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Abstract

Classification of clinical symptoms and diagnostic microbiology are essential to effectively

employ antimicrobial therapy for lower respiratory tract infections (LRTIs) in a timely man-

ner. Empirical antibiotic treatment without microbial identification hinders the selective use

of narrow-spectrum antibiotics and effective patient treatment. Thus, the development of

rapid and accurate diagnostic procedures that can be readily adopted by the clinic is neces-

sary to minimize non-essential or excessive use of antibiotics and accelerate patient recov-

ery from LRTI-induced damage. We developed and validated a multiplex real-time

polymerase chain reaction (mRT-PCR) assay with good analytical performance and high

specificity to simultaneously detect four bacterial pathogens causing pneumonia: Klebsiella

pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrha-

lis. The analytical performance of mRT-PCR against target pathogens was evaluated by the

limit of detection (LOD), specificity, and repeatability. Two hundred and ten clinical speci-

mens from pneumonia patients were processed using an automatic nucleic acid extraction

system for the “respiratory bacteria four” (RB4) mRT-PCR assay, and the results were

directly compared to references from bacterial culture and/or Sanger sequencing. The RB4

mRT-PCR assay detected all target pathogens from sputum specimens with a coefficient of

variation ranging from 0.29 to 1.71 and conservative LOD of DNA corresponding to 5 × 102

copies/reaction. The concordance of the assay with reference-positive specimens was

100%, and additional bacterial infections were detected from reference-negative speci-

mens. Overall, the RB4 mRT-PCR assay showed a more rapid turnaround time and higher

performance that those of reference assays. The RB4 mRT-PCR assay is a high-throughput

and reliable tool that assists decision-making assessment and outperforms other standard
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methods. This tool supports patient management by considerably reducing the inappropri-

ate use of antibiotics.

Introduction

According to the World Health Organization (WHO), lower respiratory tract infections

(LRTIs) were the main cause of morbidity and mortality leading to 3 million deaths worldwide

in 2016 [1]. LRTIs, caused by various bacteria and viruses, are associated with different clinical

symptoms and etiologies affected by age, sex, and season [2]. Owing to complicated clinical

symptoms, efforts to reduce the global burden of LRTIs using preventive and treatment strate-

gies require timely identification of pathogens [3].

LRTIs fall into two categories based on their origin: community-acquired pneumonia (CAP)

and hospital-acquired pneumonia (HAP) [4]. In the Asia-Pacific region, 11 species of bacteria

and eight species of viruses causing CAP are examined by serology, culture, immunofluores-

cence assay, or polymerase chain reaction (PCR) [5]. Notably, in LRTI patients with severe

CAP, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa are the most

common species, accounting for 28.6%, 28.6%, and 17.9%, respectively [6], of infections and are

identified by diagnostic culture methods. In addition, despite low incidence, Moraxella catar-
rhalis has been recently recognized as an important emerging pathogen because it shows preva-

lent resistance to some antibiotics through beta-lactamase production [7].

Rapid identification of pathogens and determination of susceptibility profiles are critical

for prompting appropriate therapy [8]. Nevertheless, the current standard diagnosis to detect

respiratory bacteria is a culture-based procedure, which typically takes 24–72 h to process. Cul-

ture-based diagnosis of LRTI specimens has low sensitivity and negative predictive value

(NPV); only approximately 30% of CAP patients receive correct microbiological identification

[9]. Therefore, a combination of different tests, such as culture, antigen, and serology detection

of pathogens, is commonly requested [10]. Thus, as the demand of rapid and highly precise

methods for microbial identification increases, PCR-based assays would be an appropriate sys-

tem to allow patient specimens to be examined on a large scale easily within quarter of a day

[11, 12].

Current molecular diagnostic panels lack coverage of diverse respiratory pathogens. In the

last few decades, conventional PCR assays have been performed for rapid identification of a

wide range of pathogens; however, it requires the tube to be opened for post-detection analysis,

leading to putative cross-contamination of the amplicon and consequent false-positive results

[13]. Recently, the TaqMan method (Applied Biosystems, Inc., CA, USA) has been developed

in the multiplex real-time PCR (mRT-PCR) platform, enabling quantitative applications [14].

