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Abstract

Background: A growing number of gene expression-profiling datasets provides a reliable source of information about gene
co-expression. In silico analyses of the properties shared among the promoters of co-expressed genes facilitates the
identification of transcription factors (TFs) involved in the co-regulation of those genes. Our previous experience with
microarray data led to the development of a database suitable for the examination of regulatory motifs in the promoters of
co-expressed genes.

Methodology: We introduce the cREMaG (cis-Regulatory Elements in the Mammalian Genome) system designed for in silico
studies of the promoter properties of co-regulated mammalian genes. The cREMaG system offers an analysis of data
obtained from human, mouse, rat, bovine and canine gene expression-profiling studies. More than eight analysis
parameters can be utilized in user-defined combinations. The selection of alternative transcription start sites and
information about CpG islands are also available.

Conclusions: Using the cREMaG system, we successfully identified TFs mediating transcriptional responses in reference
gene sets. The cREMaG system facilitates in silico studies of mammalian transcriptional gene regulation. The resource is
freely available at http://www.cremag.org.
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Introduction

It is now estimated that more than 5% of the mammalian

genome encodes functional information, including regions in-

volved in the regulation of gene expression, whereas only 1.5% of

the mammalian genome contains protein-coding information [1].

This estimation brings to light the importance of discovering

information contained in the non-coding regions of the genome.

Recently, there has been rapid growth in the amount of gene-

expression-profiling data available, providing an almost unlimited

wellspring of information about gene co-expression and co-

regulation [2]. If the co-regulated genes share regulation pathways,

their promoter regions are likely to share common properties [3].

Furthermore, the analysis of these common properties could allow

for the identification of factors responsible for the regulation of the

expression of particular sets of genes [4]. Such analyses include the

identification of overrepresented transcription factor binding sites

(TFBSs), regulatory modules or CpG islands. This approach

provides novel insights into the molecular mechanisms controlling

the process of gene transcription.

Methods for mining gene sequences for transcriptionally

relevant information have become possible with the growing body

of knowledge about mammalian genomes, gene expression and

regulation of gene expression (See [5] for review). This growing

body of knowledge has been transformed into multiple databases.

The University of California, Santa Cruz genome browser

(UCSC) and Ensembl databases contain whole-genome sequences

and are sufficient for retrieving gene promoter sequences [6,7].

However, more specific databases that are focused only on gene

promoters, such as The Eukaryotic Promoter Database (EPD) or

Cold Spring Harbor Laboratory mammalian promoter database

(CSHLmpd), are also available [8,9]. Retrieved promoter regions

can be inspected for the presence and overrepresentation of

TFBSs. The matrices for TFBSs can be found in the publicly

available JASPAR database and in the partially publicly available

TRANSFAC database [10,11]. Furthermore, online tools, like

CONREAL, are available for the discovery of TFBSs in conserved

parts of gene promoters [12]. Finally, there are online tools based

on the assumption that, if gene co-expression is controlled by one

or more transcription factors (TFs), then the observed number of

binding sites for those TFs should be greater than that expected by

chance. Examples of such tools include oPOSSUM, PAP,

TOUCAN2 and the Genomatix suite [4,13,14,15].

However, there are some unresolved problems, and some areas

await improvement. First, there are extreme differences in the

information content among position weight matrices representing

motifs of transcription factor binding sites, causing false-negative

or false-positive matches [13]. Thus, the minimum relative score of

matching position weight matrix used to report the position of a

putative binding site (matrix score threshold) should not be
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identical for every matrix. Second, the conservation rate is not

equal for every gene and its promoter [16]. Thus, the choice of

criteria for determining conservation is one of the major problems

of using phylogenetic footprinting [17]. Moreover, the phyloge-

netic footprinting conservation threshold should not be identical

for every promoter. Also, it is well-established that there are genes

with both constitutive and inducible transcriptional forms [18,19].

However, there is an insufficient ability to choose among

alternative promoters in current databases. Finally, tools for the

inspection of quantitative promoter properties such as the GC-

content or length of CpG islands are available [6,20,21]. However,

insufficient data about CpG islands are integrated into tools that

determine TFBS overrepresentation in sets of co-expressed genes.

