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Background. COVID-19 may result in multiorgan failure and death. Early detection of patients at risk may allow triage and more
intense monitoring. The aim of this study was to develop a simple, objective admission score, based on laboratory tests, that
identifies patients who are likely going to deteriorate. Methods. This is a retrospective cohort study of all COVID-19 patients
admitted to a tertiary academic medical center in New York City during the COVID-19 crisis in spring 2020. The primary
combined endpoint included intubation, stage 3 acute kidney injury (AKI), or death. Laboratory tests available on admission in at
least 70% of patients (and age) were included for univariate analysis. Tests that were statistically or clinically significant were then
included in a multivariate binary logistic regression model using stepwise exclusion. 70% of all patients were used to train the
model, and 30% were used as an internal validation cohort. The aim of this study was to develop and validate a model for COVID-
19 severity based on biomarkers. Results. Out of 2545 patients, 833 (32.7%) experienced the primary endpoint. 53 laboratory tests
were analyzed, and of these, 47 tests (and age) were significantly different between patients with and without the endpoint. The
final multivariate model included age, albumin, creatinine, C-reactive protein, and lactate dehydrogenase. The area under the
ROC curve was 0.850 (CI[95%]: 0.813, 0.889), with a sensitivity of 0.800 and specificity of 0.761. The probability of experiencing
the primary endpoint can be calculated as = p = el 24475+0.02492age-0.6303albumin+0.81926creat+0.00388CRP+0.00143LDH) /1 |
¢ (~2475+0.02492age-0.6503albumin+0.81926¢reat+0.00388CRP+0.00143LDH)  Coprclysions. Our study demonstrated that poor outcome in COVID-
19 patients can be predicted with good sensitivity and specificity using a few laboratory tests. This is useful for identifying patients
at risk during admission.

1. Introduction

From March to May 2020, New York City experienced a
severe crisis of COVID-19 cases that resulted in a surge of
patients who required hospital-level care. Hospitals and
medical resources were strained to their limits. Although
many patients recovered quickly, some progressed to

develop severe COVID-19 resulting in significant morbidity
and potentially death.

Some features of severe COVID-19 include respiratory
failure requiring intubation, severe renal failure, and death.
Risk factors for severe disease include advanced age and
underlying conditions such as cardiovascular disease and
diabetes [1]. Patients admitted to the hospital have a case-
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fatality rate as high as 24%, and patients admitted to the
intensive care unit requiring mechanical ventilation have a
case-fatality rate as high as 60% [1, 2].

There is an urgent need for clinical tools that can identify
patients at risk for severe COVID-19 during admission.
Previous predictive models have used a combination of
demographic data, clinical history, and laboratory data to
predict risk for severe disease or mortality in patients [3-6].
However, these studies were largely conducted using modest
sample sizes predominantly based in China. Recently, there
has been interest in using previously validated non-COVID-
19 clinical scores, such as the National Early Warning Score
(NEWS), in COVID-19 patients [7, 8]. Although many of
these models perform well, they lack a large study cohort and
are not based solely on objective and quantifiable data, which
can lend bias and inaccuracy to the prediction. We excluded
less objective or quantifiable data such as comorbidities or
findings during physical exam that have previously been
used for other scores such as the Veterans Health Admin-
istration COVID-19 (VACO) Index for COVID-19 Mor-
tality [9] or the Quick COVID-19 Severity Index (qCSI) [10].

There remains a need for a simple, objective prognostic
model that is generalizable to Western populations. Labo-
ratory tests are a promising source of objective data, and
there is evidence that inflammatory markers (e.g., C-reactive
protein) and markers of cardiac, liver, and renal dysfunction
are associated with severe COVID-19 [11, 12]. The aim of
this study is to determine which laboratory values on
hospital admission can predict poor outcome in COVID-19
patients and to create a predictive COVID-19 score that can
help practitioners triage patients on admission to the
hospital.

2. Materials and Methods

In this retrospective cohort study, we included all patients
who were admitted to Columbia University Irving Medical
Center during the COVID-19 crisis in New York City from
March 10, 2020, to May 24, 2020. COVID-19 positivity was
defined as patients who tested positive for SARS-COVID-2
using polymerase chain reaction and who received an ad-
mitting diagnosis of COVID-19.

