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Inflammation and neonatal hypoxia-ischemia (HI) are important etiological factors of
perinatal brain injury. However, underlying mechanisms remain unclear. Sirtuins are a
family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases.
Sirtuin-6 is thought to regulate inflammatory and oxidative pathways, such as the
extracellular release of the alarmin high mobility group box-1 (HMGB1). The expression
and role of sirtuin-6 in neonatal brain injury are unknown. In a well-established model
of neonatal brain injury, which encompasses inflammation (lipopolysaccharide, LPS)
and hypoxia-ischemia (LPS+HI), we investigated the protein expression of sirtuin-6
and HMGB1, as well as thiol oxidation. Furthermore, we assessed the effect of the
antioxidant N-acetyl cysteine (NAC) on sirtuin-6 expression, nuclear to cytoplasmic
translocation, and release of HMGB1 in the brain and blood thiol oxidation after LPS+HI.
We demonstrate reduced expression of sirtuin-6 and increased release of HMGB1 in
injured hippocampus after LPS+HI. NAC treatment restored sirtuin-6 protein levels,
which was associated with reduced extracellular HMGB1 release and reduced thiol
oxidation in the blood. The study suggests that early reduction in sirtuin-6 is associated
with HMGB1 release, which may contribute to neonatal brain injury, and that antioxidant
treatment is beneficial for the alleviation of these injurious mechanisms.
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INTRODUCTION

The complex etiology underlying perinatal brain injury includes,
among other factors, inflammation and neonatal hypoxia-
ischemia (HI) (Hagberg et al., 2015). Furthermore, inflammation,
acting in combination with neonatal HI, increases the risk of
perinatal brain injury, as shown in both rodents (Eklind et al.,
2001, 2005; Wang et al., 2009) and larger animals (Martinello
et al., 2019). Ischemic injury and neurodegeneration in adults
have also been associated with oxidative stress and inflammation
(Shao et al., 2020; Yang W. et al., 2020). Acetylation of histones
is recognized as an important posttranslational modulation
of inflammatory genes. Sirtuins are nicotinamide adenine
dinucleotide (NAD)+-dependent histone deacetylases (HDACs),
with several histone and non-histone targets (Houtkooper et al.,
2012). Sirtuins are located in different subcellular compartments
(Houtkooper et al., 2012). For instance, sirtuin-1 (SIRT1) (Li,
2014) and sirtuin-6 (SIRT6) (Zhang et al., 2017) regulate anti-
inflammatory and antioxidant pathways mainly in the nucleus
and cytosol, whereas sirtuin-3 (SIRT3) plays an important
antioxidant role in mitochondria (Bause and Haigis, 2013). The
expression and activity of SIRT1 are downregulated following HI
in neonatal rats and restored by melatonin treatment (Carloni
et al., 2014, 2016, 2017). In another study, melatonin-mediated
protection against LPS-induced neuronal damage in the dentate
gyrus of rats was shown to involve upregulation of SIRT1
and the antioxidant nuclear factor erythroid 2-related factor 2
(NRF2) pathway, which caused a reduction in inflammation and
oxidative stress (Shah et al., 2017).

High mobility group box-1 (HMGB1) is an ubiquitous
non-histone DNA-binding protein located in the nucleus that
functions as a structural cofactor to regulate transcription
(Ulloa and Messmer, 2006). Under physiological conditions,
HMGB1 can act as a neurite growth factor in the immature
brain (Merenmies et al., 1991; Zhang et al., 2011). However,
under pathological conditions, HMGB1 is released from the
nucleus into the extracellular space of activated immune cells
and acts as a pro-inflammatory mediator (Wang et al., 1999b).
HMBG1 translocation has also been observed in injured cells
and demonstrated in animal models of adult stroke (Kim et al.,
2006; Muhammad et al., 2008; Zhang et al., 2011) and neonatal
HI brain injury (Zhang et al., 2016; Chen et al., 2019). HMGB1 is
considered a sensitive early marker of neonatal HI brain injury, as
nuclear to cytoplasmic translocation and extracellular release of
HMGB1 can be detected immediately and up to 6 h after neonatal
HI (Chen et al., 2019).