Here, the new cREMaG (cis-Regulatory Elements in the

Mammalian Genome) database is presented, which may help to

resolve the above problems and allow for the discovery of TFs

responsible for the regulation of co-expressed genes. Moreover, its

successful application is demonstrated.

Materials and Methods

Annotation handling
The engine of the cREMaG database uses Ensembl Gene IDs

as unique gene identifiers. For each of the Mus musculus, Rattus

norvegicus, Homo sapiens, Bos taurus and Canis familiaris genes, we

retrieved the Ensembl ID, Entrez ID, MGI or HGNC gene

symbol, and the Affy ID from Ensembl using the BioMart

interface [7,22]. For each gene, a list of all known transcripts was

obtained. All the transcripts for a particular gene were grouped

into clusters of transcripts with the same transcription start site

(TSS). Initial TSSs were retrieved from Ensembl. The Ensembl

TSSs were remapped using Fantom 4 mappings of aggregations of

cap-analysis gene expression (CAGE) tags [23]. First, the CAGE-

tag mappings were remapped to the most recent genome assembly

using the liftOver tool from UCSC [6]. Next, for each Ensembl

TSS, we looked for the closest tag cluster in the range of 200 bp

and took the CAGE tag starting site position within the

transcriptional cluster supported by the highest number of CAGE

tags as the representative TSS position. Finally, for every

remapped TSS, we stored the maximum normalized tag count

(tags per million, TPM) from all of the tissues analyzed by Fantom

4. If there was no CAGE tag for a particular Ensembl TSS, we

stored -1 as the TPM value. The TPM values were further used as

a measure of promoter strength.

Sequence and conservation information retrieval
For every TSS, sequences 10 kbp upstream and 5 kbp

downstream of the TSS (henceforth called the promoter sequence)

and phastCons scores for multiple alignments of 30 vertebrate

genomes were retrieved from UCSC.[6].

Identification of CpG islands
The sequences 5 kbp upstream and 10 kbp downstream of

every TSS were analyzed for the GC content and CG dinucleotide

enrichment in frames of 200 bp. CpG islands were defined as

sequences in which the length was .200 bp, the (G+C) content

(%GC) was .50% and the ratio of observed to expected CpG

dinucleotide frequencies (CpGobs/CpGexp) was .0.6 [24].

Detection of TFBSs
Promoter sequences were scanned with TFBS matrices obtained

from the JASPAR database and the public release of the

TRANSFAC database using the TFBS BioPerl module [10,25].

The matrix score, conservation score, distance from gene start and

coding/non-coding values were assigned to every TFBS match.

The data were stored in a relational database.

Background precomputation
Three types of background sequences were prepared: random,

core promoter and conserved promoter. To develop a random

promoter background, 20 Mbp of random sequence was gener-

ated with equal numbers of all four nucleotides. To develop a core

promoter background dataset, sequences containing the region

200 bp upstream of the gene start position for every gene in a

genome were retrieved and concatenated. To develop a conserved

promoter background, sequences with conservation scores higher

than 75% for every gene were obtained and concatenated. The

resulting random, core and conserved promoter sequences were

scanned for all JASPAR and public TRANSFAC TFBSs at every

integer matrix score threshold from 60% up to 100%. The

frequencies at all thresholds were stored in a set of TFBS

frequency tables.

Optimization of matrix score threshold
Two user-defined parameters, Random TFBS occurrence and

Background sequence, are combined with the TFBS frequency tables

to define a matrix score threshold for each matrix. The threshold

with the most similar (least-distant) background frequency

(random occurrence) to the user-defined frequency in the user-

defined type of sequence is set as optimal.

Identification of overrepresented binding sites
TFBSs from all alternative promoters for a particular gene

meeting the user-defined criteria are combined into one pool. This

procedure is repeated for all genes from the query set. The total

length of queried sequences filtered for user-defined parameters is

computed. The fold-difference in TFBS frequency is computed by

dividing the observed TFBS frequency by the background

frequency. The probable number of genes with particular TFBS

hit obtained by chance is computed. For each particular TFBS

matrix, the fold-change in the frequency of genes containing a

particular TFBS compared with a predicted background frequen-

cy is computed. Z-scores are computed based on the fold

distribution for all TFBS matrices. The fold distribution is

Gaussian. The p-value was defined as the probability of obtaining

a specific range of z-scores using the standard normal distribution.

