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Abstract

The effects of visual spatial attention on neuronal firing rates have been well characterized for neurons throughout the
visual processing hierarchy. Interestingly, the mechanisms by which attention generates more or fewer spikes in response to
a visual stimulus remain unknown. One possibility is that attention boosts the likelihood that synaptic inputs to a neuron
result in spikes. We performed a novel analysis to measure local field potentials (LFPs) just prior to spikes, or reverse
spike-triggered LFP “wavelets,” for neurons recorded in primary visual cortex (V1) of monkeys performing a contrast change
detection task requiring covert shifts in visual spatial attention. We used dimensionality reduction to define LFP wavelet
shapes with single numerical values, and we found that LFP wavelet shape changes correlated with changes in neuronal
firing rate. We then tested whether a simple classifier could predict monkeys’ focus of attention from LFP wavelet shape. LFP
wavelet shapes sampled in discrete windows were predictive of the locus of attention for some neuronal types. These
findings suggest that LFP wavelets are a useful proxy for local network activity influencing spike generation, and changes in
LFP wavelet shape are predictive of the focus of attention.
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Introduction
The effects of attention on the activity of neurons in the visual
cortex have been the subject of much study; however, the neu-
ronal mechanisms that give rise to various attention effects are
poorly understood. Perhaps the most straightforward effect of
attention is the alteration of neuronal firing rates when subjects
attend to visual stimuli overlapping recorded neuronal receptive
fields (Moran and Desimone 1985; Motter 1993; Luck et al. 1997).
Both facilitation and suppression of neuronal firing rates with
attention have been observed (Moran and Desimone 1985; Motter
1993; Luck et al. 1997; Hembrook-Short et al. 2017). We and
others have proposed that attentional modulation of neuronal
firing rate, whether facilitating or suppressing, depends on the
match between neuronal feature selectivity and the features
attended in the task (Treue and Martinez-Trujillo 1999; Hem-
brook-Short et al. 2017). Others have proposed that normalization
models explain attentional modulation of neuronal firing rates
based on the idea that facilitating attention effectively increases
visual stimulus drive, akin to enhancing the contrast of the
stimulus (Carrasco et al. 2004; Reynolds and Heeger 2009). All of
these proposals are feasible, but none provide an explanation for
how attention produces more or fewer spikes in response to a
visual stimulus. In other words, the mechanism by which atten-
tion alters the biophysics of neurons and/or network properties
responsible for generating spikes is still unknown.

An important caveat to most studies of attentional modula-
tion of neuronal activity is that neuronal responses are usually
averaged over long timescales. For example, attentional mod-
ulation of neuronal firing rate is usually computed over hun-
dreds of milliseconds to several seconds. Computing attentional
modulation of neuronal activity over long timescales is incon-
sistent with evidence suggesting that effects of attention are
not constant over these long timescales (Fiebelkorn et al. 2018;
Mock et al. 2018). Behavioral and neurophysiological evidence
suggests that attention should ramp up as the relevant stimulus
change approaches (Ghose and Maunsell 2002). More recent work
suggests that attention can wax and wane, even over the course
of a single trial lasting a few seconds (Cohen and Maunsell
2011). Unfortunately, there is little data on when attention effects
become apparent in individual neurons or whether attention
effects appear at different time points within a trial for differ-
ent neuronal types. Increasing evidence suggests that attention
differentially regulates neurons in different cortical layers and
belonging to diverse neuronal subclasses (Mitchell et al. 2007;
Gregoriou et al. 2012; Snyder et al. 2016; Nandy et al. 2017). Thus,
understanding how attention alters neuronal spike generation
across neurons located in different cortical layers and belonging
to different neuronal classes is necessary for a thorough under-
standing of the neuronal mechanisms of attention.

Some insight into a possible mechanism for producing more
spikes with attention comes from studies of attentional modu-
lation of synaptic efficacy among connected pairs of neurons. In
both geniculocortical circuits and local circuits within primary
visual cortex (V1), attention significantly enhances the likeli-
hood that a presynaptic input gives rise to a postsynaptic spike
(Briggs et al. 2013; Hembrook-Short et al. 2019). Although atten-
tion enhances synaptic efficacy for most connected pairs, local
V1 circuits transmitting task-relevant feature information are
enhanced more than those transmitting task-irrelevant signals
(Hembrook-Short et al. 2019). Together, these findings suggest
that attention could generate a greater number of spikes in
response to a visual stimulus by boosting the efficacy of synapses
among circuits conveying task-relevant information. Although

the results of these studies were remarkably consistent across
connected pairs of neurons, sample sizes of connected pairs of
neurons were low due to the inherent challenges of such experi-
ments. Additionally, in order to fully understand the mechanism
by which attention alters spike probability in response to a visual
stimulus, all of the synaptic inputs onto a single neuron would
need to be sampled, posing a significant technical challenge.