The mRT-PCR assay is highly sensitive, specific, rapid, and less prone to false-positives [13].

Here, we developed a high-throughput mRT-PCR assay for the rapid and reliable identifica-

tion of key respiratory bacterial pathogens causing pneumonia: S. aureus, M. catarrhalis, K.

pneumoniae, and P. aeruginosa. Direct comparison to bacterial culture and/or a sequencing

method (reference assays) in LRTI specimens was used to validate the effectiveness of our

high-throughput respiratory bacteria four (RB4) mRT-PCR assay.

Materials and methods

Primer/PROBE design

Candidate assay targets for the four key bacteria were selected based on publications. National

Center for Biotechnology Information basic local alignment search tool (NCBI-BLAST) for
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nucleotide sequences was used to compare candidate oligonucleotides to targets in GenBank,

including large-scale sequence databases. Assays were redesigned or modified using GeneRun-

ner version 6.0 and NCBI-BLAST to optimize for multiplex performance. The specificity of

optimized oligonucleotide sequences was analyzed in silico by the multAlin interface.

Sequences were also screened by alignments within sequence databases for species selectivity.

Considering these assessments, four targets were selected for the pathogen assay and/or

designed for a dual priming oligonucleotide-based multiplex PCR assay for specificity [15].

The sequences of primers and probes are described in Table 1.

Control isolates

The positive control for the four bacterial strains used in confirmation assays were as follows:

S. aureus for American Type Culture Collection (ATCC) 29213, M. catarrhalis for Korean

Culture Center of Microorganisms (KCCM) 42706, K. pneumoniae for ATCC 13883, and

P. aeruginosa for ATCC 27853. Plasmids containing target genes were generated by cloning

amplicons with the pLUG-prime TA-cloning vector system (iNtRON Biotechnology, Inc.,

Seongnam, Korea). Plasmid DNA was diluted in DNA-spin (iNtRON) to 1 copy/reaction via

serial dilution for PCR optimization and quantification standards. S. auricularis and S. haemo-
lyticus were the predominantly isolated respiratory specimens in Seegene Medical Foundation

(SGMF) for use as a negative control. Most of these controls were commercially supplied as

DNA extracts from ATCC, Korean Collection for Type Cultures (KCTC), KCCM, and Korea

Bank for Pathogenic Viruses (KBPV).

Nucleic acid extraction

All patient samples were simultaneously processed using an automated nucleic acid extraction

system, the MagNA PURE 96 (Roche, Inc., Basel, Switzerland), according to the manufactur-

er’s instructions. The specimens were pre-treated with 1 mL of phosphate-buffered saline

Table 1. Oligonucleotide primers and probes for the real time PCR to detect target pathogens and an internal control.

Pathogen Target gene Type Sequences (5’-3’) Tm (˚C) Product size (bp) Reference

K. pneumoniae yphG F. primer GAGTTAGGGAAACGAACATTGTGIIIIIGGCAGTGCTC 58 137 [16]

R. primer TCTCTATCGGACAGACGTCGGIIIIIAAAGAGGTTC 59

probe aFAM-TTCATTGGCATCATCACTTAGCGAC 65.1

P. aeruginosa regA F. primer GCTTCATCGACAGCATCGGIIIIIACTGACGCCA 58.1 111 [17]

R. primer CGGCTTTTTCTCTGGTCTGTGIIIIIGTTCCGCTGT 59.1

probe bHEX-AACACAAACGCACTCGGAAAAATCG 68.5

S. aureus nuc F. primer GATGGCTATCAGTAATGTTTCGAIIIIICAATACRCAA 56.3 213 [18]

R. primer GTCGCAGGTTCTTTATGTAATTTTIIIIITGAAGTTGCA 57.4

probe cTexas red-CAAGTCTAAGTAGCTCAGCARATGCATCA 67.1

M. catarrhalis copB F. primer ATTCGTGGCATGGGTCATAAT 58.5 182 [9]

R. primer GTAACAATCGCACCRTTGGTT 56.8~59.3

probe dCy5.5-CACCAAGGTCGCTTTATGCTAGACCC 68.7

Internal control HBB F. primer GGCATAAAAGTCAGGGCAGAIIIIICTATTGCT 56.9 158 -

R. primer CCAACTTCATCCACGTTCACCIIIIICCACAGGG 59.0

probe eCy5-CCTGAGGAGAAGTCTGCCGTTACTGC 68.8

Probes were labeled with FAM, HEX, Texas red, Cy5.5, and Cy5 and detected at 520, 556, 616, 694, and 669 nm, respectively. All the probes were had BHQ as a

quencher at 3’ end.