The p-values for frequency fold and gene fold are computed

separately. Moreover, a proportion p-value is computed, defined

as the proportion of TFBS hits that can be explained by chance.

Updating scheme
The cREMaG system was designed for easy and continuous

updates. The Ensembl database, which is the sequence resource

for the cREMaG database, is updated several times a year. A Perl

script continuously retrieves and analyzes new sequences and

orthologs and stores them in the MySQL database used by

cREMaG. The promoter properties section of the database is updated

daily. Adding a new batch of position weight matrices for TFBS

requires computation of all genes in the database and thus requires

about one month of computation. Therefore, the repository of

TFBS matrices will be updated at least once a year.

Results

Usage and web interface
1. Query step I – gene-set submission. In step I, the user is

asked to fill in the five-field form (Figure 1A). First, the query name

may be passed. It is not obligatory, and if left blank, the system will

The cREMaG Database
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generate a unique query name. Second, the species of the entered

IDs should be selected. cREMaG currently supports five species:

Mus musculus, Rattus norvegicus, Homo sapiens, Bos taurus and Canis

familiaris. Five types of IDs are supported: Ensembl IDs, Entrez

Gene IDs, gene symbols and Illumina and Affymetrix microarray

IDs. It is recommended to use Ensembl Gene IDs because the

engine of cREMaG is based on Ensembl IDs. Next, the IDs should

be passed into the text field. It is recommended that users use

between five and one hundred genes. Queries of fewer than five

genes may yield unreliable results, and queries of more than 300

will slow down the analysis. Finally, the user may select whether to

use all alternative TSSs, only the most distal TSSs, only the most

highly expressed TSSs (based on TPM values) or TSSs with or

without CpG islands.

The queried IDs are converted to Ensembl Gene IDs. Every

identified Ensembl Gene ID is translated into a gene symbol. Next,

cREMaG searches for all TSSs belonging to genes identified

previously by the Ensembl Gene ID. If a gene symbol

corresponding to more than one Ensembl Gene ID will be

queried, all of the corresponding genes will be included in the

analysis.

2. Query step II – alternative promoter selection. In step

II, the user is asked to confirm the identified genes and alternative

promoters (Figure 1B). The results of the query IDs identification

are presented in the form of small tables containing Ensembl Gene

IDs with the gene symbol and query ID as headers and an internal

table of all alternative TSSs containing promoter visualization,

TPM values and lengths of CpG islands. The user can manually

check or uncheck alternative TSSs using checkboxes.

3. Query step III – analysis parameters setting. In step

III, the user is asked to select the analysis parameters (Figure 1C).

The Conservation threshold parameter is responsible for the

elimination of TFBSs with conservation scores lower than the

selected threshold. It is possible to select values from 60% (low

conservation) to 90% (very high conservation). The Top percent of

conserved regions parameter is responsible for the elimination of the

TFBSs with the lowest conservation scores. It is possible to select

values between 1% (only the most conserved TFBSs) and 100%

(all TFBSs meeting other criteria). The Maximum number of most

conserved TFBSs parameter was designed to analyze an equal

number of TFBSs for every promoter independent of its

conservation level. The Coding/non-coding sequence parameter

allows users to search TFBSs in coding elements, non-coding

elements or both. The Length of upstream segment parameter allows

users to choose how many base pairs upstream of the TSS are used

for the analysis (0 bp to 10,000 bp). The Length of downstream segment

parameter allows the user to choose how many base pairs

downstream of the TSS are taken for analysis (0 bp to 5000 bp).

The Random TFBS occurrence (optimized matrix score threshold)

parameter determines how restrictive the matrix score threshold

should be set (starting from 1 TFBS/1,000,000 bp and ending at 1

TFBS/100 bp by chance). The Random TFBS occurrence parameter

Figure 1. An overview of the graphical user interface. (A) The view of query step I – the gene-set submission in which the user is asked to
input the query name and gene IDs and to select the species, type of Ids and the type of alternative TSSs. (B) The view of query step II – the
alternative promoter selection in which the user is asked to confirm the identified genes and alternative promoters. (C) The view of query step III –
the user is asked to select the analysis parameters. (D) Query step IV – the results overview. (E) cREMaG visualization of promoters. (F) Detailed table
with particular transcription factor binding sites.
doi:10.1371/journal.pone.0012465.g001
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is combined with the Select background parameter to determine the

background sequence type (random, core, promoter or conserved

promoter), and together they determine the random TFBS

occurrence rate.