In this study, we sought to determine whether local field
potentials (LFPs) occurring just prior to spikes and recorded on
the same electrode contacts as neuronal spikes could provide
information about the local network activity influencing neu-
ronal spike generation. We asked whether the shape of reverse
spike-triggered LFPs could predict whether and when attention
modulated neuronal spiking. LFPs do not provide the resolution
or specificity of intracellular recordings of synaptic inputs to a
single neuron. However, because LFPs are thought to reflect both
sub- and suprathreshold activities among neurons within hun-
dreds of microns of the recording electrode (Katzner et al. 2009;
Buzsaki et al. 2012), it is possible that LFPs include components
of local network activity, including synaptic inputs onto neurons
within the vicinity of the recording electrode. We devised a novel
analysis to capture LFPs just prior to spikes, or reverse spike-
triggered LFP “wavelets,” for neurons recorded in V1 of monkeys
performing a contrast change detection task requiring covert
shifts in visual spatial attention. LFP wavelets were dominated by
low-frequency fluctuations, and power spectra generated from
LFP wavelets showed prominent peaks around 2–3 Hz. In spite
of this common feature, LFP wavelet shapes varied across neu-
rons, but also varied within neurons depending on when their
associated spikes occurred during a trial. We performed dimen-
sionality reduction to quantify LFP wavelet shape and measure
changes in shape over time and across attention conditions. We
confirmed that LFP wavelet shape changes tracked with changes
in neuronal firing rate for many neurons in our sample. We
then employed a simple classifier to predict monkeys’ focus
of attention from LFP wavelet shape averaged over the full 1-
s analysis window and from LFP wavelet shape sampled in
smaller analysis windows corresponding to different time points
in the trial. LFP wavelet shapes sampled in smaller windows
were predictive of the locus of attention for some neuronal types.
These results suggest that LFP wavelets can serve as a useful
proxy for local network activity influencing spike generation.
Furthermore, changes in LFP wavelet shape measured at discrete
time points were predictive of the focus of attention. Results were
also consistent with prior findings showing differential effects
of attention among distinct V1 neuronal types (Hembrook-Short
et al. 2017).

Materials and Methods
The data analyzed for this study were collected as a part of
previous studies of attentional modulation of single neurons and
local field potentials (LFPs) recorded across the cortical layers of
primary visual cortex or V1 (Hembrook-Short et al. 2017; Mock
et al. 2018; Hembrook-Short et al. 2019; Mock et al. 2019).

Data were collected from 3 monkeys performing a contrast-
change detection task requiring shifts in covert visual spatial
attention (Hembrook-Short et al. 2017; Mock et al. 2018; Hem-
brook-Short et al. 2019; Mock et al. 2019). Data from 80 sessions in
which monkeys completed at least 1 block of ∼ 30 trials per atten-
tion condition were used for this study. Attention conditions
included attend-toward trials in which monkeys attended toward
the visual stimulus overlapping the receptive fields of recorded
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neurons and attend-away trials in which monkeys attended to
an identical stimulus placed equal-distant from the fixation dot
and outside the receptive fields of recorded neurons, but within
the same hemifield. Of the 80 sessions analyzed, 13 were from
Monkey B, 6 were from Monkey O, and 61 were from Monkey
E. Sessions from Monkeys B and O involved recordings with
single electrodes while those from Monkey E involved recordings
with multielectrode arrays. Behavioral performance, reported
previously (Hembrook-Short et al. 2017; Mock et al. 2018; Mock
et al. 2019), indicated that all 3 monkeys appropriately shifted
their focus of covert visual spatial attention according to the
fixation dot color cue during these recording sessions.

Single electrodes or multi-electrode arrays were used to
record from V1 neurons spanning the cortical layers while
monkeys performed the attention task. Single-unit spikes were
sorted using the same methods and criteria described previously
(Hembrook-Short et al. 2017), or through the following steps: 1)
raw voltage signals were filtered with a high cutoff of 8000 Hz
using a Bessel filter to generate “wideband” signals, 2) wideband
signals were high-pass filtered at 250 Hz using a Butterworth
filter to remove low-frequency oscillations, and 3) a threshold
set at two times the standard deviation of the mean high-
pass filtered wideband signal was used to identify spikes
as threshold crossings. Spikes with short interspike-interval
violations were removed for spike trains sorted manually and
those identified with the threshold crossing method. Just under
2 well isolated neurons were recorded on average per session
in which single electrodes were used (Monkeys B and O) and
about 6 well isolated neurons were recorded on average during
multielectrode recording sessions (Monkey E). Only neurons with
at least 100 total spikes across trials of each attention condition
were included in these analyses. LFP data were also recorded
during all sessions as continuous raw voltage data low-pass
filtered at 200 Hz using a Bessel filter and downsampled to
1000 Hz. Spiking and LFP data were analyzed from correctly
completed trials of the attention task only. For each trial,
spikes and LFPs measured during the last 4 complete grating
cycles of the visual stimulus prior to the contrast change were
analyzed. Because gratings always drifted at 4 Hz, this analysis
window had a duration of 1-s per trial (defined as the full
analysis window). Laminar compartment locations of recorded
neurons were determined by relative depth of the recording
contact/electrode compared to thalamocortical recipient layers,
as described previously (Hembrook-Short et al. 2017; Mock et al.
2018; Mock et al. 2019). Neurons were classified as simple or
complex cells by computing the f1 to f0 ratio (Skottun et al.
1991) from grating responses measured during attend-away
trials.