Abbreviations: Tm, melting temperature; F. primer, forward primer; R. primer, reverse primer; probe, fluorescently labeled primer; R: A or G.

https://doi.org/10.1371/journal.pone.0253402.t001
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solution (Biosesang, Co., Seongnam, Korea) and vigorously vortexed for 10 s. Each sample was

divided into 200 μL for nucleic acid extraction. Nucleic acid samples were eluted with 100 μL

elution buffer and stored at −20˚C until use.

Multiplex real-time PCR

PCR procedures were carried out using the CFX96 instrument (Bio-Rad Laboratories, Inc.,

Irvine, CA, USA). RB4 mRT-PCR assays were performed in a total reaction volume of 20 μL,

comprising μL oligonucleotide mixture, 5 μL 4X PCR enzyme, and 5 μL of nucleic acid extract.

PCR was conducted with the following parameters: 95˚C for 15 min in the first step, followed

by 38 cycles of 95˚C for 10 s for denaturation and 60˚C for 60 s for annealing/extension. Test

runs were validated when positive controls for each amplification target were positive and neg-

ative controls (no template) were negative. The RB4 mRT-PCR assay is designed to detect K.

pneumoniae on FAM, P. aeruginosa on HEX, S. aureus on Texas red, and M. catarrhalis on the

Cy5.5 channel. To prevent false-negative results, the human hemoglobin subunit beta (HBB)

was simultaneously amplified and was the detected housekeeping gene used as an endogenous

internal control.

Analytical performance

The LOD was obtained from the positive control assessments for K. pneumoniae, P. aerugi-
nosa, S. aureus, and M. catarrhalis. Each control was serially diluted into 103, 5 × 102, 102,

5 × 101, 101, and 1 copies/reaction. LOD tests were performed 50 times for these concentra-

tions. Likewise, repeatability tests were determined 20 times for intra-assay coefficients of vari-

ation (CV): high for 103 copies/reaction, medium for 5 × 102 copies/reaction, low for 102

copies/reaction, and very low for 5 × 101 copies/reaction. Fifty strains of bacteria and 19 strains

of viruses were selected for reactivity tests.

Clinical LRT specimens

A total of 210 anonymized residual sputum specimens from patients presenting symptoms of

pneumonia were obtained and preserved for routine procedures between June and August

2018. All specimens were classified into two groups (positive or negative) with reference

assays. Samples were confirmed as positive if more than one result from reference assays were

positive.

Microbial identification

Well-mixed sputum specimens were cultured on blood and MacConkey agar plates. The plates

were incubated for 24 h at 37˚C. The colonies from culture plates were deposited on an assay

plate, and 1 μL 70% formic acid and 1 μL matrix solution were added. Thereafter, the plate was

analyzed using a Bruker Biotyper MALDI-TOF (Bruker, Bremen, Germany).

Sanger sequencing

In the event of a discrepancy between culture assays and PCR assays, Sanger sequencing was

performed as an additional confirmatory test in a different institute (Cosmogenetech, Co.,

Seoul, Korea). The results matched, and over 95% were regarded as references. Sequencing

data were analyzed using NCBI-BLAST.
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Statistical analysis

All statistical analyses were performed using SPSS version 26.0 (IBM, Co., NY, USA) for Win-

dows. The analytical Cohen’s kappa defined statistical significance only if P-values were�0.05.

The CVs were determined for mRT-PCR platforms using measurements obtained 20 times

from double runs and presented as means and standard deviations. The LOD of mRT-PCR

assays, the concentration of the sample detected as positive with 95% confidence, was esti-

mated to fit the probit regression model. For the diagnostic test, sensitivity, specificity, positive

predictive values (PPVs), and NPVs were used to compare each RB4 mRT-PCR assay to the

reference result and subsequently estimate the diagnostic accuracy of the pathogens.