The primary combined endpoint included either intu-
bation, stage 3 acute kidney injury (AKI) defined by Kidney
Disease Improving Global Outcomes (KDIGO) criteria [13]
(increase in serum creatinine to 3 times the baseline or to
>4 mg/dL within seven days after admission), or death
during hospitalization. We chose these endpoints because
we considered the presence of any of these endpoints rep-
resentative of a serious deterioration of COVID-19 espe-
cially during the surge in New York City at that time. We did
not include ICU admission because at that time only patients
who required mechanical ventilation were admitted to the
ICU because of the shortage of ICU beds. Furthermore, due
to the lack of ICU beds, a number of mechanically ventilated
patients were cared for in improvised ICUs at that time. We
also did not include renal failure requiring renal-replace-
ment therapy (RRT), as many patients who under normal
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circumstances would have required RRT did not receive it
due to a lack of RRT machines and/or disposables.

Data were retrieved from electronic medical record
systems. We analyzed 99 different laboratory tests and basic
demographic information, mainly age and sex. Admission
laboratory results were defined as the mean value of results
for each patient from one day before to one day after
admission.

We first conducted univariate analysis on laboratory
tests that were available on admission in >70% of patients.
Variables that were statistically and clinically significant
were included in a multivariate binary logistic regression
model. We removed patients who were missing any of these
variables, which yielded a final cohort of n=1492 patients.
To select the best prediction model for the primary endpoint,
70% of patients (n = 1045) were used to train the model. We
used a cross-validation (CV) procedure in which 70% of the
1045 training samples (n =732) were used to determine the
list of variables to be selected in the model, and the
remaining 30% (n = 313) were used to examine the model fit.
This method was in accordance with type 1b prediction
model studies as described by the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) Statement (“development of a pre-
diction model using the entire data set, but then using
resampling (e.g., bootstrapping or cross-validation) tech-
niques to evaluate the performance and optimism of the
developed model”) [14]. We did not include any external
validation cohorts.

This CV process was repeated 100 times, and we selected
variables that were most frequently selected out of the 100
CVs. This list of variables was considered in the final model
and fitted using all n = 1492 training samples. The fitted final
model was then tested in the internal validation cohort,
which consisted of 30% of the cohort (n=447) (Figure 1).
Bootstrap samplings were conducted on the internal vali-
dation cohort to provide confidence intervals. The final
model that was generated for the primary endpoint was also
fitted against other specific endpoints (intubation, stage 3
AK]J, or death) to estimate the probability of experiencing a
specific event. The best cutoff value for the predicted
probability was calculated as the value that maximized
Youden’s J statistic, defined as J = sensitivity + specificity — 1.

We constructed Kaplan-Meier curves to compare event-
free survival (in which the event was defined as the primary
combined endpoint) between patients with a higher and
lower probability than the best cutoff. We created
Kaplan-Meier survival curves for patients who were and
who were not intubated and for patients with and without
stage 3 AKIL

SAS 9.1 (SAS Inc., Cary, North Carolina), PASW 18.0
(SPSS Inc., Chicago, Illinois), R Project for Statistical
Computing, and GraphPad Prism 6.0 (San Diego, Cal-
ifornia) software were used for statistical analysis.

3. Results

A total of 2545 patients were admitted to the hospital with
COVID-19. 537 patients (21.1%) died, 309 patients (12.1%)
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F1GURE 1: Flowchart depicting how the COVID-19 score was developed.

were intubated, and 324 patients (12.7%) experienced stage 3
AKI. The primary combined endpoint (intubation, stage 3
AKI, or death) was seen in 833 patients (32.7%). The in-
cidence of specific endpoints can be found in Table 1.

Of 99 included laboratory tests (as well as race, sex, and
age), 53 were available for >70% of patients on admission
(Supplementary Table S1). Supplementary Table S2 lists
excluded variables. On univariate analysis, 47 variables (and
age) were significantly different between patients with and
without the combined endpoint. Multivariate analysis

yielded a final binary logistic regression model that included
age, albumin, creatinine, high-sensitivity C-reactive protein
(CRP), and lactate dehydrogenase (LDH). For the primary
combined endpoint, the model yielded an area under the
receiver operating characteristic curve (AUC) of 0.850 (CI
[95%]: 0.813, 0.889) (Figure 2), with a sensitivity of 0.800 and
specificity of 0.761 (using a best cutoff of 0.335, as deter-
mined by Youden’s J statistic). The probability of experi-
encing any of these outcomes was defined as the COVID-19
score and can be calculated as

e (—2.4475+0.02492age— 0.6503albumin+0.81926creat+0.00388CRP+0.00143LDH)

(1)

- 1+ e(72.4475+0.02492ag670.6503 albumin+0.81926creat+0.00388CRP+0.00143LDH)"

The model was also fitted for specific endpoints, as
shown in Table 2.