A set of “LFP wavelets” was computed for each individual
neuron as reverse spike-triggered LFPs from spikes recorded on
the same contact/electrode. First, LFPs measured during each
trial were detrended and then z-scored (Mock et al. 2018). Next,
for each spike timestamp, the LFP from 100 msec prior to the
spike timestamp through 5 msec following the spike timestamp
was extracted to create each LFP wavelet per spike. Then, LFP
wavelets were separated by attention condition. Finally, neurons
and their LFP wavelets were grouped according to each neurons’
laminar compartment location in the supragranular (SG), gran-
ular (G), or infragranular (IG) layers, and by their classification
as a simple or complex cell. This grouping yielded 6 classes of
neurons/LFP wavelets: SG simple (83 total, 2 from Monkey B, 1
from Monkey O, 80 from Monkey E); SG complex (65 total, 3 from
Monkey B, 1 from Monkey O, 61 from Monkey E); G simple (99
total, 5 from Monkey B, 2 from Monkey O, 92 from Monkey E);

G complex (49 total, 4 from Monkey B, 2 from Monkey O, 43 from
Monkey E); IG simple (83 total, 3 from Monkey B, 1 from Monkey
O, 79 from Monkey E); and IG complex (47 total, 6 from Monkey B,
3 from Monkey O, 38 from Monkey E). A small number of neurons
(8; not included in the totals above) were excluded because
subsequent LFP wavelet analyses generated infinite maximum
or minimum values. LFP wavelets varied in shape, but this varia-
tion was not different across monkeys: average PC1 scores (see
below) were not different across monkeys for neurons in any
laminar compartment (P > 0.36), and the standard deviations in
LFP wavelet shape were not different across monkeys for neurons
in any laminar compartment (P > 0.08). Accordingly, data from
all monkeys were combined. Example average LFP wavelets from
attend-toward and attend-away trials for two V1 neurons from
different monkeys are illustrated in Figure 1A, leftmost panels.

Power spectra were computed for individual LFP wavelets
using Welch’s method with a Hamming window of 106 msec and
a sampling frequency of 1000 Hz. Power spectra were separated
by attention condition and then averaged per attention condition
per neuron. Power spectra per attention condition were then
averaged across neurons of the same type and laminar compart-
ment location.

In order to compute a single value representing the shape
of each spike-triggered LFP wavelet, we performed dimension-
ality reduction on LFP wavelets per neuron using a principal
components analysis (PCA). We calculated the first principal
component (PC1) and second principal component (PC2) scores
for each LFP wavelet. These PC scores provided single numerical
representations of the position of each LFP wavelet in the high-
dimensional PC space representing LFP wavelet shape. We per-
formed parallel analyses using PC1 and PC2, and we found that
PC1 captured more variance in LFP wavelet shape per neuron.
Changes in PC2 score over time were more consistent with
luminance modulations in the visual stimulus than with atten-
tional modulation (Fig. 1B, dashed lines). We therefore used PC1
for all subsequent analyses. To examine possible changes in
LFP wavelet shape over time, that is, depending on when their
associated spikes occurred during a trial, we first converted all
spike timestamps per neuron into spike times relative to the start
of each 1-s full analysis window. We then sorted PC1 scores for
each LFP wavelet according to their associated spike timestamp
within the 1-s full analysis window. This process generated
time-varying PC1 scores across a single 1-s window represent-
ing a single idealized or aggregate attention trial. Time-varying
PC1 scores corresponding to a single, idealized attention trial
were computed separately for LFP wavelets occurring on attend-
toward and attend-away trials, for each neuron. Examples of
time-varying PC1 scores for two representative neurons are illus-
trated in Figure 1A, second and fourth from left. Additional time-
varying PC1 and PC2 score curves for 12 neurons are illustrated
in Figure 1B along with LFP wavelets extracted from specific time
points of the idealized single trial. Time-varying PC1 scores were
smoothed using a local regression with weighted linear least
squares and a second-degree polynomial model. For illustrative
purposes only, smoothed, time-varying PC1 score curves were
decimated (25-msec bins) and averaged across neurons of the
same type and laminar compartment location (Fig. 3A). For a
separate analysis, time-varying PC1 scores were fit with spline
functions and a difference across attention conditions was com-
puted per neuron as the attend-toward curve minus the attend-
away curve. These difference curves are plotted for all neurons in
Figure 3B, along with the average of the envelopes of each curve,
again separated by neuronal type and laminar compartment
location.
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Figure 1. Example of LFP wavelets and time-varying PC scores. A. Top: schematic screen shots of the contrast change detection task. Red fixation dot color cued monkeys

to attend to the drifting sinusoidal grating inside the receptive field of recorded neurons (dashed circle, not shown in actual task) to detect a change in grating contrast.

Bottom: example LFP wavelets for a complex cell (left) and a simple cell (right) both recorded in the granular (G) laminar compartment. Left: curves are average LFP

wavelets on attend-toward (red) and attend-away (blue) trials (shading illustrates SEMs). Right: time-varying PC1 scores where dots represent individual LFP wavelet PC1

scores and lines illustrate smoothed time-varying PC1 scores over the duration of an idealized single trial. PC1 scores expressed in arbitrary units. Note neuronal spikes

(arrowheads, at time = zero) visible in average LFP wavelets. B. Smoothed time-varying PC1 (solid lines) and PC2 (dashed lines) scores for 12 representative neurons with

neuronal type and laminar compartment location listed at right (supragranular [SG], granular [G], infragranular [IG]). Shown with each example are 4 individual LFP

wavelets (insets) corresponding to specific times during the single idealized trial, delineated by vertical black lines. LFP wavelet scale bar (top left) corresponds to 0.1 mV

and 100 msec and applies to all LFP wavelet insets. Red and blue curves illustrate attend-toward and attend-away trial data, respectively. Gray shading at bottom of each

plot illustrates the windows over which the classifier correctly distinguished the locus of attention for each neuronal type (Fig. 5).