Ethics statement

Ethical aspects for this study were reviewed and approved by the Seegene Medical Foundation

Institutional Review Board (approval number, SMF-IRB-2021-001), provided that after con-

ducting the original test, the remaining anonymous sputum specimens were used. All data

were fully anonymized administrative data without patient identifiers, and patient consent was

waived by the institutional review board.

Results

Design of the RB4 mRT-PCR assay

The four pathogens selected for the RB4 mRT-PCR assay, K. pneumoniae, P. aeruginosa,

S. aureus, and M. catarrhalis, are species with clinical significance and were detected at 1.3–

24.7%, 0–8%, 0.4–10.4%, 0.3–15%, respectively, from pneumonia patients [5]. yphG and regA
were selected for the detection of K. pneumoniae and P. aeruginosa, respectively, because they

have been evaluated with great sensitivity in the literature [16, 17]. A thermostable nuclease

gene, nuc, was selected to detect S. aureus, owing to its greater specificity [18]. A highly con-

served region of copB was selected for M. catarrhalis detection [9], and HBB was used as an

internal control (Table 1). All target genes were efficiently amplified, without inhibiting one

another, in the PCR (Fig 1).

Performance of analytical specificity

To confirm the specificity of the RB4 mRT-PCR assay, other bacterial and viral strains were

tested (Table 2). The coverage of the four strains was 100% for each assay target, and no cross-

reactivity was observed, indicating great specificity to all targets. The specificity against the 62

negative controls was 100%.

Fig 1. RB4 mRT-PCR assay performed using positive controls corresponding to Klebsiella pneumoniae,

Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella catarrhalis, and the internal control, respectively. The

data were analyzed from cycle 1 to 38.

https://doi.org/10.1371/journal.pone.0253402.g001
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Table 2. Sixty-nine isolates of global origin for analytical specificity of target pathogens.