SIRT6 has been implicated in the prevention of the
extracellular release of HMGB1. For instance, siRNA-mediated
knockdown of SIRT6 was shown to increase the extracellular
release of HMGB1 from SH-SY5Y neuronal cells following
exposure to oxygen-glucose deprivation (Lee et al., 2013). Similar
effects of SIRT6 knockdown were shown on other cell types
(Kong et al., 2020). The reduced expression of SIRT6 in ischemic
regions of adult rodent brain coincided with the cytosolic
translocation of HMGB1 (Lee et al., 2013).

The effect of neonatal brain injury on SIRT6, in association
with HMGB1 translocation, is not known. Therefore, the

aim of this study was to investigate SIRT6 expression and
the extracellular release of HMGB1 in a neonatal model of
LPS-sensitized HI brain injury. Furthermore, the effect of
neuroprotection on the expression of SIRT6 and HMGB1 was
assessed using N-acetyl cysteine (NAC), as it is a well-known
antioxidant and has previously been demonstrated to improve
cellular redox status (Adams et al., 2021) and reduce brain injury
in a neonatal animal model that combined LPS and hypoxia-
ischemia (Wang et al., 2007).

EXPERIMENTAL PROCEDURES

Animals
C57BL/6J mice (6− to 8-week-old), bought from Janvier
Laboratories (Le Genest-Saint-Isle, France) and Charles River
Laboratories (Sulzfeld, Germany), were bred at the Laboratory
for Experimental Biomedicine (Sahlgrenska Academy, University
of Gothenburg, Sweden). The animals were kept in a 12 h light-
dark cycle with ad libitum access to standard laboratory chow
(B&K, Solna, Sweden) and water. All the animal experiments
were approved by the Gothenburg Animal Ethics Committee.
In all the experiments, animals from at least three litters were
used, and pups within each litter were equally distributed among
the treatment groups, including distribution of sex of pups
whenever possible.

Hypoxia-Ischemia, Lipopolysaccharide,
and N-Acetyl Cysteine Treatment
The day of birth was considered post-natal day (PND) 0. On
PND 8, mice were randomly selected for injection with either
lipopolysaccharide (LPS) (O55:B5; i.p.; 0.3 mg/kg in endotoxin-
free saline) or an equivalent volume of endotoxin-free saline
(SAL). In a separate cohort, PND 8 pups were administered
LPS or SAL as above and 14 h after injection (i.e., on PND 9)
the pups were also exposed to hypoxia-ischemia (HI) using the
modified Rice-Vanucci model as described before (Wang et al.,
2009). Briefly, the left common carotid artery was ligated, and
the mice were exposed to 10% O2 for 30 min in a humidified
incubator maintained between 35.5 and 36.5◦C.

N-acetyl cysteine or vehicle (VEH, i.e., endotoxin-free saline)
was administered at the time of LPS injection and immediately
before HI in animals subjected to the combination of LPS and
HI. The dose of NAC (200 mg/kg in endotoxin-free saline; i.p.;
Sigma-Aldrich, St. Louis, MO, United States) was selected based
on our previous study on neonatal rats (Wang et al., 2007).

Tissue Collection for Biochemical
Analysis
Mice were deeply anesthetized via intraperitoneal administration
of pentobarbital (Pentacour) and intracardially perfused with
0.9% saline. Brain tissue was collected on a cold plate and
frozen in dry ice followed by storage at −80◦C. The tissue
samples were homogenized using a lysis buffer containing Tris-
HCl (25 mM, pH 7.9), NaCl (100 mM), EDTA (5 mM), NP40
(1%), sodium butyrate (0.1 mM), Nam (5 mM), protease inhibitor
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(1%), phosphatase inhibitor, and PBS (pH 7.4). The lysate was
analyzed by Western blotting and quantitative real-time PCR.
The fraction for Western blotting was centrifuged at 15,000 g
for 5 min at 4◦C, and the supernatant was stored at −80◦C.
The remaining fractions were directly stored at −80◦C. Protein
concentration in the lysates was measured using a bicinchoninic
acid protein assay kit (Thermo Fisher Scientific, Waltham,
MA, United States).