To test whether PC1 scores correlated with changes in neu-
ronal firing rates, we compared the PC1 score per LFP wavelet
with the firing rate in a 100-msec bin preceding each spike and
we repeated this for all spikes per neuron. We then computed the
correlation between PC1 score and firing rate for each neuron
and extracted R2, slope, and P values for linear regression fits.
We performed this PC1 versus firing rate correlation analysis
separately for spikes on attend-toward and attend-away trials
per neuron. Figure 4 illustrates the slopes and R2 values for

neurons of each type and laminar compartment, as well as the
number of neurons per type for which there was a significant
correlation between PC1 score and firing rate in at least one
attention condition.

To examine whether LFP wavelets provide information about
the locus of attention, we used a simple linear classifier to
test whether variations in LFP wavelets for neurons of each
type could predict the monkeys’ focus of attention. We per-
formed two separate classification analyses, described below.
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Figure 2. LFP wavelet power spectra. Average power spectra for LFP wavelets from neurons of the same type (labeled at top of each column) and laminar compartment

location (labeled at right). Red and blue curves correspond to average power spectra for LFP wavelets recorded during attend-toward and attend-away trials, respectively.

Shading illustrates SEMs. Note break in x-axis and different y-axis scales left and right in order to show the large peaks corresponding to low frequencies and much

smaller peaks at alpha (∼10 Hz) and beta (∼20 Hz) band frequencies.

We evaluated each classification using a receiver operator char-
acteristic (ROC) approach, computing the area under the curve
(AUC) for each ROC curve following the assumption that larger
ROC AUCs represent better classification of the correct attention
trial type (attend-toward or attend-away). For statistical compar-
isons, we compared ROC curves and AUCs from real data to those
computed using shuffled data in which trial type (attend-toward
or attend-away) was randomly shuffled.

In the first classification analysis, we tested whether average
LFP wavelet shapes on attend-toward and attend-away trials
could predict the locus of attention. Average LFP wavelet shapes
were defined by their mean LFP wavelet PC1 scores averaged over
the full 1-s idealized single trial duration. Input to the classifier
was average PC1 scores for all neurons of the same type on
attend-toward and attend-away trials. Real and shuffled data
were resampled 10 times to provide 10 repeats, and average
ROC curves were computed from these repeats. Nonparametric
analysis of variance tests with P values corrected for multiple
comparisons was used to examine significant differences across
real versus shuffled data and across neuron types.

In the second classification analysis, we tested whether LFP
wavelet shapes sampled in 300-msec windows on attend-toward

and attend-away trials could predict the locus of attention. LFP
wavelet PC1 scores were sampled every 50-msec within 300-
msec windows (sliding the 300-msec window by 100 msec per
analysis, for 7 analysis windows across the 1-s trial). Input to
the classifier for each window analysis was 6 PC1 scores per
neuron for neurons of the same type on attend-toward and
attend-away trials. Real and shuffled data were resampled 10
times to provide 10 repeats and average ROC curves were com-
puted per window analysis. Nonparametric analysis of variance
tests with P values corrected for multiple comparisons was used
to examine significant differences across real versus shuffled
data for each window and neuron type. Separate significance
tests were applied to neuronal populations in each laminar
compartment.

For illustrative purposes, distributions of ROC AUC val-
ues from the second classification analysis (the windowing
approach) were created for each neuron type to provide a sec-
ondary illustration of significant and nonsignificant differences
between real and shuffled data for each neuronal type (Fig. 5B).
ROC AUC values from two windows were pooled to create each
distribution. For SG simple cells, G complex cells, and IG complex
cells, classification of attention trial type was significantly better
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Figure 3. Average time-varying PC1 score curves per neuronal type. A. Smoothed time-varying PC1 scores (arbitrary units) averaged across all neurons of the same type

and laminar compartment location (labeled as in Fig. 2) with data from attend-toward (red) and attend-away (blue) trials illustrated separately. Shading illustrates SEMs.

B. Colored curves are spline fits to differential time-varying PC1 scores (attend-toward curve minus attend-away curve, similar to red curves minus blue curves in A)

per neuron, illustrated separately for neurons of each type and laminar compartment location (labeled as in A). Black curves illustrate the average of the envelopes of

individual curves.

with real compared to shuffled data for two windows so ROC
AUC values from these two windows were pooled to produce the
real and shuffled data distributions. For the other 3 neuronal
populations, data from windows 1 and 6 were used to generate
real and shuffled ROC AUC value distributions.

Results
Attention modulates the firing rates of visual cortical neurons;
however, the mechanisms that give rise to attention-mediated
changes in neuronal spiking probabilities are not known. In order
to gain insight into mechanisms underlying neuronal spike rate
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Figure 4. PC1 scores versus neuronal firing rates across attention conditions. Slopes of linear regression fits for comparisons of LFP wavelet PC1 scores and neuronal

firing rates on attend-toward and attend-away trials, illustrated separately for neurons of each type and laminar compartment location (labeled as in Fig. 2; SG neurons

in green, G neurons in magenta, IG neurons in cyan). Circle size corresponds to the maximum R2 for the PC1 score versus firing rate fit. Red circles represent neurons

with significant correlations between PC1 scores and firing rates in at least one attention condition.

modulation, we pursued two study objectives. First, we sought
a measure of local network activity that could influence spike
generation in individual neurons. Second, we asked whether
attention alters this local network activity during certain time
points within attention task trials in order to adjust neuronal
spiking probabilities.