Patients with a COVID-19 score >0.335 (best cutoff) had
a hazard ratio (Mantel-Haenszel) of 3.59 (CI [95%]: 3.136,
4.105) for experiencing the primary combined endpoint.
Kaplan-Meier event-free survival curves (in which an event
was defined as the primary combined endpoint) are depicted
in Figure 3. Kaplan-Meier survival curves were constructed
for patients with and without intubation and for patients
with and without stage 3 AKI (Figures 4(a) and 4(b)). Pa-
tients who required intubation had a hazard ratio (Man-
tel-Haenszel) of 6.479 (CI [95%]: 5.032, 8.341) for death, and
patients with stage 3 AKI had a hazard ratio (Man-
tel-Haenszel) of 2.837 (CI [95%]: 2.252, 3.574) for death.

The relative contribution of each variable to the model
was assessed based on how removal of the variable affected
the AUC for predicting the primary endpoint. When cre-
atinine was removed, the AUC decreased from 0.850 to
0.774. When LDH was removed, the AUC decreased from
0.850 to 0.832. When albumin was removed, the AUC
decreased from 0.850 to 0.836. When age was removed, the

AUC decreased from 0.850 to 0.837. When CRP was re-
moved, the AUC decreased from 0.850 to 0.845.

In previous publications, race, biological sex, and IL-6
level were important predictors of mortality in COVID-19
patients [15, 16]. Although these variables were not se-
lected into our final model, we investigated these variables
further by manually adding and removing these variables
from the model to determine how they affected the AUC
for predicting the primary combined endpoint. Removing
race increased the AUC from 0.847 to 0.850. African
American race was associated with decreased risk of se-
vere disease (coefficient: —0.344), whereas white race was
associated with increased risk (coeflicient: 0.450). Re-
moving biological sex minimally increased the AUC from
0.849 to 0.850. Male sex was associated with increased risk
for severe disease (coefficient: 0.125). In an earlier iter-
ation of the model, inclusion of IL-6 level (which was only
available for 683 patients) did not change the AUC, which
was 0.746. Because these variables did not appreciably
improve the AUC, they were not included in the final
model.
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TaBLE 1: Incidence of endpoints (of 2545 admitted patients).

Endpoint N %

Death 289 11.4
Intubation 124 4.9
Stage 3 AKI 132 5.2
Death/intubation 96 3.8
Death/stage 3 AKI 73 2.9
Intubation/stage 3 AKI 40 1.6
Death/intubation/stage 3 AKI 79 3.1

TOTAL (primary combined endpoint) 833 32.7

Sensitivity (%)

I I | I
0 20 40 60 80 100
100% - specificity (%)

FIGURE 2: Receiver operating characteristic (ROC) curve of the admission COVID-19 score to predict the primary combined endpoint
(either stage 3 acute kidney injury, intubation, or death) in the internal validation cohort (n=447).

TaBLE 2: Prediction results in the internal test set (1 =447) using the logistic regression model developed in the training data (n=1492).

Death intubation AKI

Death intubation Death Intubation Stage 3 AKI

stage 3

0.850 0.888 0.837 0.713 0.950
AUC e CI[95%]: 0.859, CI[95%]: 0.802, CI[95%]: 0.645, CI[95%]: 0.923,

CL195%]: 0813, 0.889 0.921 0.878 0.782 0.977

Best cutoff (determined by Youden's 0.335 0.272 0.258 0.207 0.184
] statistic)
Sensitivity for best cutoff 0.800 0.859 0.794 0.533 0.820
Specificity for best cutoff 0.761 0.775 0.739 0.809 0.930
Sensitivity for cutoff 0.5 0.627 0.646 0.412 0.017 0.689
Specificity for cutoff 0.5 0.872 0.897 0.925 0.979 0.984
Parameter estimates
(Intercept) —2.4475 —4.7252 —4.0251 1.11234 —4.727
Age (years) 0.02492 0.0475 0.0677 -0.0137 —-0.0147
Albumin (g/dL) -0.6503 -0.6021 —-0.9424 -0.7729 —-0.0336
Serum creatinine (mg/dl) 0.81926 0.9859 0.076 0.02069 1.46726
High-sensitivity C-reactive protein 0.00388 0.00429 0.00403 0.00238 0.0047