Quantitative Real-Time PCR
Total RNA was extracted from the brain samples using the
RNeasy mini kit (Qiagen, Solna, Sweden) and measured
in a spectrophotometer at 260-nm absorbance (NanoDrop
2000/2000c; Thermo Fisher Scientific, Rockford, IL,
United States). Total RNA (500 ng) from each sample was used
for first-strand cDNA synthesis according to the instructions of
the manufacturer (QuantiTect reverse transcription kit; Qiagen,
Solna, Sweden). In order to determine mRNA expression, the
cDNA samples were further processed by quantitative real-time
(qRT)-PCR. Each PCR reaction (20 µl) contained 10 ng of cDNA
in a 5-µl volume, 10 µl of QuantiFast SYBR Green PCR master
mix (Qiagen, Solna, Sweden), 2 µl of PCR primers, and 3 µl of
H2O, to make a final reaction volume of 20 µl. The PCR primer
was Mm_Sirt6_1_SG QuantiTect Primer Assay QT00112700
(Qiagen, Solna, Sweden). The amplification protocol comprised
an initial 5-min denaturation at 95◦C, followed by 40 cycles
of denaturation for 10 s at 95◦C and annealing/extension for
30 s at 60◦C on LightCycler 480 (Roche, Stockholm, Sweden).
Melting-curve analysis was performed to ensure that only one
PCR product was obtained. For quantification and estimation
of amplification efficiency, a standard curve was created
using increasing concentrations of cDNA. The amplification
transcripts were quantified with the relative standard curve
and normalized to the concentration of cDNA in each RT
sample measured using the Quant-iTTM 338 OliGreen ssDNA
Assay Kit 339 (Invitrogen, Waltham, MA, United States) in
accordance with (26). Data were normalized to geomean of
Hprt1 and Ywhaz genes.

Western Immunoblotting
Tissue lysates were mixed with 4× Laemmli Sample buffer
(Bio-Rad Laboratories, Hercules, CA, United States) and 10%
β-Mercaptoethanol (Merck, Darmstadt, Germany), and diluted
using PBS to obtain same protein concentration across all
samples. The samples were heated at 95◦C for 5 min before 10–
20 µg of each was loaded on a 4–20% reducing gel (CriterionTM

TGX Stain-FreeTM Precast Gels; Bio-Rad Laboratories, Hercules,
CA, United States), and transferred to a 0.2-µm nitrocellulose
membrane (Bio-Rad Laboratories, Hercules, CA, United States).
Stain-free blots were imaged using a Gel Doc XR Plus
system (Bio-Rad Laboratories, Hercules, CA, United States),
and images were saved for normalization of immunoreactive
bands to the total protein. Membranes were blocked with
TBS-Tween (TBS-T) buffer (30 mM/L Tris-HCl, 100 mM/L
NaCl, and 0.1% Tween: pH 7.45) containing 5% nonfat milk
for 1 h at room temperature. After washing with TBS-T,
the membranes were incubated overnight at 4◦C with the

following primary antibodies: sirt1 mouse monoclonal antibody
(1:500, CST 8469; Cell Signaling, Leiden, WZ, Netherlands)
and Sirt6 rabbit monoclonal antibody (1:500, CST 12486; Cell
Signaling, Leiden, WZ, Netherlands). The membranes were
washed with TBS-T and incubated with appropriate peroxidase-
labelled secondary antibody (1:5,000; Vector Laboratories,
Burlingame, CA, United States) in 5% nonfat milk for 1 h.
Immunoreactive bands were visualized using an ECL substrate
(Bio-Rad Laboratories, Hercules CA, United States) and a
Gel Doc XR Plus system (Bio-Rad Laboratories, Hercules,
CA, United States), and quantified using the Image LabTM

software after normalizing to total protein (Bio-Rad Laboratories,
Hercules CA, United States).

Multiplex Protein Analysis
Cytokines and chemokines in lysates from hippocampus were
detected with a cytometric bead array using a Bio-Plex Pro
mouse cytokine 9-plex assay (Bio-Rad Laboratories, Hercules CA,
United States) and analyzed with a Luminex 200 system (Bio-
Rad Laboratories, Hercules CA, United States) according to the
instructions of the manufacturer and as previously described
(Lai et al., 2020).