4. Query step IV – results overview. In the last step, the

user is provided with five tables (Figure 1D). The first table shows

which analysis parameters were selected. The second table shows

the genes analyzed and the number of TFBSs identified with the

specified criteria for each particular gene. The third table shows

the fold differences of the most overrepresented binding sites from

the JASPAR database. This table holds various types of

information, including the TFBS matrix identifier, transcription

factor name, transcription factor class and information content of

matrix. The Genes column of the table contains the symbols of

genes containing particular TFBS in their promoters. TFBSs

number shows the total number of TFBSs found in all included

promoters. TFBSs Expected number is the number of expected

occurrences of a TFBS matrix and is computed based on the

length of sequences used for the analysis and the random false-

positive rate selected by the user. TFBSs Fold is the result of

dividing the TFBS number by the TFBSs Expected number. The TFBSs

Fold p is the p-value showing how the TFBS fold stands out from the

fold distribution. Genes Number is the number of genes containing a

particular TFBS. Genes Expected Number is the expected number of

genes containing a particular TFBS. Genes Fold is the result of

dividing the Genes Number by the Genes Expected number. The Genes

Fold p is the p-value showing how Genes Fold stands out from the

fold distribution. The Proportion p-value is the proportion of TFBS

hits that can be explained by chance. The fourth table shows the

fold-differences of the most overrepresented binding sites from the

TRANSFAC database and contains the same information as the

JASPAR table. The fifth table shows the average lengths of the

CpG islands within the query set and within the whole genome

and the p-value for this comparison.

Examples of usage
1. CREB-regulated gene-set. To demonstrate the

functionalities of cREMaG, we utilized the results from gene

expression profiling in the striatum of cocaine-treated mice lacking

CREB in the forebrain, accompanied by the deletion of

CREM[26]. We submitted Affy IDs of genes with striatal

cocaine-dependent induction suppressed in Creb1Camkcre4; Crem–/–

animals. The genes analyzed are widely recognized in the

literature as immediate early genes (IEG) [27]. The cREMaG

system was designed to analyze results coming from microarray

data, and, therefore, annotations for the two frequently used

microarray systems, Affymetrix and Illumina, were implemented.

We submitted a list of 45 Affymetrix probe-sets for 30 CREB-

regulated genes (see Table S1 in Supplementary Data) using

default query options with a shorter promoter length (-1000 bp

upstream, 0 bp downstream). An optimized matrix score threshold

was developed to make it possible to compare different TFBS

profiles at the same false-positive probability. CREB was correctly

identified as a true-positive regulator of the queried gene-set

(p,1*10-4, 1st rank). Moreover, SRF was also found (p = 0.010,

4th rank) as a true-positive regulator of IEG [28]. Another feature

unique of the cREMaG database is the analysis of CpG islands. All

genes from the CREB regulated gene set contain CpG islands

within their promoters, with the average length of CpG islands

much greater than the genomic average (p,1*10-4). The table

with the query results is provided in the Table S2 in

Supplementary Data.

2. Alternative transcription start sites of the Homer1

gene. The cREMaG system was also designed to analyze the

promoters of particular transcriptional variants. The Homer1 gene

has multiple transcript forms with distinct alternative TSSs.

Homer1a is a CREB-inducible isoform of Homer1 widely

described in the literature, and its transcription start site is the

most proximal from the beginning of the gene [29]. Homer1 was

submitted as a mouse gene symbol into the cREMaG system. In

step II of the analysis, there was the possibility of selecting from

four TSSs. The three cAMP response elements (CRE) were found

only at the core promoter of the Homer1a isoform. This example

shows the advantages of using the promoter of only the inducible

transcriptional isoform when searching for overrepresented

binding sites. While including all transcription start sites provides

noise in the final results, the selection of particular promoters for

the analysis may give a higher chance for true-positive results.