Lactate dehydrogenase (LDH) 0.00143 0.00113 0.00121 0.00083 0.00067
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FIGURE 3: Event-free survival with an admission COVID-19 score above and below 0.355 (determined as the best cutoff by Youden’s J
statistic). An event is defined as either stage 3 acute kidney injury, intubation, or death.
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FIGURE 4: (a) Survival of patients who did/did not require mechanical. (b) Survival of patients with and without stage 3 acute kidney injury.

4. Discussion

Our study provides clear support that poor outcome of
patients with COVID-19 can be predicted on hospital ad-
mission with good sensitivity and specificity using a few
objective variables. The probability for severe disease (i.e.,
the COVID-19 score) can be calculated using age, albumin,
creatinine, high-sensitivity C-reactive protein (CRP), and
lactate dehydrogenase (LDH). The model predicted the
primary combined endpoint of intubation, stage 3 AKI, or
death with an AUC of 0.850.

The primary advantage of this model is that it uses
objective laboratory tests that are commonly available on
hospital admission. Although a patient’s comorbidities,
particularly cardiovascular disease or diabetes, can certainly
increase a patient’s risk for severe COVID-19, the advantage
of using laboratory values (and age) only is that these values

are quantitative, easily acquired, and computable data that
have a higher degree of objectivity than, for example,
comorbidities and which thus lend themselves well to
quantitative determination of risk. Previous prognostication
models used smaller sample sizes and relied upon a com-
bination of demographic, clinical, radiographic, and labo-
ratory variables that are less easily computable [3-6].
Recently, there has also been interest in applying non-
COVID-19 clinical scores, such as the National Early
Warning Score (NEWS), to COVID-19 to predict mortality
[7, 8]. This approach, however, is also limited by inclusion of
data in the score that may be less objective and more difficult
to quantify, such as assessment of mental status. Our model
provides a higher degree of objectivity by using objective
laboratory data that have been tested in a large cohort of over
one thousand patients. The use of computable variables only
may provide an opportunity to have this score calculated



automatically by electronic medical record systems that
could flag patients at risk without the need for calculation by
healthcare workers.

In our model, creatinine was the variable with the
strongest impact on the AUC of our model for predicting the
primary endpoint. Although it is unsurprising that creati-
nine was useful for predicting an endpoint that includes
AKI, it is important to highlight two points. First, the
creatinine on admission was able to predict not only the
development of AKI but specifically progression to severe
AKI during the hospital course. Second, creatinine was
useful for predicting other endpoints as well, particularly
death (removal of creatinine decreased AUC from 0.837 to
0.828).

The association between AKI and death can be seen in
our survival curves, which showed that patients with stage 3
AKT had increased mortality. This is consistent with previous
studies showing an association between AKI and mortality
in COVID-19 patients [17-19]. AKI may be a proxy for
severe systemic inflammation and organ dysfunction.
Chronic kidney disease (CKD) has also been associated with
increased mortality in COVID-19, with increased risk for
AKI requiring renal-replacement therapy [20]. The risk for
worse outcome may be related to the immunosuppressed
state of CKD. Although we are unable to distinguish between
AKIand CKD in this study, elevated creatinine on admission
is clearly associated with poor outcome.

CRP and albumin, which are acute phase reactants, are
associated with severe COVID-19, a highly inflammatory
state. CRP is a positively regulated acute phase reactant,
whereas albumin is negatively regulated, which explains its
negative correlation with severe disease. Higher CRP/al-
bumin ratios have been associated with increased mortality
in critically ill patients [21], older adults [22], and septic
patients [23]. More recently, high CRP and low albumin
have been associated with increased mortality in COVID-19
[16, 24]. Our results are consistent with these findings.

LDH was found to be associated with severe COVID-19.
Elevated LDH levels have been associated with increased risk
of deterioration and development of critical illness [5, 25].
Elevated LDH levels have also been seen in severe acute
respiratory syndrome and Middle East Respiratory Syn-
drome, which are caused by different strains of coronavirus
[26, 27]. A possible explanation for this association is that
elevated serum LDH is an indicator of diffuse tissue damage
seen in severe disease.