Thiol Oxidation
The oxidation of plasma albumin was measured as previously
described (Lim et al., 2020) with the following modifications:
blood samples were collected by heart puncture and applied onto
a PerkinElmer 226 Spot Saver RUO Card containing polyethylene
glycol maleimide. Cards were stored with silica gel desiccant for
transport to the University of Western Australia. Albumin was
extracted into 0.05% Tween 20 in 20 mM phosphate with further
binding to Cibacron Blue F3GA agarose. Albumin was eluted
with 25 µl of 1.4 M NaCl in 20 mM phosphate buffer, pH 7.4.
Gel electrophoresis, imaging, and calculation of total albumin
oxidation were performed as previously described (Lim et al.,
2020).

Tissue Processing for
Immunohistochemical Staining
The mice were deeply anaesthetized via intraperitoneal
administration of pentobarbital (Pentacour) (60 mg/ml).
The brains were removed from the skull and immersed in
6% buffered formaldehyde (Histofix; Histolab products AB;
Västra Frölunda, Sweden) and stored at 4◦C for 1 week.
At the time of tissue processing, the brains were placed in
a cryoprotective solution containing 30% (w.v1) sucrose
for 48 h followed by placement on copper blocks for
freezing in cold isopentane (Sigma Aldrich, Darmstadt,
Germany). Free-floating 60-µm thick sections were cut
coronally on a cryostat (Leica CM 3050 S; Leica, Wetzlar,
Germany) and selected based on a systematic sampling
principle and a section-sampling fraction of 1/6 (Gundersen,
2002) by selecting the first section of each series randomly
using a random table.
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Immunohistochemistry
The free-floating 60-µm thick sections were washed in
phosphate-buffered saline (PBS, 0.1 M, pH 7.2, 30 min)
followed by blocking with endogenous peroxidase (3% H2O2 in
PBS, 30 min). Antigen retrieval was performed using 0.01 M
citrate buffer (40 min at 85◦C). Thereafter, the sections were

rinsed in PBS (2 min × 15 min) and placed in 4% goat
serum in PBS for 1 h. In the next step, the sections were
incubated with a monoclonal rabbit anti-HMGB1 and anti-sirt6
(1:350, Ref# ab79823; 1:500, D8D12 CST; Abcam, Cambridge,
United Kingdom) overnight at 4◦C, followed by washing in PBS,
incubation in polyclonal secondary goat-anti-rabbit biotinylated

FIGURE 1 | Sirtuin 1 and sirtuin 6 protein expression after saline (SAL) + hypoxia-ischemia (HI) and lipopolysaccharide (LPS) + HI. Western blots of (A) sirtuin-1 (B)
and sirtuin-6 were performed 1–12 h after SAL + HI or LPS+HI in injured (ipsilateral) and uninjured (contralateral) hippocampi. N = 5–6/group, *p < 0.05, **p < 0.01.
Paired Wilcoxon signed-rank test (paired data) and Mann–Whitney U (non-paired data) were applied. Example of sirtuin 6 staining in the CA1 region of hippocampus
(ipsi- and contralateral) 6 h after LPS + HI (20× objective lens), scale bar = 100 µm (C).
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(1:200;Vector Laboratories, Olean, NY, United States) for 2 h, and
washing in PBS (2 min × 15 min) and ABC elite (avidin-biotin-
complex; Vector Laboratory, Burlingame, CA, United States) for
1 h at room temperature. Immunolabeling was performed using a
3,3-diaminobenzidine solution (Acros Organics, Geel, Belgium).
Finally, the sections were mounted on gelatine-coated slides,
dried, re-hydrated in demineralized water, dehydrated through
a graded series of alcohol (95% and 99%), cleared in xylene,
and coverslipped.

Measurement of Hippocampal High
Mobility Group Box-1 Positive Area
Quantification of the area in hippocampus that exhibited
HMGB1 translocation and release was performed on the
HMGB1-stained sections by point counting using the Cavalieri
estimator (Anzabi et al., 2018) and using a 10× objective

lens under light microscope modified for stereology with a
digital camera (Leica DFC 295; Leica, Wetzlar, Germany) and
the newCASTTM software (Visopharm, Hørsholm, Denmark)
(Figure 5). The following formula was used to calculate the
volume of the HMGB1-positive area:

V = ΣP ·
(

a
p

)
· T ·

1
SSF

where 6P is the total number of the points hitting the region of
interest per animal, (a/p) is the area per test point; T is the section
thickness (60 µm), and SSF is the section sampling fraction (1/6).
The size of the HMGB1-positive area was presented as % of the
size of the hippocampus.

