	60.	 Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, et al. Fer-
roptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment 
after heart transplantation. J Clin Invest. 2019;129(6):2293–304. https://​
doi.​org/​10.​1172/​jci12​6428.

	61.	 Meng H, Zhao H, Cao X, Hao J, Zhang H, Liu Y, et al. Double-negative T 
cells remarkably promote neuroinflammation after ischemic stroke. Proc 
Natl Acad Sci U S A. 2019;116(12):5558–63. https://​doi.​org/​10.​1073/​pnas.​
18143​94116.

	62.	 Kong Y, Li S, Cheng X, Ren H, Zhang B, Ma H, et al. Brain ischemia signifi-
cantly alters microRNA expression in human peripheral blood natural 
killer cells. Front Immunol. 2020;11:759. https://​doi.​org/​10.​3389/​fimmu.​
2020.​00759.

	63.	 Parrella E, Porrini V, Benarese M, Pizzi M. The role of mast cells in stroke. 
Cells. 2019;8(5). https://​doi.​org/​10.​3390/​cells​80504​37.

	64.	 Doyle KP, Quach LN, Solé M, Axtell RC, Nguyen TV, Soler-Llavina GJ, et al. 
B-lymphocyte-mediated delayed cognitive impairment following stroke. 
J Neurosci. 2015;35(5):2133–45. https://​doi.​org/​10.​1523/​jneur​osci.​4098-​
14.​2015.

	65.	 Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, et al. MicroRNA-22-3p 
alleviates spinal cord ischemia/reperfusion injury by modulating M2 
macrophage polarization via IRF5. J Neurochem. 2021;156(1):106–20. 
https://​doi.​org/​10.​1111/​jnc.​15042.

	66.	 Zhang L, Cai Q, Lin S, Chen B, Jia B, Ye R, et al. Qingda granule exerts 
neuroprotective effects against ischemia/reperfusion-induced cerebral 
injury via lncRNA GAS5/miR-137 signaling pathway. Int J Med Sci. 
2021;18(7):1687–98. https://​doi.​org/​10.​7150/​ijms.​53603.

	67.	 Luo YF, Wan XX, Zhao LL, Guo Z, Shen RT, Zeng PY, et al. MicroRNA-139-5p 
upregulation is associated with diabetic endothelial cell dysfunction by 
targeting c-jun. Aging (Albany NY). 2020;13(1):1186–211. https://​doi.​org/​
10.​18632/​aging.​202257.

https://doi.org/10.1212/WNL.0b013e3181f2b37f
https://doi.org/10.1212/WNL.0b013e3181f2b37f
https://doi.org/10.1038/s41598-017-01178-5
https://doi.org/10.1038/npjgenmed.2016.38
https://doi.org/10.1038/npjgenmed.2016.38
https://doi.org/10.1093/database/baaa021
https://doi.org/10.1016/j.tox.2019.152345
https://doi.org/10.1016/j.tox.2019.152345
https://doi.org/10.3389/fimmu.2021.765382
https://doi.org/10.3389/fimmu.2021.765382
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/pro.3715
https://doi.org/10.1002/pro.3715
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1186/s12938-021-00871-x
https://doi.org/10.1158/2326-6066.CIR-19-0311
https://doi.org/10.3389/fbioe.2019.00339
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1097/MD.0000000000007564
https://doi.org/10.1097/MD.0000000000007564
https://doi.org/10.1038/nrc2657
https://doi.org/10.1038/s41420-019-0211-5
https://doi.org/10.1038/s41420-019-0211-5
https://doi.org/10.1158/1535-7163.Mct-09-1159
https://doi.org/10.1158/1535-7163.Mct-09-1159
https://doi.org/10.1038/s41598-018-24075-x
https://doi.org/10.1074/jbc.M611043200
https://doi.org/10.1074/jbc.M611043200
https://doi.org/10.3727/096368916x690430
https://doi.org/10.3727/096368916x690430
https://doi.org/10.1038/nature11743
https://doi.org/10.1038/nature11743
https://doi.org/10.1007/s13238-011-1113-3
https://doi.org/10.1038/sj.onc.1204381
https://doi.org/10.1038/sj.onc.1204381
https://doi.org/10.1038/ncb0502-e131
https://doi.org/10.1016/j.brainres.2012.04.054
https://doi.org/10.1016/j.brainres.2012.04.054
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105037
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105037
https://doi.org/10.3389/fimmu.2021.598601
https://doi.org/10.1172/jci126428
https://doi.org/10.1172/jci126428
https://doi.org/10.1073/pnas.1814394116
https://doi.org/10.1073/pnas.1814394116
https://doi.org/10.3389/fimmu.2020.00759
https://doi.org/10.3389/fimmu.2020.00759
https://doi.org/10.3390/cells8050437
https://doi.org/10.1523/jneurosci.4098-14.2015
https://doi.org/10.1523/jneurosci.4098-14.2015
https://doi.org/10.1111/jnc.15042
https://doi.org/10.7150/ijms.53603
https://doi.org/10.18632/aging.202257
https://doi.org/10.18632/aging.202257


Page 15 of 15Fan et al. BMC Genomics           (2022) 23:59 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	68.	 Zhang C, Chang C, Gao H, Wang Q, Zhang F, Xu C. MiR-429 regulates rat 
liver regeneration and hepatocyte proliferation by targeting JUN/MYC/
BCL2/CCND1 signaling pathway. Cell Signal. 2018;50:80–9. https://​doi.​
org/​10.​1016/j.​cells​ig.​2018.​06.​013.

	69.	 Bi BL, Wang HJ, Bian H, Tian ZT. Identification of therapeutic targets 
of ischemic stroke with DNA microarray. Eur Rev Med Pharmacol Sci. 
2015;19(21):4012–9.

	70.	 Zhang YP, Cui QY, Zhang TM, Yi Y, Nie JJ, Xie GH, et al. Chloroquine 
pretreatment attenuates ischemia-reperfusion injury in the brain of ob/
ob diabetic mice as well as wildtype mice. Brain Res. 2020;1726:146518. 
https://​doi.​org/​10.​1016/j.​brain​res.​2019.​146518.

	71.	 Yin H, Qin H, Wang T, Zhuang Q, Yang Q. The protective effects of Apre-
milast against oxygen-glucose deprivation/reperfusion (OGD/R)-induced 
inflammation and apoptosis in Astroglia mediated by CREB/BDNF. Neuro-
tox Res. 2021. https://​doi.​org/​10.​1007/​s12640-​021-​00340-2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.cellsig.2018.06.013
https://doi.org/10.1016/j.cellsig.2018.06.013
https://doi.org/10.1016/j.brainres.2019.146518
https://doi.org/10.1007/s12640-021-00340-2

	Identification of a ferroptosis-related gene pair biomarker with immune infiltration landscapes in ischemic stroke: a bioinformatics-based comprehensive study
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Dataset acquisition and data preprocessing
	Differential expression analysis
	Construction of ceRNA network
	Functional enrichment analysis
	Establishment of gene pair
	Screening of key DEFRGP biomarker
	Diagnostic performance of key DEFRGP biomarker in IS
	Immune infiltration analyses
	Correlation analysis between immune cell subpopulations and key DEFRGP biomarker
	Statistical analyses

	Results
	Identification of 6 DEFRGs
	Functional enrichment analysis of 6 DEFRGs
	Construction of ceRNA network
	Screening for key DEFRGP biomarker
	Diagnostic performance of CDKN1AJUN in IS
	Immune infiltration landscapes
	Exploration of potential regulatory axes for CDKN1AJUN

	Discussion
	Conclusions
	Acknowledgements
	References