The only demographic variable that was included in the
final model was age, which has previously been associated
with increased risk for severe COVID-19 [1]. Although other
demographic parameters, including biological sex and race,
did not significantly improve the model and were ultimately
excluded, it is interesting that African American race was
associated with lower risk for severe disease compared to
white race, which seems inconsistent with previous studies
showing increased mortality from COVID-19 in African
Americans [15]. One possible explanation for this para-
doxical finding is a confounding effect with creatinine. Given
that, for the same creatinine, African Americans are esti-
mated to have a higher glomerular filtration rate than white
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Americans, the negative coefficient for African American
race may have acted as a correction mechanism for higher
creatinine.

Interestingly, IL-6 and D-dimer levels did not improve
the predictive power of our model. Elevated serum IL-6
levels on admission have been associated with severe
COVID-19 [16], and IL-6 is thought to underlie the path-
ogenesis of the cytokine release syndrome responsible for
high mortality in COVID-19 [28]. Inclusion of IL-6 did not
improve our model, likely because IL-6 levels were available
on admission for less than one-third of our cohort, which
may have limited the power of our study for detecting the
effect of IL-6 on outcome.

D-dimer levels, which reflect hypercoagulability, have
previously been associated with poor outcome in COVID-19
when acquired on admission [29]. However, D-dimer level
was not statistically significant on univariate analysis, so it
was not included in multivariate analysis. Interestingly,
D-dimer level was elevated in both patients with and without
poor outcome (6.33 ug/mL and 4.95 ug/mL, respectively).
Given that an important threshold value for D-dimer level to
predict mortality in COVID-19 patients is 2.0 ug/mL [29],
one possible explanation for our null finding is that there is
no significant difference in additional risk once D-dimer
level is above this threshold.

Some limitations of our study must be recognized. Our
model predicted the probability of intubation relatively
poorly, with an AUC of 0.713, which suggests that standard
laboratory tests on admission are only partially predictive of
intubation. One possible explanation may be that a sub-
stantial number of patients who required intubation from a
clinical standpoint were not intubated and subsequently
expired, as their families had opted for palliative care.
Another possible explanation is that nonlaboratory data,
such as oxygen saturation and findings on chest radiogra-
phy, may be more predictive of intubation [30].

Another limitation is that some laboratory tests, such as
D-dimer and IL-6 level, were only available on admission for
a minority of patients. This may have limited the power of
our study for determining any effect on outcome associated
with these variables and may explain why these variables,
which have been cited in the literature for their prognostic
value, did not add predictive power to our model.

A further limitation of the score is the lack of external
validation. We developed the score using a specific cohort in
one hospital during the New York City surge, and its ap-
plicability needs to be verified using an external cohort in
other environments to be widely generalizable. While we
chose the endpoints based on our clinical experience during
the New York City surge, other endpoints may be useful for
practitioners. Specifically, we did not include ICU admission
because at that time only mechanically ventilated patients
were admitted to the ICU, and some mechanically ventilated
patients were cared for in improvised ICUs [31]. We rec-
ognize that ICU admission under different circumstances
could be a very useful endpoint for practitioners. Any future
external validation study could explore additional endpoints
such as deterioration of respiratory status (not necessarily
requiring mechanical ventilation), ICU admission, or renal
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failure requiring RRT. This future external validation should
include a large cohort with geographic and socioeconomic
diversity of medical systems in order to prove its
generalizability.

Finally, although our goal was to develop a model based
on laboratory tests, it is conceivable that the AUC of our
model can be improved further by incorporating patient
comorbidities, such as cardiovascular disease or diabetes
mellitus. Unfortunately, this data could not be automatically
retrieved from our electronic medical record systems, and
accessing this information manually for each patient was not
feasible.

Our study describes an easily computable model based
on biomarkers that can predict poor outcome in patients
with COVID-19 on the day of admission. This model may
help internists and admitting healthcare providers identify
patients at risk and can be computed by electronic medical
record systems without any human intervention.

5. Conclusions

Our multivariate model can be used to calculate a risk score
for severe COVID-19 using only a handful of objective
variables on the day of admission. This can serve as an
important tool for triaging patients presenting to the hos-
pital with COVID-19. Whether the score is used quantita-
tively to yield a specific probability or whether it is used in
relation to the best cutoft values, we hope the COVID-19
score can aid in the early clinical assessment of COVID-19
patients and improve outcomes.
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