FIGURE 2 | Cytokine and chemokine levels following SAL + HI and LPS + HI. Multi-bead array analysis (9-plex) was applied to hippocampal lysate from ipsi- and
contralateral hemispheres 2h after SAL + HI or LPS + HI. Protein expression for (A) IL-1β, (B) IL-6, (C) IL-12 (p40), (D) IL-12 (p70), (E) G-CSF, (F) GM-CSF,
(G) CXCL1, (H) CCL2, and (I) TNF-α (I) was analyzed. n = 5–6/group, *p < 0.05; **p < 0.01. Paired t-test (paired data) and independent t-test (non-paired data)
were performed.
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Statistical Analysis
Data are presented as mean ± SD. All the statistical analyses
were conducted using the SPSS statistical software (SPSS Statistics
21; IBM, Armonk, NY, United States). Graphs were created
using Prism 8 (GraphPad Software Inc., San Diego, CA, United
States). Prior to statistical tests, normal distribution of data
was checked by making a Q–Q plot of the data. The variance
homogeneity of data was also examined by Levene’s test.
Data with normal distribution were compared between two
independent groups (Saline/HI and LPS/HI) by independent
t-test, and those with non-normal distribution were analyzed
by Mann–Whitney U test. For analysis between ipsilateral and
contralateral sides, the data were considered as paired. In such
analysis, normally distributed data were analyzed by paired
t-test, and non-normally distributed data were analyzed by
paired Wilcoxon signed-rank test. P < 0.05 was considered
statistically significant.

RESULTS

Lipopolysaccharide Alone Does Not
Affect Sirtuin-6 mRNA or Protein
Expression
In order to understand if LPS by itself affects sirtuin-6 expression,
we measured the sirt6 mRNA and SIRT6 protein expression
in the brain 12 h after LPS injection. There was no difference in
mRNA expression (Supplementary Figure 1A, p > 0.05) or in
protein expression (Supplementary Figure 1B, p > 0.05) in the
brain after LPS.

Reduced Sirtuin 1 and Sirtuin 6 Protein
Expression Following
Lipopolysaccharide + Hypoxia-Ischemia
To analyze temporal changes in the expression of SIRT1 and
SIRT6 proteins in response to an injurious event, we collected

hippocampal tissues at 1, 2, 6, and 12 h after SAL + HI
and LPS + HI (n = 5–6 per group and time point). The
hippocampus was analyzed, as it is the most sensitive brain region
in infection-induced sensitization of HI injury in neonatal mice
(Lai et al., 2020). SIRT1 protein levels significantly decreased in
the ipsilateral hippocampus compared with the contralateral side
at 1, 2, and 6 h in the LPS + HI group (Figure 1A). There
were no significant changes in SIRT1 levels between hemispheres
following SAL+HI (Figure 1A). Analysis of SIRT1 protein levels
in the ipsilateral hippocampus in SAL + HI and LPS + HI,
within each time-point, showed no difference between the two
groups (Figure 1A).

Sirtuin 6 protein expression was significantly decreased in the
ipsilateral hippocampus compared with the contralateral side at
all time points (1–12 h) after LPS + HI, while SIRT6 protein
expression in the hippocampus was reduced at 2–12 h after SAL
+ HI (Figure 1B). Analysis of SIRT6 protein levels between the
ipsilateral hippocampus in SAL + HI and LPS + HI within each
time point showed significantly lower level of SIRT6 protein at
12 h after LPS + HI, while no changes at other time points were
observed (Figure 1B).

Immunohistochemical staining for SIRT6 was evident in
neurons in the contralateral CA1 region of the hippocampus,
while staining was markedly reduced in the ipsilateral
hippocampus 6 h after LPS+HI (Figure 1C).