Group organism Source FAM HEX Cal Red 610 Quasar 705

Bacteria Klebsiella pneumoniae ATCC 13883 + - - -

Klebsiella pneumoniae KCCM 42750 + - - -

Pseudomonas aeruginosa ATCC 27853 - + - -

Pseudomonas aeruginosa KCCM 11266 - + - -

Staphylococcus aureus ATCC 29213 - - + -

Staphylococcus aureus KCCM 32395 - - + -

Moraxella catarrhalis KCCM 42706 - - - +

Corynebacterium glucuronolyticum ATCC 51860 - - - -

Enterobacter aerogenes ATCC 13048 - - - -

Enterobacter aerogenes KCCM 12177 - - - -

Enterobacter cloacae ATCC 13047 - - - -

Enterococcus faecalis KCTC 5290 - - - -

Enterococcus faecalis KCCM 12117 - - - -

Enterococcus faecium KCTC 13225 - - - -

Haemophilus influenzae ATCC 9007 - - - -

Klebsiella ornithinolytica KCCM 41044 - - - -

Klebsiella oxytoca ATCC 13182 - - - -

Klebsiella planticola KCCM 11649 - - - -

Klebsiella quasipneumoniae sub ATCC 700603 - - - -

Lactobasillus crispatus ATCC 33820 - - - -

Lactobasillus gasseri ATCC 33323 - - - -

Lactobasillus jensenii ATCC 25258 - - - -

Moraxella atlantae KCCM 11242 - - - -

Moraxella osloensis KCTC 52865 - - - -

Plasmodium falciparum ATCC 30932 - - - -

Proteus mirabilis ATCC 29906 - - - -

Pseudomonas alcaligenes KCTC 12029 - - - -

Pseudomonas basaltis KCTC 22136 - - - -

Pseudomonas fluorescens KCTC 1767 - - - -

Pseudomonas putida KCTC 1642 - - - -

Pseudomonas taetrolens KCTC 12501 - - - -

Staphylococcus auricularis ATCC 33753 - - - -

Staphylococcus caprae KCTC 3583 - - - -

Staphylococcus epidermidis Clinical isolate - - - -

Staphylococcus gallinarum KCTC 3585 - - - -

Staphylococcus haemolyticus Clinical isolate - - - -

Staphylococcus pasteuri KCTC 13167 - - - -

Staphylococcus Saprophyticus KCTC 3345 - - - -

Streptococcus agalactiae ATCC 29213 - - - -

Streptococcus downei KCTC 5808 - - - -

Streptococcus gordonii KCTC 3671 - - - -

Streptococcus mitis ATCC 29213 - - - -

Streptococcus mutans KCTC 5365 - - - -

Streptococcus oralis KCTC 5672 - - - -

Streptococcus parasanguinis ATCC15912 - - - -

Streptococcus pneumoniae ATCC 49619 - - - -

Streptococcus pyogenes KCTC 19615 - - - -

Streptococcus sanguinis KCTC 3284 - - - -

Streptococcus pneumoniae KCCM 40410 - - - -

Haemophilus influenzae KCCM 42099 - - - -

(Continued)
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Determination of analytical sensitivity

Analytical sensitivity and LOD were estimated with 50 replicates of positive control bacteria at

six different concentrations, from 1 to 103 copies/reaction (Table 3). The levels of 95% LOD

were obtained using probit analysis: 143.88 copies/reactions for K. pneumoniae, 212.32 copies/

reactions for P. aeruginosa, 166.72 copies/reactions for S. aureus, and 73.11 copies/reactions

for M. catarrhalis. The RB4 mRT-PCR assay exhibited 100% reproducibility for all target bac-

teria as low as 5 × 102 copies/reaction, except for M. catarrhalis, where the assays were approxi-

mately five times more sensitive. The LOD was approximately 10–102 copies/reaction,

depending on the targets.

Determination of analytical repeatability

Repeatability was measured by comparing bacterial loads of 100 replicates using the RB4

mRT-PCR assay: 20 positive controls at four different concentrations, high (103 copies/reac-

tion), medium (5 × 102 copies/reaction), low (102 copies/reaction), and very low (5 × 101 cop-

ies/reaction), and 20 negative controls (Table 4). The number of positive tests for four target

pathogens, out of total 80 replicates, were 80 (100%) at high, 80 (100%) at medium, 61 (76.3%)

at low, and 25 (31.3%) at very low concentrations. The best repeatability was obtained from M.

catarrhalis detection; 77 replicates were quantified as positive in all tested concentrations,

resulting in a 96.3% repeatability. The repeatability values for K. pneumoniae, P. aeruginosa,

Table 2. (Continued)

Group organism Source FAM HEX Cal Red 610 Quasar 705

Virus BK virus ATCC VR837 - - - -

Coxasackie virus B3 ATCC VR30 - - - -

Dengue virus type 2 ATCC VR1584 - - - -

Dengue virus type 4 ATCC VR1254CAF - - - -

Herpes virus type 2 ACTT VR734 - - - -

Human Adenovirus type 18 ATCC VR1095 - - - -

Human Adenovirus type 40 ATCC VR931 - - - -

Human Adenovirus type 8 ATCC VR1368 - - - -

Human coronavirus OC43 ATCC VR1558 - - - -

Human Parainfluenzavirus ATCC VR1380 - - - -

Human Respiratory syncytial virus

A

ATCC VR41 - - - -

Influenza A H1N1 KBPV VR33 - - - -

Influenza A H1N1 ATCC VR219 - - - -

Influenza A H1N1 ATCC VR897 - - - -

Influenza A H1N1 ATCC VR1683 - - - -

Influenza A H3N2 ATCC VR547 - - - -

Influenza A H3N2 ATCC VR822 - - - -

Influenza A H3N2 ATCC VR810 - - - -

Influenza A H3N2 ATCC VR544 - - - -

RB4 mRT-PCR assays were performed using 69 strains from public centers corresponding to target species. The

clinical isolates were identified by MALDI-TOF at the Department of Laboratory medicine in SGMF

Abbreviations: ATCC, American Type Culture Collection; KCTC, Korean Collection for Type Cultures; KCCM,

Korean Culture Center of Microorganisms; KBPV, Korea Bank for Pathogenic Viruses; SGMF, Seegene Medical

Foundation.

https://doi.org/10.1371/journal.pone.0253402.t002
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and S. aureus were 81.3% (65/80), 62.5% (50/80), and 67.5% (54/80), respectively. Overall, the

results indicated that the RB4 mRT-PCR assay accurately quantifies the target bacterial load

from positive controls at a concentration as low as 5 × 102 copies/reaction.