Comparison with other tools
To demonstrate accuracy of cREMaG, we compared it with

other available on-line tools: oPOSSUM, CORE_TF, TFM-

Explorer and Pscan [4,30,31,32]. For this purpose, we used eight

reference gene sets: a) microarray profiling of cocaine-induced

transcriptional alterations attenuated in SRF knockout animals

with the expected motif being SRE [33]; b) microarray profiling of

NF-kB-regulated genes in the human skin with the expected motif

being Rel [34]; c) microarray profiling of cytokine-induced gene

expression in human macrophages, with the expected motif being

Rel [35]; d) ChIP-seq results including the 10 top-scoring PPARG

binding sequences, with the expected motifs being PPARG or

RXRA [36]; e) microarray profiling after pharmacological

intervention for androgen-regulated genes in the epididymis, with

the expected motif being AR [37]; f) microarray profiling of

ethanol-induced genes inhibited by the co-administration of

glucocorticoid receptor antagonist RU486, with the expected

motif being NR3C1 [38]; g) microarray profiling of cocaine-

induced transcriptional alterations attenuated in CREB knockout

animals, with the expected motif being CRE [26]; and h) ChIP-

chip results for glucocorticoid receptor-binding sequences, with

the expected motif being NR3C1 [39]. Pscan and TFM-Explorer

accept only RefSeq numbers. Thus, IDs (gene symbols, Affy IDs,

and RefSeq IDs) from the selected gene sets were converted to

RefSeq numbers using Ensembl BioMart. Sequences 1000 bp

upstream of the most distal TSS were retrieved from Ensembl for

use in CORE_TF. For the comparison, we used the default

settings for all the tools including cREMaG. As a score, we used

the rank of the expected motif in the obtained results, where ten

points were given for the first rank, nine points for the second,

down to one point for tenth rank. All of the tools got a score in

three (a-c) out of the eight gene sets (Figure 2). cREMaG and

oPOSSUM got a high score in the next four gene sets (d-g). In one

gene set, only cREMaG got a score (h). The results obtained with

cREMaG and oPOSSUM were similar. However, cREMaG

received the highest summary score. All of the gene sets, with the

original IDs, RefSeq numbers, promoter sequences and results, are

provided in Table S3.

Discussion

The cREMaG database was designed for the analysis of gene

expression patterns obtained from microarray expression data.

cREMaG allows for the identification of overrepresented TFBSs in

the promoter regions of genes from co-expressed gene sets. Besides

cREMaG, there are other systems suitable for the analysis of

overrepresented transcription factor binding sites in mammalian

genes, including oPOSSUM, PAP, CORE_TF, TFM-Explorer,

Pscan and Genomatix [4,13,15,30,31,32]. cREMaG requires only

The cREMaG Database
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a web browser with no additional third-party plugins. No login is

required. cREMaG can be tested with no presets or registration

confirmation delay. Moreover, the resource is freely available for

academic and commercial users.

Stable and well-established data repositories were selected to

build cREMaG. cREMaG uses matrices from two publicly

available TFBS matrices repositories, JASPAR and the public

release of TRANSFAC [10,11]. JASPAR has a relatively small set

of matrices, but the redundancy of other larger sets of matrices like

TRANSFAC or MatBase is very high [10,15]. For example, there

are six highly similar matrices for the CREB transcription factor

binding site in TRANSFAC, but only one in JASPAR. This

difference makes it difficult to compare the content of information

in TFBS matrix repositories. However, TRANSFAC and MatBase

contain some unique TFBS matrices, such as the matrix for PLZF

in MatBase. However, cREMaG was designed to add new batches

of TFBS matrices with ease and is not limited to any particular

repository. As an alternative TSS repository, the Ensembl

database was chosen [7]. Moreover, Ensembl TSSs were

remapped using Fantom 4 CAGE tags [23]. cREMaG allows for

the analysis of either selected alternative promoters or multiple

TSSs at once.

Promoters stored in cREMaG were curated for their evolu-

tionary conservation, based on the assumption that functional

elements evolve more slowly than nonfunctional elements [12].