Cytokine and Chemokine Response in
Hippocampus Following Saline +

Hypoxia-Ischemia and
Lipopolysaccharide + Hypoxia-Ischemia
As both SIRT1 and SIRT6 protein expressions changed already
1–2 h after LPS + HI, we next used a cytometric bead array
to measure a panel of cytokine and chemokine proteins in
the hippocampus 2 h following SAL + HI and LPS + HI.
Cytokines IL-1β, IL-6, IL-12 (p40), IL-12 (p70), GM-CSF, TNF-
α, and the chemokine CCL2 were unchanged in the ipsilateral

FIGURE 3 | Effect of N-acetyl cysteine (NAC) treatment on thiol oxidation and brain injury after LPS + HI. Animals were subjected to LPS + HI and administered VEH
(saline) or NAC treatment. (A) Thiol oxidation was analyzed 30 min after LPS + HI in blood. n = 7/group, **p < 0.01. Independent t-test was applied. Brains were
removed and photographed 12 h after LPS + HI. (B) Typical example of brain injury appearance in VEH- and NAC-treated animals.
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compared with contralateral hippocampi in the SAL + HI and
LPS+HI groups (Figure 2, n = 5–6/group, p> 0.05). In contrast,
G-CSF and CXCL1 were increased in the ipsilateral hippocampi
compared with the contralateral hippocampi following LPS+HI
(Figure 2, n = 5–6/group, p = 0.026 and p = 0.002, respectively).
Analysis of cytokine and chemokine proteins in the ipsilateral
hippocampus following SAL + HI and LPS + HI showed
significant difference in IL-1β, G-CSF, and CXCL1 between the
two groups (Figure 2).

N-Acetyl Cysteine Treatment Reduces
Thiol Oxidation and Brain Injury After
Lipopolysaccharide + Hypoxia-Ischemia
To investigate the effects of an antioxidant/anti-inflammatory
compound on SIRT6 and HMGB1 in our model, we used NAC,
as we have previously shown this to be protective in neonatal rats
following inflammation-induced HI injury (Wang et al., 2007;
Mottahedin et al., 2020). First, we confirmed the antioxidant
effect of NAC and show reduced thiol oxidation in blood 30 min
following NAC compared with VEH-treated LPS + HI animals
(Figure 3A, n = 7/group, p = 0.007). Inspection of brain tissue
12 h after LPS + HI in VEH- and NAC-treated animals showed
clear reduction in tissue pallor (indicative of reduced injury) in
the NAC-treated animals (Figure 3B).

N-Acetyl Cysteine Treatment Restores
Sirtuin 6 Protein Levels
To determine the effects of NAC on the expression of SIRT6
protein, hippocampi were collected from NAC- and VEH-treated
LPS + HI mice 12 h after HI. SIRT6 levels were reduced in the
ipsilateral hippocampus compared with the contralateral side in
both VEH- and NAC-treated animals (Figure 4, n = 10–12/group,
p = 0.001, p = 0.001, respectively). The reduction in SIRT6
in the ipsilateral hippocampus was significantly less in the
NAC-treated animals compared with the SAL-treated mice
(Figure 4, n = 10–12, p = 0.009).

N-Acetyl Cysteine Treatment Reduced
Hippocampal High Mobility Group Box-1
Translocation and Release After
Lipopolysaccharide + Hypoxia-Ischemia
Sirtuin 6 has been suggested as a regulator of HMGB1 release.
Thus, we investigated the immunohistochemical expression of
extracellular HMGB1 in the hippocampus after LPS-HI with or
without NAC treatment. Extracellular HMGB1 positive areas,
as determined by unbiased stereological method, were apparent
in the ipsilateral hemisphere in both groups (Figures 5A,B).
We found that the area of extracellular HMGB1 staining in the
ipsilateral hippocampus was significantly smaller in the NAC
group compared with the VEH group (Figure 5C, n = 6–8/group,
p = 0.041).

FIGURE 4 | Sirtuin 6 protein expression in the hippocampus following LPS +
HI with or without NAC treatment. (A,B) Animals were subjected to LPS + HI,
and sirtuin 6 protein expression was analyzed in ipsilateral (ipsi) and
contralateral (contra) hippocampi by Western blot 12 h after LPS + HI with
NAC or VEH treatment. n = 10–12/group **p < 0.01, ***p < 0.001,
n = 10–12/group. Paired t-test (paired data) and independent t-test
(non-paired data) were performed.