Performance evaluation in clinical specimens

In the clinical test of 210 specimens, 73 and 137 sputum specimens obtained from pneumonia

patients were negative and positive in reference assays, respectively. The sensitivity and NPVs

of the RB4 mRT-PCR assay, compared to reference assays, were 100% for all target pathogens,

and the specificity was 92.36% to K. pneumoniae, 85.71% to P. aeruginosa, 96.13% to S. aureus,
and 98.96% to M. catarrhalis. PPVs were 85.71% for K. pneumoniae, 77.78% for P. aeruginosa,

90.16% for S. aureus, and 90.00% for M. catarrhalis (Table 5). Together, the RB4 mRT-PCR

assay, compared to other standard methods, showed a better performance in clinical samples.

Discussion

Clinical specimens from pneumonia patients frequently contain coinfections, and mRT-PCR

has an advantage to simultaneously diagnose pathogens in a rapid and accurate manner [19,

20]. In this study, we developed and evaluated the RB4 mRT-PCR assay for simultaneous

detection of four different bacterial pathogens causing pneumonia, including K. pneumonia, P.

Table 3. Evaluation of detection limit of target pathogens.

Pathogen DNA Conc. (Copies/rxn) Reactions Positive Positive rate (%) LOD 95% level (Copies/rxn)

K. pneumoniae 1 × 103 50 50 100 143.88

5 × 102 50 50 100

1 × 102 50 45 90

5 × 101 50 16 32

1 × 101 50 0 0

1 50 0 0

P. aeruginosa 1 × 103 50 50 100 212.32

5 × 102 50 50 100

1 × 102 50 25 50

5 × 101 50 0 0

1 × 101 50 0 0

1 50 0 0

S. aureus 1 × 103 50 50 100 166.72

5 × 102 50 50 100

1 × 102 50 34 68

5 × 101 50 3 6

1 × 101 50 0 0

1 50 0 0

M. catarrhalis 1 × 103 50 50 100 73.11

5 × 102 50 50 100

1 × 102 50 50 100

5 × 101 50 42 84

1 × 101 50 11 22

1 50 0 0

RB4 mRT-PCR reactions performed using serially diluted positive controls. The LOD 95% data were calculated using the probit model.

Abbreviations: Conc., concentration; rxn, reaction; LOD, limit of detection.

https://doi.org/10.1371/journal.pone.0253402.t003
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Table 4. Evaluation of detection repeatability of pathogens using mRT-PCR.

Pathogen Conc. Reactions Positive Mean ± SD CV (%)

K. pneumoniae High 20 20 32.78 ± 0.22 0.67

Medium 20 20 33.77 ± 0.32 0.95

Low 20 18 36.35 ± 0.69 0.66

Very low 20 7 37.48 ± 0.30 0.29

negative 20 0 - -

P. aeruginosa High 20 20 34.00 ± 0.19 0.56

Medium 20 20 35.48 ± 0.48 1.36

Low 20 10 37.68 ± 0.21 0.57

Very low 20 0 - -

negative 20 0 - -

S. aureus High 20 20 34.05 ± 0.20 0.59

Medium 20 20 35.01 ± 0.21 0.60

Low 20 13 37.37 ± 0.33 0.87

Very low 20 1 37.56 -

negative 20 0 - -

M. catarrhalis High 20 20 32.04 ± 0.16 0.50

Medium 20 20 32.99 ± 0.23 0.70

Low 20 20 35.22 ± 0.43 1.22

Very low 20 17 36.74 ± 0.63 1.71

negative 20 0 - -

RB4 mRT-PCR reactions performed using positive controls in the amount of 103, 5 × 102, 102, and 5 × 101 copies/reaction corresponding to high, medium, low, and

very low concentrations, respectively.