This assumption is only partially true [3]. However, including

nonconserved promoter sections for analysis yields many more

false positives for TFBSs, thus resulting in more noise in the

analysis. The rates of evolution differ across genes and promoters

[16]. Thus, the threshold for the conservation score should be

selected in light of gene-specific characteristics. One of the

attempts to resolve this problem is proposed in the oPOSSUM

system [4], in which three conservation thresholds are linked with

the appropriate maximum percentage of conserved regions,

ranging from 10% to 30%. In cREMaG, the maximum

percentage of conserved regions is unlinked to the other

parameters and ranges from 1% to 100%. Moreover, highly

conserved promoters have longer stretches of highly conserved

regions, implicating a greater number of analyzed TFBSs and

having a higher impact on the final result. Thus, the ability to

choose the maximum number of conserved TFBSs was developed

to allow all promoters to contribute equally to the final result. The

maximal length of analyzed sequence varies widely across systems.

In cREMaG, a maximal range of 15 kbp is possible for an analysis

starting 10 kbp upstream of the TSS and finishing 5 kbp

downstream of the TSS. This arbitrary range was selected as a

compromise between possible noise coming from false positives on

overly long sequences, a loss of true positives on overly short

sequences and system efficiency. Moreover, if a gene contains

multiple promoters, all are accessible for analysis at once. Specific

sets of initiating dinucleotides are associated with different TSS

types, and the surrounding GC content is well-correlated with the

types of these dinucleotides [40]. Thus, cREMaG is also suitable

for selecting only those TSSs that are surrounded by CpG islands.

Optimization of the matrix score threshold was resolved

previously in the PATSER, MATCH and Genomatix tools

[13,41,42]. Genomatix defines the optimized threshold of a

weight matrix as the matrix similarity threshold that allows a

maximum of three matches in 10 kbp of non-regulatory test

sequences [13]. The MATCH software defines the optimized

threshold of a weight matrix based on the number of matches in

exonic sequences[42]. cREMaG defines the optimized threshold

of a weight matrix as the threshold that allows a user-defined

number of matches in 1 Mbp of user-defined background test

sequences. For the identification of overrepresented binding sites

in large gene sets, it is advisable to use more restrictive thresholds

(a smaller number of random matches). If looking for possible gene

targets of transcription factors, it is advisable to use less restrictive

threshold, resulting in more false positives but fewer false

negatives.

Figure 2. Comparison of cREMaG to other on-line tools. The heatmap plot presents the scores from cREMaG, oPOSSUM, CORE_TF, TFM-
Explorer and Pscan for eight selected gene sets. The scores were calculated based on the rank in the results of the expected TFBS matrix: ten points
for first rank (dark green color), nine points for second, down to one point for tenth rank (white color). The sum of the scores is presented on the
right. The tools and gene sets are ordered by the sum of scores in decreasing order.
doi:10.1371/journal.pone.0012465.g002
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Our previous experience with microarray studies [35,38,43,44]

led us to develop the cREMaG system, which is suitable for the

analysis of the regulatory properties of promoters of co-expressed

genes. The system has novel features in addition to the well-

constituted solutions that are implemented in some of the available

free or commercial systems. The unique features of cREMaG

include the optional selection of multiple or single alternative

promoters for analysis linked with information about CpG islands,

the maximum number of TFBSs per gene and the optimized level

of restrictiveness of the matrix score thresholds linked with three

distinct pre-compiled backgrounds. The cREMaG database

constitutes a valuable resource for all researchers working with

gene expression data. We aim to continuously import new data

sources and update the database on a regular basis.

The database is freely available to academic and non-academic

users at the http://www.cremag.org address. However, if you find

the cREMaG database useful for your work, please cite this paper.

Supporting Information

Table S1 List of Affy IDs of CREB-dependent genes from gene

expression profiling in the striatum of cocaine-treated mice lacking

CREB in the forebrain (Lemberger, 2008).

Found at: doi:10.1371/journal.pone.0012465.s001 (0.02 MB

XLS)

Table S2 Query results of CREB-regulated gene-set.

Found at: doi:10.1371/journal.pone.0012465.s002 (0.02 MB

XLS)

Table S3 The gene sets, with the original IDs, RefSeq numbers,

promoter sequences and results of cREMaG comparison with

other tools.

Found at: doi:10.1371/journal.pone.0012465.s003 (0.60 MB

XLS)
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