DISCUSSION

Sirtuin 6 has been relatively little studied compared with
other members of the sirtuin family (Klein and Denu, 2020).
However, SIRT6 has been implicated as a therapeutic target in
diverse conditions such as cardiovascular (Saiyang et al., 2021),
Alzheimer’s (Mohamad Nasir et al., 2018), cancer (Fiorentino
et al., 2021), and several other age-related diseases (Zhao et al.,
2020). As perinatal brain injury and underlying mechanisms
significantly differ from the adult (Mallard and Vexler, 2015),
this study has focused on injury mechanisms in the neonatal
brain. This is the first study to have investigated SIRT6 in
a neonatal model of inflammation-induced brain injury. We
demonstrate that the expression of SIRT6 protein is reduced
and that the release of extracellular HMGB1 is increased in
the injured ipsilateral hemisphere after LPS + HI. Treatment
with the antioxidant NAC normalized these changes, which
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FIGURE 5 | Immunohistochemistry of high mobility group box-1 (HGMB1) release after LPS + HI with or without NAC treatment. (A) Representative image (5×
objective lens) of neonatal mouse brain section stained with HMGB1 at the hippocampal level 6 h after LPS + HI and the area of HMGB1 translocation and release in
the ipsilateral brain hemisphere (arrow), scale bar = 2.5 mm. (B) Application of point counting on 60-µm thick coronal HMGB1-stained sections for measuring the
area with extracellular HMGB1 release, scale bar = 100 µm. (C) From area measurements, the percent of HMGB1 extracellular volume was calculated on
hippocampal ipsilateral side and contralateral side in the VEH and NAC groups. n = 6–8, *p < 0.05. Independent t-test was performed.

were accompanied by amelioration of brain injury. These results
suggest that SIRT6 has a protective effect on the developing
brain, effects at least partially linked to the regulation of HMGB1
extracellular release.

Sirtuin 6 deficiency in nonhuman primates results in
developmental delay, including delay in neuronal differentiation
(Zhang et al., 2018). It has been suggested that SIRT6 is a
regulator of dendrite morphogenesis in rat hippocampal neurons
and, therefore, important in development (Matsuno et al., 2021).
SIRT6 has also been shown to protect the adult brain from
cerebral ischemia/reperfusion injury (Zhang et al., 2017). While
in this study LPS by itself did not alter sirtuin-6 mRNA or
SIRT6 protein levels in the neonatal brain, SIRT6 expression
in the injured hemisphere was reduced already 1 h after LPS
+ HI, and this reduction became more prominent with time.
A similar response in SIRT6 was observed after SAL + HI,
but started later (2 h) and with less marked changes. We know
from our previous studies that brain injury is significantly more
pronounced following LPS+HI compared with SAL+HI (Wang
et al., 2009), which has also been shown in piglets (Martinello
et al., 2019). Thus, the data suggest that the magnitude of
reduction in SIRT6 is associated with the degree of injury.
Similarly, we found significantly reduced expression of the SIRT1
protein, however, only in association with more severe LPS +
HI-induced injury but not after SAL + HI. In support, the early
regulation of SIRT1 has been shown previously after prolonged
severe neonatal HI (2.5 h) (Carloni et al., 2017).

We observed increased HMGB1 extracellular staining in
brain regions known to be injured following neonatal LPS +
HI (Wang et al., 2009). Clinical studies have demonstrated
that HMGB1 levels are elevated in the blood of neonates
with perinatal asphyxia (Okazaki et al., 2008) and in the
umbilical blood of neonates suffering from hypoxic-ischemic
encephalopathy (Nakamura et al., 2013). HMGB1 extracellular
release in the brain has been observed after cerebral ischemia

in fetal sheep (Zhang et al., 2016) and in neonatal rat brain
after cerebral hypoxia-ischemia (Chen et al., 2019). HMGB1
can be passively released during various forms of cell death,
such as pyroptosis, apoptosis, autophagy, necroptosis, and
necrosis (Scaffidi et al., 2002). Increased extracellular HMGB1
was recently linked to HI-induced brain damage in the
hippocampus of neonatal mice, and it was shown that treatment
with an HMGB1 inhibitor reversed the HI-induced loss of
gray and white matter in the hippocampus and reduced
neurobehavioral impairments (Le et al., 2020).