We specifically tested whether reverse spike-triggered local
field potentials (LFPs) might serve as a proxy for local network
activity influencing neuronal spike generation. Because LFPs
contain a mixture of sub- and supra-threshold activity from
nearby neurons (Katzner et al. 2009; Buzsaki et al. 2012),
LFPs occurring just prior to spikes could contain important

information about activity in the local network surrounding a
recorded neuron. We extracted reverse spike-triggered LFPs, or
LFP wavelets, for spikes from 426 well-isolated single neurons
recorded across the cortical layers in V1 of alert monkeys
performing a contrast change detection task requiring shifts
in covert visual spatial attention. Each LFP wavelet included the
LFP 100 msec prior to a spike through 5 msec following the spike.
LFP wavelets were always computed from LFPs recorded on the
same electrode contact that recorded the neuronal spike train.
LFP wavelets for neuronal spikes occurring on attend-toward
and attend-away trials of the task were analyzed separately.
We separated neurons and their associated LFP wavelets into
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distinct types based on neuronal simple or complex physiology
and supragranular (SG), granular (G), or infragranular (IG) laminar
compartment location. Our rationale for this classification was
2-fold. Hubel and Wiesel (1968) first classified V1 neurons as
simple or complex based on receptive field structure, and this
convention has remained a useful method for distinguishing
V1 neurons by thalamic input, receptive field structure, and
visual physiological response properties. Furthermore, simple
and complex cells are differentially distributed across the cortical
layers in V1 (Ringach et al. 2002) and the firing rates of simple
and complex cells in distinct cortical layers are also differentially
regulated by attention (Hembrook-Short et al. 2017). We elected
to use these relatively basic definitions of simple or complex and
laminar compartment location to group neurons/LFP wavelets so
that results could be directly compared to known physiological
and attentional differences across these neuronal types.

LFP wavelets were not flat lines but instead displayed
dynamic shapes that usually consisted of broad, that is, low-
frequency, deflections (Fig. 1). Indeed, average power spectra for
LFP wavelets displayed prominent peaks around 2–3 Hz with
much smaller amplitude minor peaks in the alpha and beta
frequency ranges (Fig. 2). While there were some differences
in the number and amplitude of minor peaks across LFP
wavelets from simple and complex neurons located in different
laminar compartments of V1, all LFP wavelet power spectra were
dominated by low-frequency peaks (Fig. 2). Even though LFP
wavelets were dominated by broad, low-frequency deflections,
LFP wavelet shapes varied across neurons, across attention
conditions, and depending on when their associated spikes
occurred within a trial. Figure 1A (first and third from left)
illustrates average LFP wavelets for 2 example neurons showing
variations in wavelet shape across attention conditions. In these
2 examples, the neuronal spike is visible in the average LFP
wavelet (Fig. 1A, arrowheads). Roughly, a third of the neurons
in the dataset had visible spikes at time = 0 of their associated
average LFP wavelets. Interestingly, LFP wavelets from the same
neuron also varied depending on the time the spike occurred
within the trial (Fig. 1B, insets). To quantify time-varying shape
changes among LFP wavelets, we performed PCA to define each
LFP wavelet’s shape with a single numerical value, the PC score.
We then aligned the PC scores for all wavelets per neuron to the
onset of each trial to generate a time-varying PC score curve
over the course of a single idealized attention trial (Fig. 1A,
second and fourth from left). This analysis was performed
separately on LFP wavelets from attend-toward and attend-
away trials (Fig. 1A, red and blue dots/curves, respectively).
Consistent with the fact that LFP wavelets from the same
neuron varied depending on the time of the spike within
the idealized trial (Fig. 1B, insets), PC scores quantifying LFP
wavelet shape were dynamic over the course of idealized single
trials (Fig. 1A and B). Interestingly, time-varying LFP wavelet
shape changes quantified by scores of the first or second
PCs yielded different patterns (Fig. 1B, solid vs. dashed lines).
While time-varying PC1 score curves displayed larger amplitude
and lower frequency fluctuations over the idealized trial, PC2
score curves often appeared to fluctuate near the frequency
of luminance modulations in the visual stimulus (drifting
sinusoidal gratings modulating at 4 or 8 Hz). For all neurons
in the sample, PC1 captured more variance in LFP wavelet shape
than PC2, so all subsequent analyses were performed using PC1
scores.

We next asked whether time-varying PC1 score curves
were similar across neurons of the same type and laminar
compartment location. Smoothed time-varying PC1 score curves
averaged for all neurons of the same type and laminar location

revealed some similarities among neurons of the same type
and some differences across neuronal types (Fig. 3A). While
some average time-varying PC1 curves were relatively flat (SG
complex, G simple), others displayed differences across attention
conditions for discrete windows within the idealized single trial.
To assess this further, we computed differential time-varying
PC1 score curves by subtracting spline fits for attend-away time-
varying PC1 scores from spline fits for attend-toward time-
varying PC1 scores per neuron (Fig. 3B). As in Figure 3A, some
of the average envelope curves (black thicker lines in Figure 3B)
appear qualitatively to be flat (SG complex, G simple, IG simple),
whereas the SG simple, G complex, and to a lesser extent IG
complex envelope curves appear more undulating. Together,
these results provided qualitative evidence that LFP wavelet
shape changes were more dynamic with greater potential
attentional modulation for some neuronal types (SG simple, G
complex, IG complex cells). We followed up these qualitative
measures with quantification of LFP wavelet shape changes
across neuronal types and attention conditions.