Abbreviations: Conc., concentration; SD, standard deviation; CV, coefficient of variation

https://doi.org/10.1371/journal.pone.0253402.t004

Table 5. Comparison of two platforms for the clinical qualification of target pathogens.

Pathogen RB4 mRT-PCR Reference assays Kappa Value p Sen Spe PPV NPV DA

Positive Negative Total

K. pneumoniae Positive 66 11 77 0.884 <0.001 100 92.36 85.71 100 94.76

Negative 0 133 133

Total 66 144 210

P. aeruginosa Positive 70 20 90 0.800 <0.001 100 85.71 77.78 100 90.48

Negative 0 120 120

Total 70 140 210

S. aureus Positive 55 6 61 0.929 <0.001 100 96.13 90.16 100 97.14

Negative 0 149 149

Total 55 155 210

M. catarrhalis Positive 18 2 20 0.942 <0.001 100 98.96 90.00 100 99.05

Negative 0 190 190

Total 18 192 210

Analysis of Kappa value, p-value, sensitivity, specificity, positive predictive value, negative predictive value, diagnostic accuracy assessed using the RB4 mRT-PCR assay

and reference assay in different target pathogens.

Abbreviations: Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value; DA, diagnostic accuracy.

https://doi.org/10.1371/journal.pone.0253402.t005
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aeruginosa, S. aureus, and M. catarrhalis. The performance of the RB4 mRT-PCR assay had

analytical specificity for the four pathogens. The consistency of reference assays was>0.80

(kappa value, P < 0.001), and the clinical performance presented 100% reliability for all target

pathogens (Table 5).

Sputum specimen retrieval is better accepted by patients for the diagnosis of LRTIs because

sputum can be obtained easily and noninvasively [21]. Therefore, the RB4 mRT-PCR assay has

been validated for use on sputum specimens rather than nasopharyngeal swabs or aspirates.

Moreover, sputum specimens contain housekeeping genes that are stably preserved in human

cells and can serve as internal controls [22]. The housekeeping gene HBB was used to ensure

proper sampling and adequate target amplification for internal quality [23]. Although micros-

copy can determine sputum quality based on the number of polymorphonuclear leukocytes

(�10) and squamous epithelial cells (<25) [24], the use of HBB as an internal control correctly

determines the quality of the specimen, procedure of nucleic acid extraction, and presence of

PCR inhibition [25, 26].

The advantage of the RB4 mRT-PCR assay is its effectiveness on both reference materials

and clinical specimens and its correct determination of all positive and negative strains

(Table 2). Moreover, 10 (six single and four mixed infections) of the 73 (13.7%) negative speci-

mens and 118 of the 137 (86.1%) positive specimens were matched, whereas RB4 mRT-PCR

assays detected an additional 19 bacterial infections from reference-positive samples: 15

(78.9%) single infections and four (21.1%) mixed infections (S1 Table). The RB4 mRT-PCR

assay procedure includes automated sample processing and internal specimen quality check,

and it can report results within 4 h of specimen receipt on a standard mRT-PCR platform.

There are several noteworthy points in this study. (1) This assay lacks quantitative molecu-

lar levels and correlation between Ct values and colony-forming units of bacterial pathogens

for LRTI diagnosis; however, it showed stable Ct values with 0.29–1.71% CV (Table 4) [9, 27].

These results indicated that the RB4 mRT-PCR platform is more sensitive than reference

assays, even at low copy numbers (Table 3). (2) The assay results were validated with sputum

specimens and not with other LRTI specimens, such as endotracheal aspirate and bronchoal-

veolar lavage [28]. There is a need to improve the efficiency of the mRT-PCR assay and

develop test kits compatible with a broad range of LRTI specimens.

The RB4 mRT-PCR assay can potentially serve as an improved decision-making tool during

LRTI treatment. Faster and more accurate diagnosis of pathogens would promote the use of nar-

row- over broad-spectrum antibiotics and substantially reduce the inappropriate use of antibiotics.

Supporting information

S1 Table. Comparison of discordant samples between reference assays and the RB4

mRT-PCR assays. The RB4 mRT-PCR assays detected an additional 19 bacterial infections

from reference-positive assays.

(PDF)
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