Increased extracellular HGMB1 staining was observed in
the same brain regions where we found decreased SIRT6
expression, suggesting a possible mechanistic link. Similarly,
decreased expression of SIRT6 was associated with the release
of HGMB1 after adult cerebral ischemia (Lee et al., 2013). In
that study, Lee et al. showed that Sirtuin6 gene knockdown by
siRNA increased HMGB1 translocation. While the mechanisms
were not fully elucidated, co-immunoprecipitation experiments
suggested that SIRT6 does not interact directly with HMGB1
(Lee et al., 2013). An alternative mechanism is that decreased
SIRT6 leads to elevated chromatin acetylation, which in turn
can trigger HMGB1 release and inflammation (Scaffidi et al.,
2002). Another possibility is that SIRT6 affects the nuclear
retention of HMGB1 through the regulation of NF-kB activity.
Under normal conditions, SIRT6 can maintain inflammatory
homeostasis through interaction with the NF-kB subunit RelA,
leading to deacetylation of histone H3K9 on NF-kB target
gene promoters, thereby decreasing transcription through NF-
kB (Kawahara et al., 2009; Ha et al., 2011). However, in this
study, decreased SIRT6 expression was not reflected in, at
least, early expression of cytokines and chemokines, except for
an increase in G-CSF and CXCL1 in the injured ipsilateral
hemisphere. Potentially, SIRT6 levels may be better related to
the cytokine response at later time points after HMGB1 release.
However, another alternative explanation is that a lowered
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level of SIRT6 results in decreased ERK and IGF-1 signaling
known to be protective in HI-induced neonatal brain damage
(Gluckman et al., 1992; Brywe et al., 2005). ERK can regulate the
translocation of HMGB1, and SIRT6-deprived cells have reduced
ERK (Matsuno et al., 2021); the effect of ERK phosphorylation on
HMGB1 release does not affect the production of cytokines (Zhou
et al., 2013). With respect to the brain, the ERK inhibitor U0126
blocked HMGB1 release from astrocytes (Hayakawa et al., 2010).
Obviously, the relationship between SIRT6 and HMGB1 release
is complex and can be multifactorial; however, it is possible
that decreased SIRT6, at least partly, causes increased release of
HMGB1 via lack of ERK phosphorylation.

High mobility group box-1 has been shown to act as
a mediator of endotoxemia in mice and is regarded as a
damage-associated molecular pattern (DAMP) molecule, causing
inflammatory responses in various diseases (Wang et al., 1999a;
Lotze and Tracey, 2005; Andersson and Tracey, 2011). Once
in the extracellular space, HMGB1 can activate an array
of innate immune receptors, such as RAGE and toll-like
receptors (TLR) 2 and 4 (Yang H. et al., 2020). The mRNA
and protein expression of RAGE is increased after neonatal
hypoxia-ischemia (Pichiule et al., 2007), and we have shown
increased expression of TLR2 (Stridh et al., 2011). The effects
on these receptors are dependent on the oxidation status of
HMGB1 where the mixed form with one disulfide bridge
and one reduced –SH group is the variant that activates
TLRs (Kwak et al., 2020). Thus, while the mechanism of
translocation from the nucleus and release to the extracellular
space under ischemic conditions is not fully clear, it may
include the oxidation of HMGB1 (Kwak et al., 2020). The
importance of partial oxidation of HMGB1 as a trigger of
nuclear to cytoplasmic translocation points toward a site of
action of antioxidants, although this is not well explored.
The levels of the SIRT6 protein have been shown to be
reduced by H2O2-induced oxidative stress (Liu et al., 2014).
It follows that part of the antioxidant protective effects of
NAC against LPS+HI injury could be exerted via blockage
of a decrease in SIRT6 that has been shown to preserve
nuclear HMGB1 as well as the maintenance of the reduced
form of HMGB1. Both of these effects would keep HMGB1
in the nucleus. Our data demonstrating that NAC treatment
normalized SIRT6 and reduced extracellular HMGB1 release
support such a notion.

We acknowledge several limitations of the study, such as the
study groups were not dimensioned to detect sex differences
and there was no long-term follow-up on sirtuin and HMGB1
regulation. Furthermore, NAC treatment was only administered
prior to HI; thus, the effects of NAC on sirtuins and HMGB1
solely post-HI could not be assessed.

In conclusion, LPS-sensitized HI caused decreased SIRT6
levels and increased release of HMGB1 in the neonatal brain.
Treatment with NAC was protective and restored SIRT6 and
blocked the release of HMGB1. Further studies are needed to
clarify the detailed relationship between SIRT6 and neonatal
brain injury, but our data indicate that SIRT6 could be a target for
therapeutic intervention against LPS-sensitized HI-induced brain
damage by reducing HMGB1 release.
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