In order to quantify the utility of LFP wavelet shape as a pre-
dictor of neuronal activity and attention, we first compared LFP
wavelet PC1 scores with neuronal firing rates computed from the
same 100-msec time bins. If LFP wavelet shape tracks with neu-
ronal firing rate measured over the same time bin, LFP wavelet
shape would be a useful proxy for neuronal network activity
influencing spike generation. Another reason to study neuronal
activity in such small time bins is the following. While atten-
tional modulation of V1 neuronal firing rates averaged over long
(∼1 sec) analysis windows is weak (Motter 1993; Luck et al. 1997;
McAdams and Reid 2005; Yoshor et al. 2007; Hembrook-Short
et al. 2017), neuronal firing rates are not steady over long analysis
windows and instead display dynamics over shorter timescales
related to visual stimulation and attentional modulation (Hem-
brook-Short et al. 2017; Mock et al. 2018). When we compared
LFP wavelet PC1 scores with neuronal firing rates computed
from the same time bins, many neurons displayed correlations
between LFP wavelet PC1 scores and firing rates (Fig. 4). The
slopes of linear regression fits to PC1 score versus firing rate com-
parisons were relatively consistent across attend-toward and
attend-away trials (Fig. 4). This was especially true for neurons
with significant correlations between PC1 scores and firing rate
in at least one attention condition (red dots in Fig. 4). Between
2 and 22% of V1 neurons of each type demonstrated significant
correlations between PC1 scores and firing rates (Fig. 4; percent-
age of neurons with significant correlation: SG simple = 2%, G
simple = 20%, IG simple = 5%, SG complex = 18%, G complex = 22%,
IG complex = 14%). Furthermore, the trend whereby complex cells
and G simple cells had larger proportions of neurons with sig-
nificant PC1 score versus firing rate correlations is reminis-
cent of the finding that these neuronal types displayed greater
attentional facilitation of firing rate (McAdams and Reid 2005;
Hembrook-Short et al. 2017). It is also interesting to note that a
larger proportion of V1 neurons displayed a significant correla-
tion between PC1 score and firing rate than typically show indi-
vidually significant attentional modulation of firing rate, which
is usually around 10% of recorded neurons (Motter 1993; Luck
et al. 1997; Hembrook-Short et al. 2017). Together these findings
suggested 2 things: 1) LFP wavelet shape is a good approximation
for local network activity influencing spike generation as many
V1 neurons demonstrated significant correlations between PC1
score and firing rate, and 2) while PC1 score versus firing rate
correlation appeared independent of attention condition, the
neuronal types with greater numbers of significant correlations
were also those that demonstrated larger attentional modulation
of firing rate.
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Figure 5. Linear classifier predicts focus of attention for select neuronal types and trial windows. A. ROC curves computed from LFP wavelet PC1 scores of all SG simple

cells (green), G complex cells (magenta), and IG complex cells (cyan) sampled from earlier (dotted) and later (solid) trial windows (labeled in legend as win 1, etc. with

msec ranges listed in Table 1) for which measured ROC AUCs were significantly greater than shuffled ROC AUCs (gray-shaded region illustrates outline of all window

shuffled curves; see Table 1 for ROC AUC values). ROC curves computed from LFP wavelet PC1 scores averaged across full trials for each neuronal type and laminar

compartment are illustrated in yellow with full trial shuffled curves indicated by yellow shading. Dashed cyan curve illustrates the ROC curve for IG complex PC1 scores

averaged across full trials: these data were not different from shuffled data, but this curve was different from the SG simple full trial curve. B. Distributions of ROC AUCs

for SG (green), G (magenta), and IG (cyan) simple (left column) and complex (right column) cells with shuffled data illustrated in gray. Color-coded dashed lines illustrate

distribution means. Only windowed data are illustrated; data from earlier and later trial windows are pooled together in each distribution (shuffled data were computed

from the same 2 trial windows per neuron type). Significant differences between real and shuffled ROC AUCs, indicated by asterisks, were observed for SG simple, G

complex, and IG complex cells (see Table 1 for statistics per window).

To further quantify possible attention-mediated differences
in LFP wavelet shape over a trial, we used a simple linear classi-
fier to test whether LFP wavelet shape was predictive of monkeys’
locus of attention. We performed 2 separate classifications of
attention trial type using PC1 scores for neurons of the same
type and evaluated each classification using an ROC approach.
In the first classification analysis, we tested whether average LFP
wavelet shape, computed as the mean LFP wavelet PC1 score over
the full idealized single trial analysis window per neuron, could
predict the locus of attention, that is, whether a given trial was an
attend-toward or attend-away trial. We performed this classifi-
cation for each neuronal type and compared ROC AUC values for
real and shuffled data. There were no differences in ROC AUC val-
ues between real and shuffled data for any neuronal type for PC1
scores averaged over the full analysis window (P = 0.0117, non-
significant after multiple comparisons correction; average ROC
AUC across all neurons: real = 0.55 ± 0.02, shuffled = 0.54 ± 0.01).
Average ROC curves computed from average full trial PC1 scores
for each neuronal type are illustrated with yellow curves in
Figure 5A along with the corresponding shuffled ROC curves
(yellow shading). The trend toward significance across the pop-
ulation was driven by one difference across neuronal types that
was significant in a two-way comparison: ROC AUC values for IG
complex cells were greater than ROC AUC values for SG simple
cells (P = 0.0012; Fig. 5A, IG complex cell curve illustrated in
dashed cyan). These results are consistent with prior findings
of minimal attentional modulation of individual V1 neurons
based on average firing rate computed over long analysis win-

dows (Motter 1993; Luck et al. 1997; McAdams and Reid 2005,
Hembrook-Short et al. 2017).

The second classification analysis also tested whether LFP
wavelet shape could predict the locus of attention, but this time
LFP wavelet shape was quantified from smaller windows within
the trial. Specifically, we tested whether binned LFP wavelet PC1
scores within sliding 300-msec windows could predict the locus
of attention. We selected a window size of 300 msec because
behavioral and physiological evidence suggests that attention
fluctuates on this timescale (Fiebelkorn and Kastner 2019), and
we previously observed dynamic communication of attention
between V1 and the thalamus over the same timescale (Mock
et al. 2018). Again, we performed this analysis for each neuronal
type and compared ROC AUC values for real and shuffled data.
We observed significant differences between real and shuffled
ROC AUC values for SG simple, G complex, and IG complex
neurons for early and late trial windows (Fig. 5A, green, magenta,
and cyan dotted and solid lines, shuffled curves outlined in gray;
statistics listed in Table 1). Interestingly, these neuronal types
had the most undulating envelope curves in Figure 3 and average
time-varying PC1 score curves showed attentional deviations in
similar windows for which attention trial type could be classified
from LFP wavelet shape (Fig. 1B). Distributions of real and shuf-
fled ROC AUC values for neurons of each type (Fig. 5B) further
illustrate the ability of the classifier to correctly discriminate
attention trial type based on LFP wavelet shape for SG simple
(green), C complex (magenta), and IG complex (cyan) neurons, but
not for the other 3 neuronal types.
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Discussion
Although the effects of attention on neuronal spiking activity in
the visual cortex have been well described, the mechanism by
which more or fewer spikes are produced as a result of directed
attention is not known. Prior work demonstrated that attention
increases the likelihood that a presynaptic input generates a
postsynaptic spike among connected pairs of neurons (Briggs
et al. 2013; Hembrook-Short et al. 2019). These findings sug-
gest that attention could adjust local network activity, specifi-
cally synaptic inputs onto individual neurons, to modulate spike
generation. While measuring synaptic inputs onto individual
neurons in behaving monkeys poses a significant technolog-
ical challenge, we theorized it may be possible to infer local
network activity from LFPs recorded on the same electrode as
neuronal spikes. We performed a novel analysis, a reverse spike-
triggered LFP computation, in order to extract LFP wavelets for
each spike per V1 neuron. We used PCA dimensionality reduction
to compute PC1 scores as a metric of LFP wavelet shape. We first
confirmed that LFP wavelet shapes had unique structure across
neurons, and we noted changes in LFP wavelet shape over time
on attention trials based on our analysis of time-varying PC1
scores (Figs 1 and 3). Importantly, we established that PC1 scores
tracked with changes in neuronal firing rate computed over
similar timescales (100-msec bins) and many V1 neurons demon-
strated significant correlations between PC1 score and firing
rate in at least one attention condition (Fig. 4). Finally, we tested
whether LFP wavelet shape was predictive of monkeys’ focus of
attention using a simple classifier. We first tested whether LFP
wavelet shape averaged over the full 1-s attention trial analysis
window was sufficient to predict attention locus and this failed
for all neuronal types. However, when we tested LFP wavelet
shape sampled in smaller windows from discrete time points
across attention trials, LFP wavelet shape was predictive of the
locus of attention for SG simple cells and G and IG complex cells
(Fig. 5). These results suggest the following: 1) LFP wavelets can
serve as a proxy for local network activity influencing spike gen-
eration in nearby neurons because LFP wavelet shape changes
correlate with firing rate for many V1 neurons, 2) LFP wavelets
for select V1 neuronal types can predict the locus of attention
when sampled at discrete time points within attention trials, and
3) changes in LFP wavelet shape are most predictive of atten-
tion for V1 neuronal types that also demonstrate more robust
modulations of firing rate with attention. These findings show
that very different approaches can yield consistent attentional
modulation, even in V1 where attentional modulations are sub-
tle. They also highlight the power of LFPs in providing a unique
perspective on local network activity and gaining insight into
the mechanisms underlying attentional modulation of neuronal
activity.

We separated V1 neurons into 6 types based on the most
general physiological and laminar differences: simple or complex
physiology and location within the SG, G, or IG laminar compart-
ments. These simplistic neuronal type categories were chosen
based on historical precedent and because prior work illustrated
differential attentional modulation of firing rates for an overlap-
ping population of recorded V1 neurons grouped using the same
categorization (Hembrook-Short et al. 2017). Specifically, G and
IG complex cells displayed the largest facilitation of firing rates
with attention, while SG simple cells displayed the most suppres-
sion of firing rates with attention (Hembrook-Short et al. 2017).
Consistent with these prior results, here we found that G and IG
complex cells as well as SG simple cells were best at classifying
the locus of attention based on their LFP wavelet shapes defined
in discrete windows within attention trials. It is interesting to

consider the possibility that LFP wavelet shape changes for G
and IG complex cells were indicative of increases in neuronal
firing rate with attention while LFP wavelet shape changes for
SG simple cells were indicative of decreases in neuronal firing
rate with attention. Both increases and decreases in neuronal
firing rate could be useful predictors of attention locus from
the perspective of downstream decoding neurons, especially if
increasing spike rates were characteristic of neurons convey-
ing task-relevant visual stimulus information and decreases in
spike rates were indicative of neurons conveying task-irrelevant
information.

Results of our LFP wavelet shape versus neuronal firing rate
correlation analysis shed some light on this idea. Many G and
IG complex cells demonstrated positive correlations between
PC1 score, our metric of LFP wavelet shape, and neuronal firing
rate (Fig. 4). Additionally, the greatest proportion of neurons in
these 2 categories had significant (positive) correlations between
PC1 score and firing rate. Positive PC1 versus firing rate correla-
tions for G and IG complex cells suggest that LFP wavelet shape
changes correlated with increases in spiking. Furthermore, the
fact that the classifier correctly detected the locus of attention
based on LFP wavelet shape suggests that LFP wavelet shape
changes indicative of increased neuronal firing rate predicted
attention directed toward the receptive field of these neurons.
Figures 1B and 3A support this theory in that both illustrate
differences in LFP wavelets and time-varying PC1 scores across
attention conditions for G and IG complex cells during early and
later windows in the trial.

In contrast to the overall picture for G and IG complex cells,
SG simple cell data suggest a different relationship between LFP
wavelet shape, neuronal firing rate, and attention locus. Unlike
G and IG complex cells, many SG simple cells had a negative
correlation between PC1 score and firing rate, suggesting that
LFP wavelet shape changes indicated a reduction in firing rate
among SG simple cells. It is therefore likely that the classifier was
able to accurately decode attention locus from SG simple cells’
LFP wavelet shapes because shape changes corresponded to
reductions in neuronal firing rate with attention directed toward
the receptive field. This notion is supported by Figures 1B and 3A
in which LFP wavelets and time-varying PC1 scores for SG simple
cells display smaller amplitude fluctuations on attend-toward
trials at the beginning and middle of the trial, which are the
same trial windows in which classification of attention trial type
based on LFP wavelet shape was successful. Again, these results
are consistent with prior findings that SG simple cells in V1
demonstrated the most suppression of neuronal firing rate with
attention directed toward the receptive field (Hembrook-Short
et al. 2017). These findings also provide additional support for
the claim that attentional modulation depends upon the match
between neuronal feature tuning and the attended features in
the task. In the case of SG simple cells that may be selective for
visual stimulus features like color and orientation (Johnson et al.
2008; Garg et al. 2019), their feature selectivity is less relevant
for the contrast change detection task leading to a reduction in
neuronal activity with attention. Decoding the locus of attention,
as well as relevant visual stimulus features, will be aided by
both increased activity among neuronal populations encoding
task-relevant information as well as decreased activity among
neuronal populations encoding task-irrelevant visual informa-
tion. Together, input from diverse neuronal populations will
enhance overall decoding capacity of downstream neurons for
visual information. These diverse inputs also enable flexibility
when task demands change, that is, when subjects are required
to attend to new visual stimulus features.
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It is also interesting to consider the time points at which
LFP wavelets from SG simple and G and IG complex cells could
successfully predict the attention locus. LFP wavelets from SG
simple cells were predictive of attention locus during the first
and fourth analysis windows, corresponding to early and middle
parts of the attention trial. SG simple cells, especially those
that are color-selective, could receive direct LGN input and/or
local input from parvocellular-recipient neurons in layer 4Cbeta
(Johnson et al. 2001; Chatterjee and Callaway 2003), producing
shorter-latency responses and earlier integration of visual
stimulus information. In contrast, complex cells, especially
in the deepest cortical layers have longer response latencies
reflecting local circuit inputs (Nowak et al. 1995). Interestingly,
LFP wavelets from G complex cells were predictive of attention
locus at early and late parts of the attention trial while IC
complex cell LFP wavelets were predictive of attention locus
only at the latest trial time points. Thus, the time points at
which LFP wavelets were predictive of attention for the different
neuronal types are consistent with their integration times
for incoming visual information. Additionally, accumulation
of predictive information about the locus of attention at
different time points for different neuronal types could also
aid downstream decoding neurons by providing an additional
dimension, real time, over which visual and attention signals are
available.

Although LFPs are relatively easy to record compared to single
units and have become a popular measurement of neuronal
activity modulations with attention, interpretation of attentional
modulation of LFPs has been challenging in part because the
precise nature of the LFP is unknown. Here, we take advantage of
the excellent temporal resolution of LFPs and the fact that LFPs
are likely to reflect local network activity within hundreds of
microns of the recording electrode (Katzner et al. 2009; Buzsaki
et al. 2012). By specifically analyzing reverse spike-triggered LFPs,
we demonstrate consistent structure in LFP wavelets measured
for individual neuronal spikes. This combined with the fact that
LFP wavelet shape changes track with neuronal firing rates and
can serve as a predictor of attention locus for select neuronal
types suggest exciting applications for LFPs in elucidating the
neuronal and network mechanisms underlying the effects of
attention. In particular, LFP wavelets could be used to track
the onset of attention effects with finer temporal resolution
compared to conventional methods that rely on spiking rates.
Because LFP wavelets are linked to individual neurons, further
exploration of neuron-specific attentional modulations with
improved temporal precision is feasible. The fact that quite
distinct measures of neuronal activity (firing rates averaged
over long timescales and LFP wavelet shapes sampled at finer
timescales) yield strikingly similar overall effects of attention
is encouraging, especially in V1 where attention modulations
are subtle. Our results highlight the power of combining
neurophysiological measurements to better understand the
mechanisms underlying fundamental neuronal processes such
as visual spatial attention.
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